JPH07124768A - Laser beam welding method of metal thick plate - Google Patents

Laser beam welding method of metal thick plate

Info

Publication number
JPH07124768A
JPH07124768A JP5272151A JP27215193A JPH07124768A JP H07124768 A JPH07124768 A JP H07124768A JP 5272151 A JP5272151 A JP 5272151A JP 27215193 A JP27215193 A JP 27215193A JP H07124768 A JPH07124768 A JP H07124768A
Authority
JP
Japan
Prior art keywords
welding
heat input
metal
laser beam
input quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5272151A
Other languages
Japanese (ja)
Inventor
Akira Sueda
明 末田
Shozaburo Nakano
昭三郎 中野
Kozo Akahide
公造 赤秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5272151A priority Critical patent/JPH07124768A/en
Publication of JPH07124768A publication Critical patent/JPH07124768A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the piercing welding not having melt down by setting a heat input quantity to the prescribed condition at executing flat/butt welding of thick plate by laser beam. CONSTITUTION:When a metal thick plate is subjected to flat/butt welding with using laser beam, a heat input quantity Q by laser beam is set so as to satisfy the condition in the inequality and welding is executed. In the inequality, Q: heat input quantity (KJ/cm), h: plate thickness (mm), V: welding speed (cm/min) sigma: surface tension of molten metal (dyn/cm<2>), rho: density of metal (g/cm<3>), t: constant obtained relationship between laser output and piercing thickness, g: acceleration of gravity (cm/sec<2>). When heat input quantity Q can not satisfy the condition of the inequality, piercing welding becomes impossible due to insufficient melt down. When heat input quantity Q exceeds the condition of the inequality, because a molten metal quantity becomes excessive, melt down of molten metal is generated, sound bead is not formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厚鋼板などの金属厚板
をレーザ光により下向きで突き合わせ溶接する際に、溶
け落ちのない貫通溶接を可能にする溶接方法を提案する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention proposes a welding method which enables penetration welding without burn-through when butt welding a thick metal plate such as a thick steel plate downward with a laser beam.

【0002】[0002]

【従来の技術】レーザ溶接法は、エネルギー密度の高い
レーザ光を熱源として利用する溶接法であるため、高速
(低入熱)で、しかもビード形状指数(溶け込み深さ/
ビード幅)の大きいビードが得られるという特徴があ
る。それ故に、この溶接法は、溶接入熱による熱変形の
少ない貫通溶接が可能であり、この特性を生かして、近
年、各所で採用されるようになってきた。
2. Description of the Related Art Since the laser welding method uses a laser beam having a high energy density as a heat source, it has a high speed (low heat input) and a bead shape index (penetration depth / melting depth /
The feature is that a bead with a wide bead width) can be obtained. Therefore, this welding method enables penetration welding with little thermal deformation due to welding heat input, and in recent years, it has been adopted in various places by making use of this characteristic.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
レーザ溶接法は、板厚が比較的小さい部材にしか利用さ
れていないのが実状であった。例えば、特開昭58−1194
81号公報においては、1mmおよび3.5 mmの例、また、特
開昭56−114592号公報においては、6mmおよび3mmの例
が開示されているのに止まることからも明らかである。
このように、板厚が大きい部材へのレーザ溶接法の適用
を困難にしている大きな理由は次の点にある。すなわ
ち、板厚が大きくなり、例えば10mmを超えるような厚み
になると、必然的に溶融金属の量が増える。このこと
が、ビードの下面側に垂れ落ちやこぶ状の突起、上面側
にアンダーカットなどの溶接欠陥を生じやすくする。た
だし、これらの溶接欠陥については裏当て金を使用する
ことで防止可能であることが知られている。しかし、こ
の裏当て金の使用は、構造物の種類によっては使用する
ことができない場合があり、また経済的にも不利であ
る。
However, the conventional laser welding method is actually used only for a member having a relatively small plate thickness. For example, JP-A-58-1194
It is also apparent from JP-A No. 81-115592 that the examples of 1 mm and 3.5 mm, and JP-A-56-114592 disclose the examples of 6 mm and 3 mm.
As described above, the main reason why it is difficult to apply the laser welding method to a member having a large plate thickness is as follows. That is, when the plate thickness becomes large, and exceeds 10 mm, for example, the amount of molten metal inevitably increases. This easily causes welding defects such as dripping or bump-like projections on the lower surface side of the bead and undercuts on the upper surface side. However, it is known that these welding defects can be prevented by using a backing metal. However, the use of this backing metal may not be usable depending on the type of structure, and is economically disadvantageous.

【0004】そこで、本発明の目的は、金属厚板をレー
ザ光により溶接する際における、上述した従来技術が抱
えている問題点を克服することのできるレーザ溶接技術
を確立することにある。すなわち、本発明は、金属厚板
をレーザ光により下向きで突き合わせ貫通溶接する際
に、裏当て金なしでも、垂れ落ちやこぶ状の突起、アン
ダーカットなどの溶接欠陥を、従来より一段と軽減する
ことのできる金属厚板のレーザ溶接方法を提案するもの
である。
Therefore, an object of the present invention is to establish a laser welding technique capable of overcoming the above-mentioned problems of the prior art when welding a thick metal plate by laser light. That is, the present invention, when butt-penetrating welding a metal thick plate downward by laser light, without a backing plate, welding defects such as drooping or hump-shaped projections and undercuts can be further reduced compared to the conventional one. The present invention proposes a laser welding method for thick metal plates that can be used.

【0005】[0005]

【課題を解決するための手段】さて、上掲の目的の実現
に向け、金属厚板をレーザ光により下向きで溶接する場
合の、種々の金属、板厚からなる材料について溶接条件
とビード形状との関係について、詳細に研究した結果、
発明者らは、これらの間の関係が一定の範囲にあると
き、上述の溶接欠陥を発生させることなく、しかも表面
から裏面に貫通したいわゆる貫通溶接が可能であること
を見いだした。
[Means for Solving the Problems] In order to achieve the above-mentioned objects, welding conditions and bead shapes of various metals and plate thicknesses when a metal plate is welded downward by laser light As a result of detailed research on the relationship between
The inventors have found that when the relationship between them is within a certain range, so-called penetration welding that penetrates from the front surface to the back surface is possible without causing the above-mentioned welding defects.

【0006】本発明は、前記の新たな知見に基づいてな
されたものである。すなわち、本発明の要旨構成は次の
とおりである。1.金属厚板をレーザ光により下向きで
突き合わせ貫通溶接する際に、前記レーザ光にによる入
熱量が、次式; 60×(h/t)10/7/v≦Q≦1.12σ/ρg+60×(h
/t)10/7/v ただし、Q:入熱量(kJ/cm) h:板厚(mm) v:溶接速度(cm/min) σ:溶融金属の表面張力(dyn/cm2) ρ:金属の密度(g/cm3 ) t:レーザ出力と貫通板厚との関係から求められる定数 g:重力加速度(cm/sec2) を満足するような溶接条件を設定して溶接することを特
徴とする金属厚板のレーザ溶接方法。
The present invention has been made based on the above new findings. That is, the gist of the present invention is as follows. 1. When butt-through welding a thick metal plate downward by laser light, the heat input by the laser light is calculated by the following equation: 60 × (h / t) 10/7 /v≦Q≦1.12σ/ρg+60×(h
/ T) 10/7 / v where Q: heat input (kJ / cm) h: plate thickness (mm) v: welding speed (cm / min) σ: surface tension of molten metal (dyn / cm 2 ) ρ: Metal density (g / cm 3 ) t: Constant obtained from the relationship between laser output and penetration plate thickness g: Welding is performed under welding conditions that satisfy the gravitational acceleration (cm / sec 2 ). Laser welding method for thick metal plates.

【0007】[0007]

【作用】以下、本発明について、さらに詳細に説明す
る。発明者らは、まず、板厚、アシストガスの流量およ
び入熱量を変化させて、下向きのレーザ溶接を行い、溶
接条件が溶接後のビード形状に及ぼす影響について調査
し、以下に述べるような知見を得た。 1)ビードの垂れ落ちを防止するには、(板厚)×(ル
ートのビード幅)を溶接金属の物性値により定まる一定
値以下にする必要がある。 2)上記制御範囲は、溶融金属の密度と表面張力とによ
って定まる。 3)貫通可能な最大板厚は、レーザ出力の0.7 乗に比例
する。 4)ルート部ビード幅と入熱量との間には、次の関係が
ある。 (入熱量)=(貫通に必要な最小入熱量)+係数×(板
厚)×(ルート部ビード幅) 5)溶接条件が一定の範囲にあれば、アシストガスの流
量に左右されずに健全な溶接部が得られる。
The present invention will be described in more detail below. The inventors first performed downward laser welding by changing the plate thickness, the flow rate of assist gas and the heat input amount, and investigated the influence of welding conditions on the bead shape after welding, and the findings as described below. Got 1) In order to prevent the dropping of the bead, it is necessary to make (plate thickness) x (root bead width) below a certain value determined by the physical properties of the weld metal. 2) The control range is determined by the density of molten metal and the surface tension. 3) The maximum plate thickness that can be penetrated is proportional to the 0.7th power of the laser output. 4) There is the following relationship between the root bead width and the heat input. (Heat input) = (Minimum heat input required for penetration) + Coefficient x (Sheet thickness) x (Bead width at root) 5) If welding conditions are within a certain range, sound is not affected by the flow rate of assist gas A good weld can be obtained.

【0008】これらの知見にもとづいて、溶接入熱量
と、板厚、溶接速度、溶融金属の表面張力および金属の
密度の関係について更に詳しく検討した結果、これらの
関係が一定の条件に制御されているときには、溶接欠陥
のない貫通溶接が可能になるという結論に達した。
Based on these findings, the relationship between the welding heat input, the plate thickness, the welding speed, the surface tension of the molten metal, and the density of the metal was examined in more detail, and as a result, these relationships were controlled under certain conditions. It has been concluded that penetration welding with no welding defects is possible.

【0009】次に、本発明を上記の要旨構成のように限
定した理由につき以下に説明する。入熱量Qが、60×
(h/t)10/7/vに満たない場合には、溶け込み不足
のため貫通溶接が不可能となる。よって、一回の溶接で
貫通溶接を行うためには、入熱量が60×(h/t)10/7
/v以上でなければならない。しかしながら、入熱量が
1.12σ/ρg+60×(h/t)10/7/vを超えると溶融
金属量が過大となるために、溶融金属の溶け落ちが発生
し、健全なビードが形成されなくなる。よって、入熱量
は1.12σ/ρg+60×(h/t)10/7/v以下にする必
要がある。なお、上記した各式中のtは、(貫通可能な
最大板厚)=t×(レーザ出力0.7 )で表される比例定
数であり、溶接対象となる金属ごとに、実験的に求める
ことができる。鋼の場合、その比例定数は2.2 である。
Next, the reason why the present invention is limited to the above-mentioned gist constitution will be described below. Heat input Q is 60 x
If (h / t) is less than 10/7 / v, penetration penetration becomes impossible due to insufficient penetration. Therefore, the amount of heat input is 60 x (h / t) 10/7 in order to perform penetration welding in one welding.
/ V or more. However, the heat input is
When 1.12σ / ρg + 60 × (h / t) exceeds 10/7 / v, the amount of molten metal becomes excessive, so that the molten metal melts down and a healthy bead is not formed. Therefore, the heat input must be 1.12σ / ρg + 60 × (h / t) 10/7 / v or less. Note that t in each of the above formulas is a proportional constant represented by (maximum plate thickness that can be penetrated) = t × (laser output 0.7 ), and can be experimentally determined for each metal to be welded. it can. In the case of steel, its proportionality constant is 2.2.

【0010】また、本発明法を適用するための開先形状
は、I型, Y型などいかなる型のものであってもよい
が、I型開先以外の開先を採用する場合には、上式のh
の値には、ルートフェイスの寸法を用いることとする。
The shape of the groove for applying the method of the present invention may be any shape such as I-type and Y-type, but when a groove other than the I-type groove is adopted, H in the above formula
The size of the root face is used as the value of.

【0011】なお、本発明法は、鋼のほかに、銅、アル
ミなどをベースとした各種金属のすべてに適用可能であ
る。
In addition to steel, the method of the present invention can be applied to all kinds of metals based on copper, aluminum and the like.

【0012】[0012]

【実施例】板厚が9mm〜44mmの厚鋼板を用い、開先をI
型として、アシストガスの流量を70〜90l/min とし、
入熱量および溶接速度を表1の示すように種々のレベル
に変えて、下向きのレーザ溶接を行い、溶接後のルート
部ビード幅およびビード外観を観察した。その実験条件
および実験結果を表1および表2に示す。なお、表中に
示した式1および式2の値を求めるにあたっては、t=
2.2 、σ=1400、ρ=7.85 として計算した。
EXAMPLE A thick steel plate having a thickness of 9 mm to 44 mm is used, and the groove is I
As a mold, the flow rate of assist gas is 70-90 l / min,
The amount of heat input and the welding speed were changed to various levels as shown in Table 1, downward laser welding was performed, and the bead width of the root portion and the bead appearance after welding were observed. The experimental conditions and experimental results are shown in Tables 1 and 2. When obtaining the values of Expression 1 and Expression 2 shown in the table, t =
The calculation was made with 2.2, σ = 1400, and ρ = 7.85.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】表1および表2から明らかなように、本発
明例ではいずれも、ルート部ビード幅が安定した貫通溶
接が可能となり、ビード外観も、垂れ落ちやこぶ状の突
起、アンダーカットなどの溶接欠陥がなく、良好であっ
た。これに対し、比較例では、溶け込み不足または溶融
金属の垂れ落ちいずれかの溶接欠陥が発生した。
As can be seen from Tables 1 and 2, in each of the examples of the present invention, penetration welding with a stable bead width at the root portion is possible, and the bead appearance is such that drooping, bumpy protrusions, undercuts, etc. It was good with no welding defects. On the other hand, in the comparative example, welding defects such as insufficient penetration or dripping of molten metal occurred.

【0016】[0016]

【発明の効果】上述したように、本発明によれば、金属
厚板の貫通溶接における、垂れ落ちやこぶ状の突起、ア
ンダーカットなどの溶接欠陥を従来より著しく軽減し、
良好なビードを得ることができるので、裏当て金なしで
の健全な貫通溶接を可能にすることができる。
As described above, according to the present invention, in the penetration welding of a thick metal plate, welding defects such as dripping, hump-shaped protrusions, and undercuts are significantly reduced as compared with the prior art.
Since a good bead can be obtained, sound penetration welding without a backing plate can be possible.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属厚板をレーザ光により下向きで突き合
わせ貫通溶接する際に、前記レーザ光にによる入熱量
が、次式; 60×(h/t)10/7 /v≦Q≦1.12σ/ρg+60×(h
/t)10/7 /v ただし、Q:入熱量(kJ/cm) h:板厚(mm) v:溶接速度(cm/min) σ:溶融金属の表面張力(dyn/cm2) ρ:金属の密度(g/cm3 ) t:レーザ出力と貫通板厚との関係から求められる定数 g:重力加速度(cm/sec2) を満足するような溶接条件を設定して溶接することを特
徴とする金属厚板のレーザ溶接方法。
1. When a thick metal plate is butt-welded downward by laser light, the amount of heat input by the laser light is calculated by the following formula: 60 × (h / t) 10/7 /v≦Q≦1.12σ / Ρg + 60 × (h
/ T) 10/7 / v where Q: heat input (kJ / cm) h: plate thickness (mm) v: welding speed (cm / min) σ: surface tension of molten metal (dyn / cm 2 ) ρ: Metal density (g / cm 3 ) t: Constant obtained from the relationship between laser output and penetration plate thickness g: Welding is performed under welding conditions that satisfy gravity acceleration (cm / sec 2 ). Laser welding method for thick metal plates.
JP5272151A 1993-10-29 1993-10-29 Laser beam welding method of metal thick plate Pending JPH07124768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5272151A JPH07124768A (en) 1993-10-29 1993-10-29 Laser beam welding method of metal thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5272151A JPH07124768A (en) 1993-10-29 1993-10-29 Laser beam welding method of metal thick plate

Publications (1)

Publication Number Publication Date
JPH07124768A true JPH07124768A (en) 1995-05-16

Family

ID=17509803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5272151A Pending JPH07124768A (en) 1993-10-29 1993-10-29 Laser beam welding method of metal thick plate

Country Status (1)

Country Link
JP (1) JPH07124768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007730A (en) * 2005-06-30 2007-01-18 General Electric Co <Ge> Shimmed laser beam welding process for joining superalloys for gas turbine application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007730A (en) * 2005-06-30 2007-01-18 General Electric Co <Ge> Shimmed laser beam welding process for joining superalloys for gas turbine application

Similar Documents

Publication Publication Date Title
Zhao et al. Optimization of laser welding thin-gage galvanized steel via response surface methodology
Cao et al. A review of laser welding techniques for magnesium alloys
Ribic et al. Problems and issues in laser-arc hybrid welding
Bagger et al. Review of laser hybrid welding
US20050028897A1 (en) Process for avoiding cracking in welding
TWI622447B (en) Arc welding method for zinc-based electroplated steel plate
Wang et al. Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper
AU2017350123A1 (en) Welded member and method for manufacturing same
CN105033385A (en) Laser welding technology of automobile power battery aluminum alloy shell
Verma et al. Difficulties and redressal in joining of aluminium alloys by GMA and GTA welding: A review
US5728479A (en) Aluminum-lithium-magnesium filler alloy for brazing
JPH07124768A (en) Laser beam welding method of metal thick plate
Liu et al. Effect of adhesive on molten pool structure and penetration in laser weld bonding of magnesium alloy
Dickerson Welding of aluminum alloys
JPH08309567A (en) Method for welding aluminum alloy
Forrest et al. Fundamental study of dual beam laser welding of zinc coated steel sheets in lap joint configuration with zero-gap
JP2005262226A (en) Laser welding method of galvanized steel sheet
Katayama et al. Laser welding of aluminium alloy 5456
JPH09122958A (en) Pulse laser beam welding method of aluminum alloy
JP2971248B2 (en) Vertical arc welding method using self-shielded wire
Pickering et al. Production and performance of high speed GTA welded aluminum tailored blanks
EP4282571A1 (en) Laser brazing joining method
JPH05228663A (en) Penetration welding method for aluminum alloy by means of laser beam
Mann et al. Influence of filler wires on weld seam properties of laser beam welded dissimilar copper connections
JP2019534791A (en) Enhanced resistance spot welding using clad aluminum alloy