JPH07125290A - Density gradation control type thermal printer - Google Patents

Density gradation control type thermal printer

Info

Publication number
JPH07125290A
JPH07125290A JP14802993A JP14802993A JPH07125290A JP H07125290 A JPH07125290 A JP H07125290A JP 14802993 A JP14802993 A JP 14802993A JP 14802993 A JP14802993 A JP 14802993A JP H07125290 A JPH07125290 A JP H07125290A
Authority
JP
Japan
Prior art keywords
resistance element
heating resistance
thermal
recording
during recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14802993A
Other languages
Japanese (ja)
Inventor
Tadashi Katsukawa
忠 勝川
Kazutaka Takeda
和隆 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14802993A priority Critical patent/JPH07125290A/en
Publication of JPH07125290A publication Critical patent/JPH07125290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To accurately regenerate desired density gradation on a record sheet by providing means for calculating a coefficient for representing thermal influence at a recording time by linear approximation and calculating thermal influence of a near heat generating resistance element for a heat generating resistance element during recording from a supply heat quantity to the near element and the coefficient of the influence. CONSTITUTION:Correction means 1 for correcting application energy to a heat generating resistance element during recording at each area based on an approximate coefficient value obtained by a coefficient for representing thermal influence degree as linear approximation at dividing points of start and end of each area by dividing a conducting time of each pixel to the elements R1-R512 during recording into one or two divided regions is provided as calculating means for calculating a coefficient for representing thermal influence from the near element at the element during recording. As a result, no variation in the density gradation due to the thermal influence from the near element of the element during recording occurs, and desired temperature gradation can be accurately reproduced on a record sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濃度階調制御型サーマ
ルプリンタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a density gradation control type thermal printer.

【0002】[0002]

【従来の技術】一般にサーマルプリンタにより印画され
る記録画素の濃度に対応して印加される各発熱抵抗素子
への印加エネルギは、各発熱抵抗素子の発熱量を決定し
所望の記録画素の濃度を発生するので、重要なパラメー
タである。この重要な印加エネルギは、入力される濃度
階調に合わせて各発熱抵抗素子に対する印加エネルギを
制御して所望の濃度階調を得ている。
2. Description of the Related Art Generally, the energy applied to each heating resistor element corresponding to the density of a recording pixel printed by a thermal printer determines the heat generation amount of each heating resistor element to determine the density of a desired recording pixel. It is an important parameter as it occurs. This important applied energy is obtained by controlling the applied energy to each heat generating resistance element in accordance with the input density gradation.

【0003】従来、この種のサーマルプリンタの構成は
図4に示すように、サーマルヘッド10には、発熱抵抗
素子R1〜R512を一列に配列した発熱抵抗体12
と、それらの各発熱抵抗素子に対応して同数のビット信
号を供給する容量を持つシフトレジスタ14およびラッ
チ回路16とが設けられている。一方、入力部のライン
バッファ22には、データDinが入力され1印画ライ
ンの各画素の濃度階調データが格納される。ここでDi
nのa1j〜a512jは1ラインの画素を例えば51
2個とし、このようなラインが複数個配列されている
と、a1〜a512が各画素の濃度階調を表し、jは現
在の入力中のライン番号を表す。ラインバッファ22の
各画素の濃度階調データは、濃度・通電タイミング変換
回路36により、後述する係数Ckを乗じて通電タイミ
ングデータ36Aに変換され、通電タイミングバッファ
20に格納される。通電タイミングバッファ20は、各
印画ラインの印画時間中、各発熱抵抗素子R1〜R51
2に対応するシリアルな通電タイミングデータを順次シ
フトレジスタ14に与える。この印加周期は一定周期で
複数回通電回数カウンタ38のカウント値にしたがい与
えられる。
Conventionally, as shown in FIG. 4, the structure of a thermal printer of this type is such that a thermal head 10 has a heating resistor 12 in which heating resistors R1 to R512 are arranged in a line.
And a shift register 14 and a latch circuit 16 having a capacity for supplying the same number of bit signals corresponding to the respective heating resistance elements. On the other hand, the data Din is input to the line buffer 22 of the input unit and the density gradation data of each pixel of one printing line is stored. Where Di
a1j to a512j of n are pixels of one line, for example, 51
When two lines are arranged and a plurality of such lines are arranged, a1 to a512 represent the density gradation of each pixel, and j represents the current input line number. The density gradation data of each pixel of the line buffer 22 is converted into energization timing data 36A by a density / energization timing conversion circuit 36 and is multiplied by a coefficient Ck described later, and stored in the energization timing buffer 20. The energization timing buffer 20 keeps the heat generation resistance elements R1 to R51 during the printing time of each printing line.
The serial energization timing data corresponding to 2 is sequentially given to the shift register 14. This application period is a constant period and is given according to the count value of the plural times energization counter 38.

【0004】各回の階調データがクロック回路30から
のクロック信号CKに同期してシフトレジスタ14にロ
ードされると、次にラッチ信号発生回路32からのラッ
チ信号LAのタイミグでラッチ回路16を介して発熱抵
抗体12に送られる。この発熱抵抗体12には、電源装
置50より発熱抵抗素子R1〜R512に印加する電圧
VRが与えられている。これらの印加電圧VRは、それ
ぞれ対応する階調ビットの情報内容にしたがって選択的
に単位通電サイクルΔT時間のみ通電して発熱する。C
PU40はこれらの回路系の動作手順を制御する。
When the gradation data of each time is loaded into the shift register 14 in synchronization with the clock signal CK from the clock circuit 30, the timing of the latch signal LA from the latch signal generating circuit 32 is next passed through the latch circuit 16. And sent to the heating resistor 12. A voltage VR applied to the heating resistor elements R1 to R512 is applied to the heating resistor 12 from the power supply device 50. These applied voltages VR generate heat by selectively energizing for a unit energizing cycle ΔT time according to the information content of the corresponding gradation bit. C
The PU 40 controls the operation procedure of these circuit systems.

【0005】ここで主として濃度・通電タイミング変換
回路36とサーマルヘッド10で行われる濃度と通電に
よる発熱の動作理解のために図5〜図8を参照して説明
する。まず図6は記録される濃度階調Gと発熱抵抗素子
温度の関係を示す特性図、図7は一ラインの記録時間と
通電時間に対する発熱抵抗素子温度の段階を示す説明
図、図8は各発熱抵抗素子に対する画素ごとの通電の有
無および通電回数を示す説明図、さらに図5は通電タイ
ミングデータ20と画素ごとの通電サイクルΔT、通電
時間teを示すタイミングチャートである。
Here, the operation of the density / energization timing conversion circuit 36 and the thermal head 10 will be described with reference to FIGS. First, FIG. 6 is a characteristic diagram showing the relationship between the density gradation G to be recorded and the heating resistor element temperature, FIG. 7 is an explanatory diagram showing the steps of the heating resistor element temperature with respect to the recording time of one line and the energization time, and FIG. FIG. 5 is an explanatory diagram showing the presence / absence of energization and the number of times of energization for each pixel to the heating resistance element, and FIG. 5 is a timing chart showing the energization timing data 20, the energization cycle ΔT for each pixel, and the energization time te.

【0006】図6において縦軸の濃度データ22Aとし
て入力される記録濃度階調G(Gradiation)
に対して横軸に必要とする画素ごとの発熱抵抗素子温度
の段階Tを示している。ここでは64段階の記録濃度階
調Gの場合を示す。今1個のラインが512の画素から
なり各画素対応に図6で説明した発熱抵抗素子温度を得
るためには、図7で示すとおり、1ラインの記録中に6
4階調ごとに定められた発熱抵抗素子温度を必要とす
る。この温度は図8に示すとおり、512個の発熱素子
ごとに、この例では512個の通電回数に分け、それぞ
れの回ごとに“1”の場合には通電、“0”の場合には
無通電の制御を行い、512回の合計で図7の発熱抵抗
素子温度を確保している。なお、1つの通電回数の単位
時間は単位通電サイクルΔTとする。また通電回数は通
電回数カウンタ38により計数されて行く。濃度・通電
タイミング変換回路36を経て通電タイミングバッファ
20は図5に示す単位通電サイクルΔTごとにオンオフ
する通電タイミングデータ20Aを出力する。
In FIG. 6, recording density gradation G (gradation) input as density data 22A on the vertical axis.
On the other hand, the horizontal axis shows the stage T of the heating resistance element temperature required for each pixel. Here, a case of recording density gradation G of 64 steps is shown. In order to obtain the heating resistance element temperature described in FIG. 6 for each pixel, one line is composed of 512 pixels, and as shown in FIG.
The heating resistance element temperature determined for every four gradations is required. As shown in FIG. 8, this temperature is divided into 512 heating elements, 512 in this example, the number of times of energization. When the temperature is “1”, energization is performed, and when the temperature is “0”, no temperature is applied. Energization is controlled to secure the temperature of the heating resistor element in FIG. 7 for a total of 512 times. The unit time of one energization is set to the unit energization cycle ΔT. The number of times of energization is counted by the number of energization counter 38. The energization timing buffer 20 outputs the energization timing data 20A that is turned on and off for each unit energization cycle ΔT shown in FIG. 5 via the concentration / energization timing conversion circuit 36.

【0007】この単位通電サイクルΔTは、ラッチ信号
LAによって規定されている。単位通電サイクルΔTご
とに実際に発熱抵抗素子に流れる通電イネーブル時間は
ストローブ信号発生回路34からのストローブ信号ST
により、制御される。通電イネーブル時間は、単位通電
サイクル毎に異なる値とすることが可能である。各単位
通電サイクルの通電イネーブル時間は、1印画ラインの
通電時間中に、全ての単位通電サイクルで通電が指示さ
れることによって、1つの印画ライン上の各画素に対し
て、最も高いレベルの濃度階調が与えられる発熱抵抗素
子温度まで上昇するように設計されている。
The unit energization cycle ΔT is defined by the latch signal LA. The strobe signal ST from the strobe signal generation circuit 34 is determined by the energization enable time that actually flows through the heating resistance element for each unit energization cycle ΔT.
Is controlled by. The energization enable time can have different values for each unit energization cycle. The energization enable time of each unit energization cycle is the highest level of density for each pixel on one printing line, because energization is instructed in all unit energization cycles during the energization time of one printing line. It is designed to rise to the temperature of the heating resistor element to which gradation is applied.

【0008】この従来例では発熱抵抗素子温度がその発
熱抵抗素子自体の通電イネーブル時間における通電電力
のみにより制御されている場合には正常な濃度階調が得
られる。しかし実際には隣接する近傍発熱抵抗素子の熱
の影響により不要の温度上昇を生ずる。図9はこの状態
図を示す。すなわち、自発熱抵抗体の無通電時における
温度を(e)とし、近傍発熱抵抗体が通電時間内で通電
され温度上昇している場合の温度を(c)とする。ここ
で自発熱抵抗体は(c)に示す近傍熱抵抗素子の温度の
影響を受けて温度(e)から温度(d)に上昇する。し
たがって正常な階調濃度でなく温度(d)により異常濃
度を生ずることになる。この異常濃度の問題を解決する
ために他の従来例としては、特願平3−241567
「濃度階調制御型サーマルプリンタ」が知られている。
この従来例は現在記録中の印画ラインにおける記録中の
自発熱抵抗素子について、近傍発熱抵抗素子から記録中
の発熱抵抗素子への熱的影響を相殺する手段を備えてい
る。すなわち記録中の発熱抵抗素子により記録される画
素が所望の濃度階調になるように、記録中の発熱抵抗素
子への印加エネルギを補正している。具体的には記録中
の発熱抵抗素子に対する近傍発熱抵抗素子からの熱的影
響の演算手段と、近傍の各発熱抵抗素子から現在記録中
の印画ラインにおける印加エネルギに対し、記録中の印
画ラインに及ぼす熱的影響の大きさを示す係数を乗算す
る手段とを備えて記録中の発熱抵抗素子への印加エネル
ギを補正するようにしている。すなわち図10に示すよ
うに、この補正すべき温度(f)は時間0からtlにわ
たって一定の温度で補正するように自発熱抵抗体への印
加エネルギを制限している。この印加エネルギにより補
正された状態では補正後の自発熱抵抗体温度(g)に示
すように、温度(e)に近く補正されるが、時間t1を
境界として左側は過補正になり右側は補正不足となって
いた。
In this conventional example, a normal density gradation can be obtained when the temperature of the heating resistor element is controlled only by the energizing power during the energization enable time of the heating resistor element itself. However, in reality, an unnecessary temperature rise occurs due to the influence of the heat of the adjacent heat generating resistor element. FIG. 9 shows this state diagram. That is, the temperature when the self-heating resistor is not energized is (e), and the temperature when the neighboring heating resistor is energized and the temperature is rising within the energizing time is (c). Here, the self-heating resistor is affected by the temperature of the adjacent thermal resistance element shown in (c) and rises from the temperature (e) to the temperature (d). Therefore, not the normal gradation density but the abnormal density occurs due to the temperature (d). As another conventional example for solving the problem of this abnormal concentration, Japanese Patent Application No. 3-241567 is available.
A "density gradation control type thermal printer" is known.
This conventional example is provided with means for canceling the thermal influence of the neighboring heating resistance element on the heating resistance element during recording in the self-heating resistance element during recording in the printing line which is currently being recorded. That is, the energy applied to the heating resistor element during recording is corrected so that the pixel recorded by the heating resistor element during recording has a desired density gradation. Specifically, the calculation means of the thermal effect from the neighboring heating resistance element to the heating resistance element during recording, and the applied energy in the printing line currently being recorded from each neighboring heating resistance element to the printing line being recorded And a means for multiplying by a coefficient indicating the magnitude of the thermal effect exerted, so that the energy applied to the heating resistance element during recording is corrected. That is, as shown in FIG. 10, the temperature (f) to be corrected limits the energy applied to the self-heating resistor so that the temperature (f) should be corrected at a constant temperature from time 0 to tl. In the state corrected by this applied energy, as shown in the corrected self-heating resistor temperature (g), the temperature is corrected close to the temperature (e), but the left side is overcorrected and the right side is corrected with time t1 as a boundary. There was a shortage.

【0009】[0009]

【発明が解決しようとする課題】この従来の濃度階調制
御型サーマルプリンタでは、近傍発熱抵抗素子の自発熱
抵抗素子への熱的影響度を求め、この影響度を補正する
手段を備えているが、この補正手段が近傍発熱抵抗体の
通電時間の開始時点から終了時点までの通電時間全体に
わたり近傍発熱抵抗素子からの熱的影響に対する記録中
の発熱抵抗素子への印加エネルギの補正量が一定である
ので、通電時間中に時々刻々と変化する近傍発熱抵抗素
子からの熱的影響に対し、精度良く補正できない欠点が
あった。
This conventional density gradation control type thermal printer is provided with means for obtaining the degree of thermal influence of the adjacent heating resistance element on the self-heating resistance element and correcting this influence degree. However, the correction means maintains a constant correction amount of the energy applied to the heating resistor element during recording against the thermal influence from the neighboring heating resistor element over the entire energization time from the start time to the end time of the energization time of the nearby heating resistor. Therefore, there is a drawback that it is not possible to accurately correct the thermal influence from the neighboring heating resistance element that changes momentarily during the energization time.

【0010】本発明の目的は、各発熱抵抗素子に対する
近傍の発熱抵抗素子からの熱的影響による濃度階調の変
動が無く、高印画品質の記録画像が得られるサーマルプ
リンタを提供することにある。
An object of the present invention is to provide a thermal printer capable of obtaining a printed image of high print quality without fluctuations in density gradation due to thermal influences from neighboring heating resistance elements with respect to each heating resistance element. .

【0011】[0011]

【課題を解決するための手段】本発明の濃度階調制御型
サーマルプリンタは、サーマルヘッドに形成された発熱
抵抗素子への印加エネルギを制御することにより感熱紙
の発色濃度あるいはインクシートから記録紙上へのイン
クの転写濃度を制御するサーマルプリンタであり、現在
記録中の印画ラインの記録中の発熱抵抗素子について、
同時に記録される近傍の複数の発熱抵抗素子から前記記
録中の発熱抵抗素子への熱的影響に合わせて、記録され
る画素が所望の濃度階調になるように、前記記録中の発
熱抵抗素子への印加エネルギを補正する濃度階調制御型
サーマルプリンタにおいて、前記記録中の発熱抵抗素子
に対する前記近傍の発熱抵抗素子からの熱的影響の演算
手段として、発熱抵抗素子への通電時間をひとつあるい
は複数の領域に分割し、各各の領域の開始点と終了点に
おける前記近傍の各発熱抵抗素子が前記記録中の発熱抵
抗素子に及ぼす熱的影響度を表す係数を各各持ち、各分
割領域中の時間では、その領域の開始点と終了点におけ
る各近傍発熱抵抗素子からの熱的影響度を表す係数か
ら、その記録時間での熱的影響度を表す係数を直線近似
により算出し、各近傍発熱抵抗素子への供給熱量と熱的
影響度の係数とから前記記録中の発熱抵抗素子に対する
近傍発熱抵抗素子からの熱的影響を算出する手段を具備
することを特徴とする。また、発熱抵抗素子への通電時
間をふたつ以上の複数に分割し、各各の分割領域におけ
る前記近傍の各発熱抵抗素子が前記記録中の発熱抵抗素
子に及ぼす熱的影響度を表す1つの係数を持ち、その分
割領域における各近傍発熱抵抗素子からの熱的影響度を
表す係数と各近傍発熱抵抗素子への供給熱量との乗算に
より前記記録中の発熱抵抗素子に対する近傍発熱抵抗素
子からの熱的影響を算出する手段を具備することを特徴
とする。
A density gradation control type thermal printer of the present invention controls the energy applied to a heating resistor element formed in a thermal head to control the color density of a thermal paper or an ink sheet on a recording paper. It is a thermal printer that controls the transfer density of the ink to the printer.
The heating resistance element during recording is adjusted so that the pixels to be recorded have a desired density gradation in accordance with the thermal influence on the heating resistance element during recording from a plurality of heating resistance elements in the vicinity that are simultaneously recorded. In the density gradation control type thermal printer that corrects the energy applied to the heating resistor element, one or a period of energization time to the heating resistor element is calculated as a calculation means of the thermal influence from the neighboring heating resistor element on the heating resistor element during recording. Each area is divided into a plurality of areas, each of which has a coefficient representing the degree of thermal influence of each heating resistance element in the vicinity at the start point and the end point of each area on the heating resistance element during recording, and each divided area. In the middle time, from the coefficient indicating the thermal influence from each neighboring heating resistance element at the start point and the end point of the area, the coefficient indicating the thermal influence at the recording time is calculated by linear approximation. Near Characterized in that it comprises means for calculating the thermal influence from the neighboring heating resistance element and a coefficient of heat supplied thermal influence of the heating elements for heating resistance elements in the recording. Further, the energization time to the heating resistance element is divided into two or more, and one coefficient representing the degree of thermal influence of each heating resistance element in the vicinity in each divided area on the heating resistance element during recording. And the heat from the neighboring heating resistor element to the heating resistor element being recorded is multiplied by a coefficient representing the degree of thermal influence from each neighboring heating resistor element in the divided area and the amount of heat supplied to each neighboring heating resistor element. It is characterized by comprising means for calculating a physical influence.

【0012】[0012]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0013】図1は、本発明の第1の実施例のブロック
図である。
FIG. 1 is a block diagram of a first embodiment of the present invention.

【0014】図1において図4の従来例と同一の符号は
同一の構成と機能を有する。すなわち、第1の実施例で
は熱影響度演算回路1を追加して構成される。この熱影
響度演算回路1は近傍発熱抵抗体12から自発熱抵抗体
への熱的影響度を補正する演算を行うが、従来例の補正
手段と相違している点を図2の状態図に示している。す
なわち、図10の従来例では補正すべき温度(f)を通
電時間全領域にわたり一定としているが、図2の実施例
では近似値(a)に示すとおり、分割領域により補正量
を近似値(a)により合わせている。すなわち、図2に
示す隣接する左右どちらか一方の近傍発熱抵抗素子の加
熱による温度上昇(c)と、これに伴う補正対象の自発
熱抵抗素子の熱的影響による温度上昇(d)がある場合
に、各発熱素子が近傍の発熱抵抗素子へおよぼす熱的影
響度の算出は、例えば隣接する左右1素子に対して補正
を行うのであれば、発熱抵抗体12の発熱抵抗素子R1
〜R51の素子Rnについて隣接する左右1素子Rn−
1およびRn+1からの熱的影響度を求める。熱影響度
演算回路45は記録中の印画ラインにおける通電開始時
間からの経過時間Δtと隣接する発熱抵抗素子Rn−
1、Rn+1に印加されるエネルギQn−1,Qn+1
と、例えば通電時間t1を通電開始後の経過時間tkに
て2分割したのであれば、隣接する左右1素子Rn−1
およびRn+1への印加エネルギQn−1,Qn+1の
うち分割点A1,A2,B1すなわち分割領域Aおよび
Bの境界において被補正発熱素子へ伝達される分割点A
1,A2,B1それぞれの熱量の割合を示す係数a
(0),a(tk),a(tl)を求めると、熱的影響
度ΔQn(Δt)は、式1および式2から得られる。式
1と式2は通電開始時間(時間0)からの経過時間Δt
により選択される。
In FIG. 1, the same reference numerals as those in the conventional example of FIG. 4 have the same configuration and function. That is, in the first embodiment, the heat influence degree calculation circuit 1 is added. The heat influence degree calculation circuit 1 performs the calculation for correcting the heat influence degree from the neighboring heating resistor 12 to the self-heating resistor, but the difference from the conventional correction means is shown in the state diagram of FIG. Shows. That is, in the conventional example of FIG. 10, the temperature (f) to be corrected is constant over the entire energization time region, but in the embodiment of FIG. 2, as shown by the approximate value (a), the correction amount is approximated by the divided regions ( It is adjusted according to a). That is, in the case where there is a temperature increase (c) due to heating of one of the adjacent adjacent left and right heat generating resistance elements shown in FIG. 2 and a temperature increase (d) due to the thermal effect of the self-heating resistance element to be corrected accompanying this. In addition, the calculation of the degree of thermal influence of each heat generating element on the adjacent heat generating resistor element is performed, for example, if correction is made for one adjacent left and right element, the heat generating resistor element R1 of the heat generating resistor 12 is used.
-Each left and right one element Rn of the element Rn of R51-
1. Determine the thermal impact from 1 and Rn + 1. The heat influence degree calculation circuit 45 determines that the heat generation resistance element Rn− adjacent to the elapsed time Δt from the energization start time in the printing line during recording is adjacent to the heat generation resistance element Rn−.
1. Energy applied to Rn + 1, Qn-1, Qn + 1
For example, if the energization time t1 is divided into two by the elapsed time tk after the start of energization, the adjacent left and right one element Rn-1
Of the applied energies Qn-1 and Qn + 1 to Rn + 1 and Rn + 1, the division points A1, A2, B1 are transmitted to the heat generating element to be corrected at the boundaries between the division areas A and B.
Coefficient a indicating the ratio of the amount of heat of each of 1, A2 and B1
When (0), a (tk), and a (tl) are obtained, the thermal influence degree ΔQn (Δt) can be obtained from Equation 1 and Equation 2. Equations 1 and 2 are the elapsed time Δt from the energization start time (time 0).
Selected by.

【0015】 (0≦Δt<tk) ΔQn(Δt)=a(0)・(Qn−1+Qn+1)+ a(tk)−(a(0)/Δt)・(Qn−1+Qn+1) (式1) (tk≦Δ≦tl) ΔQn(Δt)=a(tk)・(Qn−1+Qn+1)+ {a(tl)−a(tk)}/{(Δt−tk)}・(Qn−1+Qn+1) (式2) 各通電サイクルにおいて、今回の通電サイクルまでに補
正されるべき熱的影響度ΔQn(Δt)と前回の通電サ
イクルまでに補正された熱的影響度ΔQni(Δti)
との差Δqnjiを、今回の通電サイクルにて供給する
差の熱量Δqnjと比較し、ΔqnjiがΔqnj以上
の場合は、その通電サイクルで第n番目のドットの階調
データには非通電“0”を指示し、隣接する左右1素子
からの熱的影響を補正する。全発熱抵抗素子の全通電サ
イクルについて同様の処理を行うことで、各発熱抵抗素
子の通電タイミングデータ[Ck P1j〜Ck P5
12j]を補正し、補正された通電タイミングデータ
[Cak P1j〜CakP512j]45Aを求め
る。
(0 ≦ Δt <tk) ΔQn (Δt) = a (0) · (Qn−1 + Qn + 1) + a (tk) − (a (0) / Δt) · (Qn−1 + Qn + 1) (Formula 1) ( tk ≦ Δ ≦ tl) ΔQn (Δt) = a (tk) · (Qn−1 + Qn + 1) + {a (tl) −a (tk)} / {(Δt−tk)} · (Qn−1 + Qn + 1) (Formula 2) ) In each energization cycle, the thermal influence degree ΔQn (Δt) to be corrected by the current energization cycle and the thermal influence degree ΔQni (Δti) corrected by the previous energization cycle
The difference Δqnji with the difference Δqnji is compared with the heat quantity Δqnj of the difference supplied in this energization cycle. If Δqnji is equal to or greater than Δqnj, the gradation data of the nth dot in the energization cycle is not energized “0”. To correct the thermal influence from the adjacent left and right elements. By performing the same process for all the energization cycles of all the heating resistance elements, the energization timing data [Ck P1j to Ck P5 of each heating resistance element is obtained.
12j] is corrected to obtain corrected energization timing data [Cak P1j to Cak P512j] 45A.

【0016】補正された通電タイミングデータ[Cak
P1j〜Cak P512j]45Aは、通電タイミ
ングバッファ20に格納される。
Corrected energization timing data [Cak
P1j to Cak P512j] 45A is stored in the energization timing buffer 20.

【0017】以上のように、濃度階調データを、各発熱
抵抗素子の近傍の発熱抵抗素子からの熱的影響を補正し
て補正された通電タイミングデータ20Bにしたがい各
発熱抵抗素子(R1〜R512)に通電する。これによ
り、各発熱抵抗素子R1〜R512は、印加エネルギに
おいて濃度階調データに合った濃度階調を記録紙上に記
録する。
As described above, the density gradation data is corrected according to the energization timing data 20B by correcting the thermal influence from the heat generating resistance elements near the heat generating resistance elements, and each heat generating resistance element (R1 to R512). ) To electricity. As a result, each of the heating resistance elements R1 to R512 records a density gradation that matches the density gradation data on the recording paper in the applied energy.

【0018】次に本発明の第2の実施例を図3の状態図
により説明する。図3において近傍発熱抵抗体から自発
熱抵抗体への熱的影響度による温度上昇を(i)および
(d)とし、通電時間tlとすると、この通電時間tl
を温度上昇の少ない温度上昇(i)に対応する分割領域
(c)と温度上昇の多い温度上昇(d)に対応する分割
領域(d)とに分ける。ここで分割領域(c)は温度上
昇(i)に対応する印加エネルギ(図のハッチの面積)
と等価な面積PQRSを演算し、PQに相当する一定の
係数を近似値(h)として補正する。分割領域(d)も
温度上昇(d)に対応する印加エネルギ(図の点線ハッ
チ)と等価な面積STUVを演算しSTに相当する一定
の係数を補正値(b)として補正する。この補正の演算
は図1の熱影響度演算回路1により行われるが、演算式
としては(式1)(式2)の係数a(tk)がそれぞれ
の領域で一定値となるので、求めるΔQn(Δt)の演
算も簡単になる。第2の実施例は近傍発熱抵抗体からの
熱的影響度の少ない場合に適用される。具体的には濃度
階調データの階調が全体的に低い場合に好適である。
Next, a second embodiment of the present invention will be described with reference to the state diagram of FIG. In FIG. 3, if the temperature rise due to the degree of thermal influence from the nearby heating resistor to the self-heating resistor is (i) and (d), and the energization time is tl, this energization time tl
Is divided into a divided region (c) corresponding to a temperature rise (i) with a small temperature rise and a divided region (d) corresponding to a temperature rise (d) with a large temperature rise. Here, the divided area (c) is applied energy (area of hatch in the figure) corresponding to temperature rise (i).
The area PQRS equivalent to is calculated, and a constant coefficient corresponding to PQ is corrected as an approximate value (h). Also in the divided area (d), the area STUV equivalent to the applied energy (dotted line hatch in the figure) corresponding to the temperature rise (d) is calculated, and a constant coefficient corresponding to ST is corrected as the correction value (b). The calculation of this correction is performed by the heat influence degree calculation circuit 1 in FIG. 1, but since the coefficient a (tk) of (Equation 1) and (Equation 2) has a constant value in each region, the calculated ΔQn The calculation of (Δt) is also simplified. The second embodiment is applied when there is little thermal influence from the nearby heating resistor. Specifically, it is suitable when the gradation of the density gradation data is entirely low.

【0019】[0019]

【発明の効果】上述したように本発明は、熱影響度演算
回路を備えることにより、次のような効果を有する。近
傍発熱抵抗素子から記録中の自発熱抵抗素子への熱的影
響の領域の変化する分割点ごとに影響度の係数を演算
し、領域ごとに印加エネルギを補正することにより、所
望の濃度階調を高精度に記録紙上に再現できる。また熱
的影響度が少ない場合には、特に通電サイクル時間のう
ちで熱的影響度の多い領域と少ない領域それぞれに一定
の印加エネルギを補正することにより、簡易に所望の濃
度階調を実現できる効果もある。
As described above, the present invention has the following effects by including the heat influence degree calculation circuit. The coefficient of influence is calculated for each dividing point in the area where the thermal effect from the adjacent heating resistance element to the self-heating resistance element during recording changes, and the applied energy is corrected for each area to obtain the desired density gradation. Can be reproduced with high accuracy on recording paper. Further, when the thermal influence is small, it is possible to easily realize a desired density gradation by correcting the constant applied energy in each of the regions having a large thermal influence and the regions having a small thermal influence in the energization cycle time. There is also an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1および第2の実施例に共通のブロ
ック図である。
FIG. 1 is a block diagram common to the first and second embodiments of the present invention.

【図2】第1の実施例の状態説明図である。FIG. 2 is a state explanatory view of the first embodiment.

【図3】第2の実施例の状態説明図である。FIG. 3 is a state explanatory view of the second embodiment.

【図4】従来の濃度階調制御型サーマルプリンタのブロ
ック図である。
FIG. 4 is a block diagram of a conventional density gradation control type thermal printer.

【図5】一般的な通電サイクル時間のタイミングチャー
トである。
FIG. 5 is a timing chart of a general energization cycle time.

【図6】一般的な発熱抵抗素子の温度の記録濃度の説明
図である。
FIG. 6 is an explanatory diagram of a recording density of temperature of a general heating resistance element.

【図7】一般的な通電時間と発熱抵抗素子温度との説明
図である。
FIG. 7 is an explanatory diagram of general energization time and heating resistor element temperature.

【図8】一般的な通電回数カウンタの説明図である。FIG. 8 is an explanatory diagram of a general energization counter.

【図9】従来例の状態説明図である。FIG. 9 is a state explanatory view of a conventional example.

【図10】別の従来例の状態説明図である。FIG. 10 is a state explanatory view of another conventional example.

【符号の説明】[Explanation of symbols]

1 熱影響度演算回路 10 サーマルヘッド 12 発熱抵抗体 14 シフトレジスタ 16 ラッチ回路 20 通電タイミングバッファ 22 ラインバッファ 30 クロック回路 32 ラッチ信号発生回路 34 ストローブ信号発生回路 36 濃度・通電タイミング変換回路 38 通電回数カウンタ 40 CPU 50 電源回路 1 Thermal Impact Calculation Circuit 10 Thermal Head 12 Heating Resistor 14 Shift Register 16 Latch Circuit 20 Energization Timing Buffer 22 Line Buffer 30 Clock Circuit 32 Latch Signal Generation Circuit 34 Strobe Signal Generation Circuit 36 Density / Energization Timing Conversion Circuit 38 Energization Counter 40 CPU 50 Power supply circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 サーマルヘッドに形成された発熱抵抗素
子への印加エネルギを制御することにより感熱紙の発色
濃度あるいはインクシートから記録紙上へのインクの転
写濃度を制御するサーマルプリンタであり、現在記録中
の印画ラインの記録中の発熱抵抗素子について、同時に
記録される近傍の複数の発熱抵抗素子から前記記録中の
発熱抵抗素子への熱的影響に合わせて、記録される画素
が所望の濃度階調になるように、前記記録中の発熱抵抗
素子への印加エネルギを補正する濃度階調制御型サーマ
ルプリンタにおいて、前記記録中の発熱抵抗素子に対す
る前記近傍の発熱抵抗素子からの熱的影響の演算手段と
して、発熱抵抗素子への通電時間をひとつあるいは複数
の領域に分割し、各各の領域の開始点と終了点における
前記近傍の各発熱抵抗素子が前記記録中の発熱抵抗素子
に及ぼす熱的影響度を表す係数を各各持ち、各分割領域
中の時間では、その領域の開始点と終了点における各近
傍発熱抵抗素子からの熱的影響度を表す係数から、その
記録時間での熱的影響度を表す係数を直線近似により算
出し、各近傍発熱抵抗素子への供給熱量と熱的影響度の
係数とから前記記録中の発熱抵抗素子に対する近傍発熱
抵抗素子からの熱的影響を算出する手段を具備すること
を特徴とする濃度階調制御型サーマルプリンタ。
1. A thermal printer which controls the color density of thermal paper or the transfer density of ink from an ink sheet to a recording paper by controlling the energy applied to a heating resistance element formed in a thermal head. Regarding the heating resistance element during recording of the printing line inside, the pixel to be recorded has a desired density level in accordance with the thermal influence from a plurality of heating resistance elements in the vicinity that are simultaneously recorded to the heating resistance element during recording. In a density gradation control type thermal printer that corrects the energy applied to the heating resistance element during recording so as to obtain the same gradation, the calculation of the thermal influence from the neighboring heating resistance element on the heating resistance element during recording. As a means, the energization time to the heating resistance element is divided into one or a plurality of regions, and the heating resistors in the vicinity of the start point and the end point of each region are divided. Each of the anti-elements has a coefficient representing the degree of thermal influence on the heating resistance element during the recording, and at the time in each divided area, the thermal resistance from each neighboring heating resistance element at the start point and the end point of the area is set. From the coefficient indicating the degree of influence, the coefficient indicating the degree of thermal influence at the recording time is calculated by linear approximation, and the heat generation resistance during the recording is calculated from the amount of heat supplied to each neighboring heating resistance element and the coefficient of thermal influence. A density gradation control type thermal printer comprising means for calculating a thermal influence of a neighborhood heating resistance element on the element.
【請求項2】 サーマルヘッドに形成された発熱抵抗素
子への印加エネルギを制御することにより感熱紙の発色
濃度あるいはインクシートから記録紙上へのインクの転
写濃度を制御するサーマルプリンタであり、現在記録中
の印画ラインの記録中の発熱抵抗素子について、同時に
記録される近傍の複数の発熱抵抗素子から前記記録中の
発熱抵抗素子への熱的影響に合わせて、記録される画素
が所望の濃度階調になるように、前記記録中の発熱抵抗
素子への印加エネルギを補正する濃度階調制御型サーマ
ルプリンタにおいて、前記記録中の発熱抵抗素子に対す
る前記近傍の発熱抵抗素子からの熱的影響の演算手段と
して、発熱抵抗素子への通電時間をふたつ以上の複数に
分割し、各各の分割領域における前記近傍の各発熱抵抗
素子が前記記録中の発熱抵抗素子に及ぼす熱的影響度を
表す1つの係数を持ち、その分割領域における各近傍発
熱抵抗素子からの熱的影響度を表す係数と各近傍発熱抵
抗素子への供給熱量との乗算により前記記録中の発熱抵
抗素子に対する近傍発熱抵抗素子からの熱的影響を算出
する手段を具備することを特徴とする濃度階調制御型サ
ーマルプリンタ。
2. A thermal printer for controlling the color density of thermal paper or the transfer density of ink from a recording sheet to a recording sheet by controlling the energy applied to a heating resistance element formed on a thermal head. Regarding the heating resistance element during recording of the printing line inside, the pixel to be recorded has a desired density level in accordance with the thermal influence from a plurality of heating resistance elements in the vicinity that are simultaneously recorded to the heating resistance element during recording. In a density gradation control type thermal printer that corrects the energy applied to the heating resistance element during recording so as to obtain the same gradation, the calculation of the thermal influence from the neighboring heating resistance element on the heating resistance element during recording. As a means, the energization time to the heating resistance element is divided into two or more, and each heating resistance element in the vicinity of each divided area is in the recording state. It has one coefficient representing the degree of thermal influence on the heating resistance element, and is multiplied by the coefficient representing the degree of thermal influence from each neighboring heating resistance element in the divided area and the amount of heat supplied to each neighboring heating resistance element. A density gradation control type thermal printer comprising means for calculating a thermal influence from a neighboring heating resistance element on a heating resistance element during recording.
JP14802993A 1993-06-18 1993-06-18 Density gradation control type thermal printer Pending JPH07125290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14802993A JPH07125290A (en) 1993-06-18 1993-06-18 Density gradation control type thermal printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14802993A JPH07125290A (en) 1993-06-18 1993-06-18 Density gradation control type thermal printer

Publications (1)

Publication Number Publication Date
JPH07125290A true JPH07125290A (en) 1995-05-16

Family

ID=15443527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14802993A Pending JPH07125290A (en) 1993-06-18 1993-06-18 Density gradation control type thermal printer

Country Status (1)

Country Link
JP (1) JPH07125290A (en)

Similar Documents

Publication Publication Date Title
US4563691A (en) Thermo-sensitive recording apparatus
US4574293A (en) Compensation for heat accumulation in a thermal head
CN102369111B (en) Thermal response correction system for multicolor printing
JPS62256576A (en) Thermosensitive recorder
US5841461A (en) Accumulated heat correction method and apparatus
JPS6196870A (en) Drive method of thermal head
JPS6270064A (en) Recorded density controller
JPH07125290A (en) Density gradation control type thermal printer
JPH0379377A (en) Printing rate correction circuit for printer
JP3202285B2 (en) Thermal recording apparatus and thermal recording method
JPH07121589B2 (en) Printer recording density correction device
JPH05229165A (en) Density gradation control type thermal printer and its control method
JPH0679903A (en) Density gradation control type thermal printer
JP2761915B2 (en) Thermal printer
JP2000108399A (en) Method and device for thermal recording of multi- gradation image
JPH05201058A (en) Thermal printer
JPS61120774A (en) Thermal head driver
JPH05201057A (en) Thermal printer
JPH05147253A (en) Thermal printer
JPH06143650A (en) Gray scale control type thermal printer
JPS62297179A (en) Multi-gradation thermal recorder
JPH0747318B2 (en) Thermal transfer gradation control device
JPH0679902A (en) Density gradation control type thermal printer
JPH07266599A (en) Thermal transfer print device and method of compensating voltage drop of thermal transfer print device
JPH0661955B2 (en) Thermal recording printer