JPH071243A - Wire cut electric discharge device - Google Patents

Wire cut electric discharge device

Info

Publication number
JPH071243A
JPH071243A JP15305393A JP15305393A JPH071243A JP H071243 A JPH071243 A JP H071243A JP 15305393 A JP15305393 A JP 15305393A JP 15305393 A JP15305393 A JP 15305393A JP H071243 A JPH071243 A JP H071243A
Authority
JP
Japan
Prior art keywords
machining
processing
liquid
processing liquid
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15305393A
Other languages
Japanese (ja)
Other versions
JP3335711B2 (en
Inventor
Yoshitsugu Ui
余始次 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP15305393A priority Critical patent/JP3335711B2/en
Publication of JPH071243A publication Critical patent/JPH071243A/en
Application granted granted Critical
Publication of JP3335711B2 publication Critical patent/JP3335711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a smooth processed surface easily in a short time by a method wherein processing liquid mixed with semiconductive powder fine grain is used as processing liquid and processing is effected such that an output wire is varied to output a wire having inductance. CONSTITUTION:When a processing condition set signal is inputted to a source device 41 from a numerical control device, parameters, such as a given discharge ON time, a rest time, an applying time, and a current crest value, are set. Further, when powder-mixed processing liquid is selected by a processing liquid selecting means 43, a plurality of the electromagnetic on-off valves of a processing liquid feeding device 18 are switched and powder-mixed processing liquid is fed in a processing gap. An output wire through which the source device and a work 3 are interconnected is varied to an output wire having an inductance L. An electric discharge pulse produces a pulse having the gentle rise of a current and discharge dispersed through pulverized grains included in processing liquid fed in the processing gap is carried out to form a processed surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はワイヤカット放電加工装
置に関し、特に油系加工液を用いるワイヤカット放電加
工装置関し、被加工物に光沢面仕上げを可能にするワイ
ヤカット放電加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wire-cut electric discharge machine, and more particularly to a wire-cut electric discharge machine using an oil-based machining liquid, and more particularly to a wire-cut electric discharge machine capable of finishing a glossy surface on a workpiece.

【0002】[0002]

【従来の技術】ワイヤカット放電加工装置は、0.02
から0.3mm程度のブラスやタングステン等の材質て
作られたワイヤ電極を一対のワイヤガイド間て更新送り
させながら加工液の介在下で放電加工電源から供給され
る間欠的な電気パルスを被加工物とワイヤ電極に供給
し、前記被加工物とワイヤ電極の微小間隙で放電を発生
させ加工を行うものである。
2. Description of the Related Art A wire cut electric discharge machine is 0.02
From 0.3 mm to a wire electrode made of a material such as brass or tungsten while being renewed and fed between a pair of wire guides, the intermittent electric pulse supplied from the electrical discharge machining power source is processed under the presence of machining fluid. The material is supplied to the object and the wire electrode, and electric discharge is generated in the minute gap between the object to be processed and the wire electrode for processing.

【0003】前記加工液としては、イオン交換された水
や形彫り放電加工装置と同様に油系加工液を用いるも
の、また荒加工に水加工液、仕上げに油系加工液を用い
るものなどがある。水加工液は加工面荒さに対する加工
速度が油系加工液のそれと比較して速いことから一般的
に広く用いられている。油系加工液の場合は、焼結合金
など被加工物の電食問題がある場合や高い加工精度が必
要な場合などに多く用いられている。
As the above-mentioned machining fluid, there are those which use an ion-exchanged water or an oil-based machining fluid like the die-sinking electric discharge machining apparatus, a water-machining fluid for rough machining, and an oil-based machining fluid for finishing. is there. The water-processing fluid is generally widely used because it has a higher processing speed with respect to the surface roughness than that of the oil-based processing fluid. Oil-based working fluids are often used when there is a problem of electrolytic corrosion of a workpiece such as a sintered alloy or when high working accuracy is required.

【0004】以下、図4を用いて従来のワイヤカット放
電加工装置について説明する。
A conventional wire cut electric discharge machine will be described below with reference to FIG.

【0005】図4中で、4はワイヤ電極、3は被加工物
である。被加工物3は図示していないワークスタンドに
固定されており、加工タンク1が載置されているXYク
ロステーブル2上に前記ワークスタンドは固定されてい
る。XYクロステーブル2は既知の数値制御装置12に
より制御され、XYクロステーブル2に取り付けられた
X軸とY軸モータ8,7及びモータ駆動回路15によ
り、被加工物3は一対のワイヤ電極案内ガイド5a,6
abにより案内支持されているワイヤ電極4に対し相対
的に移動できるようになっている。また、ワイヤ電極4
は図示されていないワイヤ電極供給装置により上部より
供給され回収装置によって回収されるようになってお
り、放電加工中は常に更新送りされている。
In FIG. 4, 4 is a wire electrode and 3 is a workpiece. The workpiece 3 is fixed to a work stand (not shown), and the work stand is fixed to the XY cross table 2 on which the processing tank 1 is placed. The XY cross table 2 is controlled by a known numerical controller 12, and the work 3 is paired with a wire electrode guide guide by the X-axis and Y-axis motors 8 and 7 and the motor drive circuit 15 attached to the XY cross table 2. 5a, 6
It can move relative to the wire electrode 4 guided and supported by ab. Also, the wire electrode 4
Is supplied from above by a wire electrode supply device (not shown) and is recovered by a recovery device, and is constantly renewed during electric discharge machining.

【0006】70は加工液供給装置で、清浄加工液槽7
0bと汚濁槽70aの2槽構造となっている。清浄加工
液槽70bから清浄加工液がポンプP1により流量調節
バルブ5e及び6eを通って上下一対の噴流ワイヤガイ
ドアッセンブリFGa及びFGbに供給されており、上
下噴流ノズル5c、6cから加工間隙に供給される。ま
た、管路P13を通して清浄加工液は加工タンク1にも
供給されており、ドレインバルブDVが閉められること
により、加工液に被加工物3が浸漬された状態で加工が
行えるように構成されている。さらに管路P14から加
工液は汚濁槽70aに戻される循環回路となっており、
回収された汚濁液はポンプP2によりフィルタF11を
通して清浄加工液槽70b戻される。
Reference numeral 70 is a machining fluid supply device, which is a clean machining fluid tank 7
It has a two tank structure of 0b and a pollution tank 70a. The clean machining liquid is supplied from the clean machining liquid tank 70b to the pair of upper and lower jet wire guide assemblies FGa and FGb through the flow rate adjusting valves 5e and 6e by the pump P1, and is supplied to the machining gap from the upper and lower jet nozzles 5c and 6c. It Further, the clean machining fluid is also supplied to the machining tank 1 through the pipeline P13, and the drain valve DV is closed so that the machining can be performed while the workpiece 3 is immersed in the machining fluid. There is. Furthermore, the processing liquid is returned from the conduit P14 to the pollution tank 70a to form a circulation circuit.
The collected polluted liquid is returned by the pump P2 through the filter F11 to the cleaning liquid tank 70b.

【0007】次に、41は主電源装置で複数のスイッチ
ング素子、電流制限抵抗、可変電圧電源およびスイッチ
ング素子をon−off制御するためのパルス幅制御回
路等を具備しており、放電パルス幅が約5μsec以下
で高電流波高値の電流パルスを供給する電源である。4
2は副電源装置で特に中止上げ領域から仕上げ領域に対
して放電パルス電圧を供給する。前記主電源装置41及
び副電源装置42は、加工条件設定手段19により設定
された放電オン時間、放電加工休止時間、電流波高値、
及び印加電圧等の加工条件の放電加工パルスを発生させ
るために必要な複数の制御信号を加工条件設定手段19
から受け取る。
Next, reference numeral 41 denotes a main power supply device which is provided with a plurality of switching elements, a current limiting resistor, a variable voltage power supply, a pulse width control circuit for on-off controlling the switching elements, and the like, and has a discharge pulse width of It is a power supply that supplies a current pulse having a high current peak value in about 5 μsec or less. Four
Reference numeral 2 denotes a sub power supply device, which supplies a discharge pulse voltage from the suspension raising region to the finishing region. The main power supply device 41 and the sub power supply device 42 have a discharge on time, an electric discharge machining pause time, a current peak value, which are set by the machining condition setting means 19.
And a plurality of control signals necessary to generate electric discharge machining pulses for machining conditions such as applied voltage.
Receive from

【0008】主電源装置41および副電源装置42の正
極と負極は、正極側出力線21および負極測出力線22
により、それぞれ被加工物3と給電駒5b,6bに接続
されており、前記電源装置から供給される電圧がワイヤ
電極4と被加工物3間に印加され、両者の微小間隙に放
電が発生し加工が行われる。
The positive electrode and the negative electrode of the main power supply device 41 and the sub power supply device 42 are the positive electrode side output line 21 and the negative electrode output line 22.
Are connected to the work piece 3 and the power supply pieces 5b and 6b, respectively, and the voltage supplied from the power supply device is applied between the wire electrode 4 and the work piece 3 to generate an electric discharge in a minute gap therebetween. Processing is performed.

【0009】正極出力線21及び負極出力線22には、
線間インダクタンスが放電加工性能に著しい影響を与え
るため種々対策がとられている。つまり、ワイヤカット
放電加工では形彫り放電加工とは異なり、荒加工では1
μsec以下のパルス幅で電流波高値で1000A以上
というで高い波高値の加工パルスを加工間隙に供給する
ことにより加工エネルギーと放電周波数を高め加工速度
を速めている。仕上げ加工に於いても、電流の立ち上が
りが加工性能に大きく影響を与えるため放電加工パルス
を伝達する電路には可能な限りインダクタンスをなくし
た出力線を用いている。主に行われている構成として
は、電源装置からの出力線を可能な限り往路復路を同軸
線とし、また給電駒及び被加工物への接続部の単線部分
を極力短くできる配線をと取るようになっている。
The positive electrode output line 21 and the negative electrode output line 22 are
Various measures are taken because the line inductance has a significant effect on EDM performance. In other words, wire-cut electric discharge machining is different from die-sinking electric discharge machining.
By supplying a machining pulse having a pulse width of μsec or less and a current peak value of 1000 A or more with a high peak value to the machining gap, the machining energy and the discharge frequency are increased to accelerate the machining speed. Even in the finishing process, the rise of the current has a great influence on the machining performance. Therefore, the output line with as much inductance as possible is used for the electric path for transmitting the electric discharge machining pulse. The main practice is to make the output line from the power supply device the coaxial line in the forward and return lines as much as possible, and to make the single wire part of the connection to the power feeding piece and the work piece as short as possible. It has become.

【0010】さらに、仕上げ領域に於いては、浮遊キャ
パシタンスが大きいと仕上げ面が十分細かくできない等
の問題もあるため、加工間隙に浮遊キャパシタンス分が
影響を与えないような対策が取られている。
Further, in the finishing region, if the stray capacitance is large, there is a problem that the finished surface cannot be made fine enough. Therefore, measures are taken to prevent the stray capacitance from affecting the machining gap.

【0011】[0011]

【発明が解決しようとする課題】上述のように構成され
たワイヤカット放電加工装置於いて油系加工液を使用し
て仕上げ加工を行った場合、加工時間的に効率の良い加
工条件で得られる仕上げ面粗度は鉄系被加工物の場合で
5μRmax程度であり加工速度も水加工液に比べ遅
い。面粗度を3μRmax程度にするにはかなりの経験
を要するようになり、加工面積が大きいと全面均一な加
工面を得ることも難しくなる。さらに、加工時間も非常
に長くなるため、加工精度の要求が高い加工の場合に特
に使用される程度である。さらに、微細な加工面を得る
場合には特殊な電源回路を新たに必要とし加工時間もさ
らに遅くなるのが現状であった。
In the wire-cut electric discharge machine constructed as described above, when finishing machining is performed by using an oil-based machining liquid, the machining time can be obtained under efficient machining conditions. The finished surface roughness is about 5 μRmax in the case of iron-based workpieces, and the machining speed is slower than that of the water-machining liquid. It takes considerable experience to set the surface roughness to about 3 μRmax, and if the processing area is large, it becomes difficult to obtain a uniformly processed surface. Further, since the processing time becomes very long, it is only used in the case of processing that requires high processing accuracy. Furthermore, when obtaining a finely machined surface, a special power supply circuit is newly required, and the machining time is further delayed.

【0012】また上述の装置で得られる加工面は梨地面
であり、加工面に鏡面に近い平滑な加工面が必要な場合
などでは、磨き工程が必要となり、高精度に加工された
形状を精度を低下させることなく磨くには、かなり熟練
度を要しまた労力を必要としていた。
Further, the machined surface obtained by the above-mentioned device is a satin surface, and when the machined surface requires a smooth machined surface close to a mirror surface, a polishing step is required, and the machined shape with high accuracy can be obtained with high accuracy. It took considerable skill and labor to polish without degrading.

【0013】本発明は上記問題点に鑑みてなされたもの
で、油系加工液を用いた面粗度5μRmax以下の仕上
げ加工に於いても、加工時間が従来装置に比べ著しく短
く、広い加工面積でも2μRmax程度の平滑な加工面
を容易に形成することのできるワイヤカット放電加工装
置を提供することにある。
The present invention has been made in view of the above problems. Even in the finishing process using an oil-based machining liquid with a surface roughness of 5 μRmax or less, the machining time is remarkably shorter than that of the conventional apparatus and a large machining area is required. However, it is an object of the present invention to provide a wire-cut electric discharge machine capable of easily forming a smooth machined surface of about 2 μRmax.

【0014】[0014]

【課題を解決するための手段】本発明は、一対の間隔を
置いて配置されたガイド間にワイヤ電極を軸方向に更新
移動せしめ前記軸方向と略直角方向から被加工物を微小
間隙にて相対向させて、該間隙に間欠的な電圧パルスを
供給する電源装置を備え、加工液を介して発生する放電
パルスにより加工を行い、前記ワイヤ電極と被加工物間
に相対的加工送りを与えて所望の輪郭形状を加工するワ
イヤカット放電加工装置に於て、所望の放電オン時間、
放電加工休止時間等の加工パラメータの加工パルスを前
記加工間隙に供給する電源回路と、油系加工液と前記油
系加工液に粉末微粒子を混入させた加工液を前記加工間
隙に供給する加工液供給装置と、前記加工液供給装置か
らの加工液を選択して前記間隙に供給するための加工液
選択手段と、前記加工液供給装置から半導電性粉末混入
加工液を使用し仕上げ加工を行う場合に、前記電源回路
と前記加工間隙の被加工物側あるいはワイヤ電極側間に
接続される放電加工パルス出力線の少なくとも一方にイ
ンダクタンス素子を挿入する挿入手段、あるいは十分に
大きいインダクタンスを有する出力線に前記放電加工パ
ルス出力線に切換える切換手段を有するワイヤカット放
電加工装置にある。
According to the present invention, a wire electrode is axially renewed and moved between a pair of guides arranged at intervals so that a work piece is formed in a minute gap from a direction substantially perpendicular to the axial direction. A power supply device is provided so as to face each other to supply an intermittent voltage pulse to the gap, machining is performed by an electric discharge pulse generated through a machining fluid, and relative machining feed is applied between the wire electrode and the workpiece. In a wire cut electric discharge machine that processes a desired contour shape by
A power supply circuit for supplying a machining pulse of a machining parameter such as an electric discharge machining pause time to the machining gap, and a machining liquid for supplying an oil-based machining liquid and a machining liquid in which powder fine particles are mixed into the oil-based machining liquid to the machining gap. A supply device, a processing liquid selection means for selecting the processing liquid from the processing liquid supply device and supplying it to the gap, and a finishing process using a semiconductive powder mixed processing liquid from the processing liquid supply device. In this case, insertion means for inserting an inductance element into at least one of the electric discharge machining pulse output line connected between the power supply circuit and the workpiece side of the machining gap or the wire electrode side, or an output line having a sufficiently large inductance The wire-cut electric discharge machine has switching means for switching to the electric discharge pulse output line.

【0015】[0015]

【作用】電源装置に数値制御装置からの加工条件設定信
号が入力されると、所定の放電オン時間、休止時間、印
加電圧、電流波高値等の加工パラメータが設定される。
さらに、加工液選択手段により粉末混入加工液が選択さ
れると、加工液供給装置の複数の電磁開閉弁が切り換え
られ、粉末混入加工液が加工間隙に供給されると共に、
電源装置と被加工物を接続する出力線が、インダクタン
スを有する出力線に変更される。前記電源装置から供給
される放電加工パルスは電流の立ち上がりが緩やかなパ
ルスとして、加工間隙に供給され加工液中に介在する微
粉末粒子を介して分散した放電が行われ平滑な加工面が
形成される。
When a machining condition setting signal from the numerical controller is input to the power supply device, machining parameters such as predetermined discharge on time, rest time, applied voltage, and current peak value are set.
Further, when the powder mixed processing liquid is selected by the processing liquid selection means, a plurality of electromagnetic on-off valves of the processing liquid supply device are switched to supply the powder mixed processing liquid to the processing gap,
The output line connecting the power supply device and the workpiece is changed to an output line having an inductance. The electric discharge machining pulse supplied from the power supply device is a pulse whose current rises gently, and is discharged through the fine powder particles that are supplied to the machining gap and are present in the machining fluid to form a smooth machining surface. It

【0016】[0016]

【実施例】以下に、本発明のワイヤカット放電加工装置
の一実施例を添付図面に基づいて詳細に説明する。図1
は、本発明の一実施例をしめす構成図、図2は、図1に
示す放電加工電源部分を示す詳細図である。図1に於い
て、大別すると放電加工を行う機械装置部50(図中の
中央部)と、粉末混入加工液、油加工液及び水加工液の
供給及び切換を行う加工液供給部60(図中左側)、さ
らに放電加工パルスを発生させる電源部と加工テーブル
を所望の輪郭軌跡に沿って駆動する数値制御装置を含む
電源装置部40(図中の右側)に分けられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the wire cut electric discharge machine of the present invention will be described in detail below with reference to the accompanying drawings. Figure 1
FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a detailed diagram showing an electric discharge machining power source portion shown in FIG. In FIG. 1, it is roughly divided into a machine device section 50 (central part in the figure) for performing electric discharge machining, and a machining fluid supply section 60 for supplying and switching a powder mixed machining fluid, an oil machining fluid and a water machining fluid. (Left side in the drawing), and a power supply unit 40 (right side in the drawing) that includes a power supply unit that generates an electric discharge machining pulse and a numerical control device that drives a machining table along a desired contour locus.

【0017】先ず、最初に機械装置部50について説明
する。被加工物3を加工液中に浸漬して加工を行うため
加工タンク1がXYクロステーブル2に載置されてお
り、XYクロステーブル2はX軸、Y軸モータ7および
8に取り付けられたボールネジで構成されている。数値
制御装置12からの制御信号をモータ駆動回路15が受
けXY軸モータを駆動することにより、ワイヤ電極4に
対して被加工物3が相対移動される。また、加工の状態
を検出する検出装置20が、検出データを数値制御装置
12に送り、数値制御装置12は、所謂サーボ制御信号
をモータ駆動回路15に与え、被加工物3とワイヤ電極
4の加工間隙が適正な距離に維持される。
First, the mechanical device section 50 will be described. The processing tank 1 is placed on the XY cross table 2 for performing the processing by immersing the workpiece 3 in the processing liquid. The XY cross table 2 is a ball screw attached to the X-axis and Y-axis motors 7 and 8. It is composed of. When the motor drive circuit 15 receives the control signal from the numerical controller 12 and drives the XY axis motor, the workpiece 3 is moved relative to the wire electrode 4. Further, the detection device 20 for detecting the processing state sends the detection data to the numerical control device 12, and the numerical control device 12 gives a so-called servo control signal to the motor drive circuit 15 so that the workpiece 3 and the wire electrode 4 can be processed. The machining gap is maintained at a proper distance.

【0018】加工タンク1内には、被加工物3が図示し
ていないワークスタンドに固定されており、被加工物3
の上下にはお互い対向する上噴流ワイヤガイド部材5と
下噴流ワイヤガイド部材6が設けられている。上噴流ワ
イヤガイド部材5には、加工中に更新送りされるワイヤ
電極4をその軸方向に案内する上ワイヤガイド5a、ワ
イヤ電極4に電源装置からの加工パルスを供給する上給
電駒5b、さらに加工液を加工間隙に向けて噴流する上
ノズル5c等で構成されている。隔壁5dは後述するよ
うに粉末混入加工液を使用して加工を行った際、粉末混
入加工液が上ワイヤガイド5aや上給電駒5b側に浸入
するのを防ぐために設けられている。下噴流ワイヤガイ
ド部材6についても上噴流ワイヤガイド部材5と同様の
構成となっているので説明は省略する。
In the processing tank 1, a work piece 3 is fixed to a work stand (not shown).
An upper jet wire guide member 5 and a lower jet wire guide member 6 facing each other are provided above and below. The upper jet wire guide member 5 includes an upper wire guide 5a for guiding the wire electrode 4 renewed and fed during processing in the axial direction thereof, an upper power feeding piece 5b for supplying a processing pulse from a power supply device to the wire electrode 4, and It is composed of an upper nozzle 5c and the like for jetting the working liquid toward the working gap. The partition wall 5d is provided to prevent the powder-mixed processing liquid from entering the upper wire guide 5a and the upper power feeding piece 5b side when processing is performed using the powder-mixed processing liquid as described later. The lower jet wire guide member 6 also has the same configuration as the upper jet wire guide member 5, and thus the description thereof is omitted.

【0019】次に加工液供給装置60について説明す
る。前記加工液供給装置60は、水加工液供給装置1
6、油加工液供給装置17、粉末混入加工液供給装置1
8及び加工液の切換を行う複数の制御弁、送液ポンプ、
フィルタ及びそれらを接続する管路により構成されてい
る。先ず水加工液供給装置16についてであるが、本発
明の加工装置を使用する以前の段階で荒加工を行う際に
使用するか、または水加工液のみでの加工を行う際に用
いられる。
Next, the working fluid supply device 60 will be described. The working fluid supply device 60 is the water working fluid supply device 1
6, oil processing liquid supply device 17, powder mixed processing liquid supply device 1
8 and a plurality of control valves for switching the working fluid, a liquid feed pump,
It is composed of a filter and a conduit connecting them. First, regarding the water processing liquid supply device 16, it is used when performing roughing processing before using the processing device of the present invention, or when performing processing with only the water processing liquid.

【0020】水加工液供給装置16は、清浄水加工液槽
16a及び汚濁水加工液槽16bの2槽からなってい
る。清浄水加工液槽16aには加工間隙に水加工液を送
るためのポンプ16c、加工液の比抵抗値が所定の値以
下に低下した際、加工液の比抵抗値を上昇させるための
イオン交換装置16iと比抵抗検出器の出力により制御
されイオン交換装置に加工液を送るポンプ16eが設け
られている。次に、汚濁水加工液槽16bには、加工タ
ンク1から回収された加工液が戻され、加工屑等で汚濁
した使用済み加工液を濾過して清浄水加工液槽16aに
戻すためのポンプ16d及びフィルタ16hが設けられ
ている。
The water processing liquid supply device 16 comprises two tanks, a clean water processing liquid tank 16a and a polluted water processing liquid tank 16b. A pump 16c for sending the water processing liquid to the processing gap in the clean water processing liquid tank 16a, an ion exchange for increasing the specific resistance value of the processing liquid when the specific resistance value of the processing liquid falls below a predetermined value. A pump 16e, which is controlled by the output of the device 16i and the specific resistance detector and sends the working fluid to the ion exchange device, is provided. Next, the processing liquid recovered from the processing tank 1 is returned to the polluted water processing liquid tank 16b, and a pump for filtering the used processing liquid polluted with processing wastes and returning it to the clean water processing liquid tank 16a. 16d and a filter 16h are provided.

【0021】油加工液供給装置17は、後述する加工液
選択手段19の信号により電磁開閉弁が切り換えらて加
工タンク1及び加工間隙に油加工液を送液する時に使用
される。油加工液供給装置17も前記水加工液供給装置
16と同様清浄油加工液槽17aと汚濁油加工液槽17
bの2槽構造となっている。清浄油加工液槽17aに
は、油加工液を加工タンク1と上噴流ワイヤガイド部材
5及び下噴流ワイヤガイド部材6に流量調節バルブ5e
流量調節バルブ6eを径由して送液するためのポンプ1
7cが設けられている。さらにポンプ17cからの清浄
加工液は、流量調節バルブ17iから上噴流ワイヤガイ
ド部材5の隔壁5dにより仕切られた上ワイヤガイド5
aが配置されている側にも接続されており、ワイヤ電極
4と上ワイヤガイド5aの間から粉末粒子が浸入するの
を防ぐため、上ノズル5c側に供給される液圧より僅か
に高めの液圧になるよう液圧力計と流量調節バルブ17
iで調節するようになっている。また、下噴流ワイヤガ
イド部材6についても同様である。次に、汚濁油加工液
槽17bには、加工タンク1から戻された汚濁加工液を
濾過し清浄油加工液槽17aに戻すためのフィルタ17
hとポンプ17dが設けられている。
The oil working liquid supply device 17 is used when the electromagnetic on-off valve is switched by a signal from a working liquid selecting means 19 described later to feed the oil working liquid to the working tank 1 and the working gap. The oil processing liquid supply device 17 is also similar to the water processing liquid supply device 16 in the clean oil processing liquid tank 17a and the polluted oil processing liquid tank 17.
It has a two tank structure of b. In the clean oil processing liquid tank 17a, the oil processing liquid is supplied to the processing tank 1, the upper jet wire guide member 5 and the lower jet wire guide member 6 and the flow rate adjusting valve 5e.
Pump 1 for feeding liquid through the flow rate control valve 6e
7c is provided. Further, the clean machining liquid from the pump 17c is separated from the flow rate adjusting valve 17i by the partition wall 5d of the upper jet wire guide member 5 to form the upper wire guide 5.
It is also connected to the side where a is arranged, and in order to prevent the powder particles from entering between the wire electrode 4 and the upper wire guide 5a, the hydraulic pressure slightly higher than the hydraulic pressure supplied to the upper nozzle 5c side. Liquid pressure gauge and flow control valve 17
It is adjusted by i. The same applies to the lower jet wire guide member 6. Next, in the polluted oil processing liquid tank 17b, a filter 17 for filtering the polluted processing liquid returned from the processing tank 1 and returning it to the clean oil processing liquid tank 17a.
h and pump 17d are provided.

【0022】上記水加工液供給装置16及び油加工液供
給装置17は、従来の水または油の加工液を使用するワ
イヤカット放電加工装置の構成と同様であり、当然、水
と油の分離装置が、図示されていないが、両者の加工液
供給装置に設けられている。本発明では、上記構成に加
え、さらに粉末混入加工液供給装置18が具備されてい
る。上述同様、加工液選択手段19により粉末混入加工
液が選択されると、複数の電磁開閉弁が切り換えられ加
工タンク1と上噴流ワイヤガイド部材5及び下噴流ワイ
ヤガイド部材6に粉末混入加工液が供給される。粉末混
入加工液供給装置18もやはり粉末混入清浄加工液槽1
8aと粉末混入汚濁加工液槽18bに仕切られており、
粉末混入清浄加工液槽18a側からポンプ18cによ
り、加工タンク1と上噴流ワイヤガイド部材5及び下噴
流ワイヤガイド部材6に粉末混入加工液が供給される。
The water-machining liquid supply device 16 and the oil-machining liquid supply device 17 have the same structure as the conventional wire-cut electric discharge machining device using a water or oil machining liquid, and of course, a water-oil separation device. Although not shown, they are provided in both working fluid supply devices. In the present invention, in addition to the above configuration, a powder-mixed working liquid supply device 18 is further provided. Similarly to the above, when the powder-mixed processing liquid is selected by the processing-liquid selecting means 19, the plurality of electromagnetic on-off valves are switched, and the powder-mixed processing liquid is supplied to the processing tank 1, the upper jet wire guide member 5, and the lower jet wire guide member 6. Supplied. The powder-containing processing liquid supply device 18 is also the powder-containing cleaning processing liquid tank 1
8a and a powder-mixed pollution processing liquid tank 18b,
The powder-mixed processing liquid is supplied to the processing tank 1, the upper jet wire guide member 5, and the lower jet wire guide member 6 by the pump 18c from the powder-mixed cleaning fluid tank 18a side.

【0023】また、ポンプ18cは、油加工液のみを汚
濁油加工液槽17bに戻す経路を有しており、経路中に
逆洗フィルタ18iが設けられている。これは、油加工
液を清浄油加工液槽17aから供給し加工タンク1に充
満させた後、粉末混入加工液を上ノズル5c及び下ノズ
ル6cからのみ供給して加工した際、加工タンク1内の
加工液に粉末混入加工液が混じり合うため、加工タンク
1の加工液を一旦粉末混入汚濁加工液槽18bに戻し、
油加工液供給装置17で不足した加工液を戻すときに使
用する。
The pump 18c has a path for returning only the oil processing liquid to the polluted oil processing liquid tank 17b, and a backwash filter 18i is provided in the path. This is because when the oil processing liquid is supplied from the clean oil processing liquid tank 17a to fill the processing tank 1, and the powder mixed processing liquid is supplied only from the upper nozzle 5c and the lower nozzle 6c for processing, the inside of the processing tank 1 Since the powder-containing processing liquid is mixed with the processing liquid of No. 1, the processing liquid in the processing tank 1 is once returned to the powder-containing polluted processing liquid tank 18b,
It is used when returning the working fluid which is insufficient in the oil working fluid supply device 17.

【0024】粉末混入汚濁加工液槽18bには、加工タ
ンク1から戻された粉末混入加工液を一旦回収し、加工
により生じた粉末粒子より大きな加工屑のみを除去して
粉末混入清浄加工液槽18a側に戻す5μm以上粒子を
補足するフィルタ18hが設けられている。粉末混入加
工液に混合されている粉末粒子は2μm以下の粒径の微
粒子を使用するので、フィルタ18hでは補足されな
い。また、粉末混入加工液供給装置18の使用を仕上げ
加工時に限れば、大きい加工屑の混入がなくなるので1
槽のみの構造でもよい。
In the powder-contaminated processing fluid tank 18b, the powder-mixed processing fluid returned from the processing tank 1 is temporarily collected, and only the processing dust larger than the powder particles generated by the processing is removed to remove the powder-mixed cleaning fluid tank. A filter 18h for catching particles of 5 μm or more returned to the side of 18a is provided. Since the powder particles mixed in the powder-mixed working liquid are fine particles having a particle size of 2 μm or less, they are not captured by the filter 18h. Further, if the use of the powder-mixed machining liquid supply device 18 is limited to the finish machining, the mixture of large machining chips will be eliminated.
The structure of only the tank may be used.

【0025】ここで、3種の加工液を切換使用するとき
の電磁開閉弁の制御に及び動作について説明しておく。
まず、水加工液を使用する場合は、電磁開閉弁18g、
電磁開閉弁17gを閉め電磁開閉弁16gを開く、電磁
開閉弁1a及び電磁開閉弁16fを開き電磁開閉弁17
f及び電磁開閉弁18f閉める。次にポンプ16cを駆
動し送液を行う。供給された水加工液は電磁開閉弁16
fと電磁開閉弁1aを通して加工タンク1に供給され
る。ここで、図示されていないが、排液側のドレイン口
が閉められていれば、加工タンク1は加工液により満た
され設定された液面以上となるとオーバーフローした加
工液は電磁開閉弁16gを通して汚濁水加工液槽16b
に戻される。また、加工間隙への噴流も流量調節バルブ
5e及び流量調節バルブ6eにより調節される。加工終
了後、排液は前記ドレイン口を開くことにより行われ
る。
Here, the control and operation of the electromagnetic opening / closing valve when switching and using the three kinds of working fluids will be described.
First, when using the water processing liquid, the electromagnetic opening / closing valve 18g,
The solenoid on-off valve 17g is closed and the solenoid on-off valve 16g is opened. The solenoid on-off valve 1a and the solenoid on-off valve 16f are opened.
f and the electromagnetic on-off valve 18f are closed. Next, the pump 16c is driven to deliver the liquid. The supplied water processing liquid is the solenoid on-off valve 16
It is supplied to the processing tank 1 through f and the electromagnetic opening / closing valve 1a. Here, although not shown, if the drain port on the drainage side is closed, the machining tank 1 is filled with the machining fluid and overflows when the fluid level exceeds the set level, and the machining fluid is contaminated through the electromagnetic opening / closing valve 16g. Water processing liquid tank 16b
Returned to. The jet flow to the machining gap is also adjusted by the flow rate adjusting valve 5e and the flow rate adjusting valve 6e. After the processing is completed, drainage is performed by opening the drain port.

【0026】次に、油加工液供給装置17の動作につい
て説明する。電磁開閉弁16f、電磁開閉弁16g、電
磁開閉弁18f及び電磁開閉弁18g閉じ、電磁開閉弁
17f、電磁開閉弁17g及び電磁開閉弁1aを開きポ
ンプ17cを駆動する。ドレインは前述と同様閉めてお
くことにより前述の水加工液の場合と同様に循環回路と
なり加工液が供給できる。
Next, the operation of the oil processing liquid supply device 17 will be described. The electromagnetic opening / closing valve 16f, the electromagnetic opening / closing valve 16g, the electromagnetic opening / closing valve 18f and the electromagnetic opening / closing valve 18g are closed, the electromagnetic opening / closing valve 17f, the electromagnetic opening / closing valve 17g and the electromagnetic opening / closing valve 1a are opened to drive the pump 17c. By closing the drain in the same manner as described above, a working fluid can be supplied by forming a circulation circuit as in the case of the above-mentioned water working fluid.

【0027】粉末混入加工液供給装置18では、前記同
様に加工液の供給が行われる。粉末混入加工液が選択さ
れると、電磁開閉弁17f、電磁開閉弁17g、電磁開
閉弁16f、電磁開閉弁16gが閉ざされ、電磁開閉弁
1a、電磁開閉弁18g電磁開閉弁18fが開かれポン
プ18cが駆動されると、加工タンク1、上噴流ワイヤ
ガイド部材5、下噴流ワイヤガイド部材6にそれぞれ粉
末混入加工液が供給される。オーバーフローした粉末混
入加工液は電磁開閉弁18gを通して粉末混入汚濁加工
液槽18bに戻される。また、ポンプ17cも駆動され
ており清浄油加工液が、上噴流ワイヤガイド部材5及び
下噴流ワイヤガイド部材6のワイヤガイド側に送られ、
粉末混入加工液の浸入を防いでいる。さらに、清浄加工
液は、加工タンク1内で使用されているワイヤ電極4の
供給回収機構の回転部あるいは摺動部にも供給されてお
り、粉末混入加工液で加工している際は、常に粉末粒子
の浸入を防ぐ為、前記各部に供給されている。
In the powder-mixed working liquid supply device 18, the working liquid is supplied in the same manner as described above. When the powder-mixed working liquid is selected, the electromagnetic opening / closing valve 17f, the electromagnetic opening / closing valve 17g, the electromagnetic opening / closing valve 16f, and the electromagnetic opening / closing valve 16g are closed, and the electromagnetic opening / closing valve 1a, the electromagnetic opening / closing valve 18g, and the electromagnetic opening / closing valve 18f are opened to pump. When 18c is driven, the powder-mixed working liquid is supplied to the processing tank 1, the upper jet wire guide member 5, and the lower jet wire guide member 6, respectively. The overflowed powder-mixed working fluid is returned to the powder-mixed polluted working fluid tank 18b through the electromagnetic opening / closing valve 18g. Further, the pump 17c is also driven so that the clean oil processing liquid is sent to the wire guide sides of the upper jet wire guide member 5 and the lower jet wire guide member 6,
Prevents infiltration of powder-containing processing fluid. Further, the clean working fluid is also supplied to the rotating part or the sliding part of the supply / recovery mechanism of the wire electrode 4 used in the working tank 1, and is always processed when working with the powder mixed working liquid. In order to prevent the infiltration of powder particles, it is supplied to each of the above parts.

【0028】次に、図2を使用して電源装置部40につ
いて詳述する。電源装置部40は、加工速度を高めるた
め高波高値の電流パルスを出力する主電源装置41と中
仕上げ領域から仕上げ領域までの加工を行う時に0.1
5A〜100A程度までの電流パルスを供給する副電源
装置42、前記主電源装置41及び副電源装置42と機
械装置部50の上給電駒5b、下給電駒6b及び被加工
物3とを接続する出力線接続部44、加工液の切換及び
出力線電路を使われる加工液により切換制御する加工液
選択手段43からなっている。なお、図中使用されてい
る符号のうち、同一の符号は同じものを示している。
Next, the power supply unit 40 will be described in detail with reference to FIG. The power supply unit 40 is a main power supply unit 41 that outputs a current pulse having a high peak value in order to increase the processing speed, and 0.1 when performing processing from the intermediate finishing area to the finishing area.
The sub-power supply device 42 for supplying a current pulse of about 5 A to 100 A, the main power supply device 41 and the sub-power supply device 42, the upper power feeding piece 5b, the lower power feeding piece 6b, and the workpiece 3 are connected to the mechanical device section 50. The output line connecting portion 44 includes a working liquid selecting means 43 for switching and controlling the working liquid and for controlling switching of the output line electric circuit depending on the working liquid used. In addition, the same code | symbol has shown the same thing among the code | symbols used in the figure.

【0029】副電源装置42は、2種の電源HVPとM
VPを有しており、それぞれHVPは150Vから30
0Vの可変電圧電源であり、MVPも60から120V
程度の電圧が可変な電源である。電源HVPに+側に
は、逆流止めダイオードDa、可変抵抗VR、さらにス
イッチング素子Traが直列に接続され、出力線接続部
44を通して被加工物3に接続されている。また、負極
側は、出力線接続部44を通って上下給電駒5bに接続
されている。可変抵抗VRは500〜1Kオームの抵抗
でHVPの電源回路は高電圧の加工パルスを供給するの
に用いられる。HVPの高圧電源回路は、加工パルス制
御装置42aに数値制御装置12にて設定された加工条
件設定信号S1が入力され、加工パルス制御装置42a
は所定のON時間と休止時間の信号でTraの導通制御
を行い、また指定された電源電圧にHVPを設定すると
共に設定された電流波高値となる抵抗値にVRを変更す
ることにより所望の加工パルスを供給する。
The sub power supply device 42 has two types of power supplies, HVP and MVP.
Have a VP, and each HVP is from 150V to 30
It is a variable voltage power source of 0V and MVP is 60 to 120V.
It is a power supply with a variable voltage. A backflow prevention diode Da, a variable resistance VR, and a switching element Tra are connected in series on the + side of the power supply HVP, and are connected to the workpiece 3 through the output line connection portion 44. The negative electrode side is connected to the upper and lower power feeding pieces 5b through the output line connecting portion 44. The variable resistor VR is a resistor of 500 to 1 K ohm, and the HVP power supply circuit is used to supply a high-voltage machining pulse. In the high-voltage power supply circuit of the HVP, the machining condition setting signal S1 set by the numerical controller 12 is input to the machining pulse controller 42a, and the machining pulse controller 42a is operated.
Performs conduction control of Tra with a signal of a predetermined ON time and rest time, sets HVP to a specified power supply voltage, and changes VR to a resistance value that is a set current peak value, thereby performing desired processing. Supply a pulse.

【0030】電源MVPも電源HVPとほぼ同様に構成
されており、第一のスイッチング回路はダイオードD
1、電流制限抵抗R1及びTr1が直列接続された構成
で、以下第2、第3のスイッチング回路それぞれが並列
に接続され、出力線接続部44を通して被加工物3に接
続されている。加工条件設定信号S1により加工パルス
制御装置42aは、設定された電源電圧にMVPを選択
しさらに、設定された電流波高値にあった数だけのスイ
ッチング素子Tr1〜TrnをON−OFF制御して所
望の加工パルスを加工間隙に供給する。なお、供給され
る加工パルスのON及びOFF時間は0.5μSECか
ら10μSECである。
The power supply MVP is also constructed in substantially the same manner as the power supply HVP, and the first switching circuit is a diode D.
1, the current limiting resistors R1 and Tr1 are connected in series, and the second and third switching circuits are respectively connected in parallel below, and are connected to the workpiece 3 through the output line connecting portion 44. The machining pulse control device 42a selects MVP as the set power supply voltage by the machining condition setting signal S1 and further ON-OFF controls as many switching elements Tr1 to Trn as there are at the set current peak value. The machining pulse of is supplied to the machining gap. The ON and OFF times of the supplied processing pulse are 0.5 μSEC to 10 μSEC.

【0031】主電源装置41では、副電源装置42に使
用されている電流制限抵抗値よりも小さい抵抗が使用さ
れ、数百アンペアから1000アンペア程度までの電流
波高値でかつパルス幅が0.1〜5μSEC程度の高ピ
ーク電流を供給できる構成であることを除いてほぼ同様
の構成であるので説明は省略する。
In the main power supply device 41, a resistance smaller than the current limiting resistance value used in the sub power supply device 42 is used, and the current peak value is from several hundred amps to 1000 amps and the pulse width is 0.1. Since the configuration is almost the same except that it can supply a high peak current of about 5 μSEC, description thereof will be omitted.

【0032】次に、加工液選択手段43について説明す
る。加工液選択手段43には、図示していない加工液設
定スイッチから(数値制御装置12からの信号でもよ
い)水加工液選択信号SW、油加工液選択信号SO及び
粉末混入加工液選択信号SOPの信号が、次の組合せで
入力される。なお、LoFF信号は、インダクタンス有
する出力線を使用する為の切換を無視する信号であり、
粉末混入加工液で加工速度のみを向上する場合に用いら
れる。 (イ)SW−ON (ロ)SW−OFF SO−ON SOP−OFF (ハ)SW−OFF SO−OFF SOP−ON (ニ)SW−OFF SO−ON SOP−ON
Next, the machining liquid selecting means 43 will be described. The machining fluid selection means 43 is provided with a machining fluid setting switch (not shown) (which may be a signal from the numerical controller 12) of a water machining fluid selection signal SW, an oil machining fluid selection signal SO, and a powder mixed machining fluid selection signal SOP. The signals are input in the following combinations. The LoFF signal is a signal that ignores switching for using the output line having an inductance,
It is used when only processing speed is improved with a powder mixed processing liquid. (A) SW-ON (b) SW-OFF SO-ON SOP-OFF (c) SW-OFF SO-OFF SOP-ON (d) SW-OFF SO-ON SOP-ON

【0033】まず、(イ)の水加工液がONされた場合
は、水加工液が選択され前述の通り電磁開閉弁を制御す
る信号が、信号線S2を通して加工液供給装置に送ら
れ、全ての循環経路は水加工液に切り換えられる。な
お、水加工液が選択されSWがONの時は他の切換信号
は無視されることにより、水と油が混じり合うことを防
ぐようになっている。同様に、(ロ)の組合せが選択さ
れると、油加工液の供給回路に切り換える信号が加工液
供給装置60に送られる。(ハ)の場合も同様で、前述
のごとく加工液供給経路が切り換えられる。
First, when the water-working fluid of (a) is turned on, the water-working fluid is selected and the signal for controlling the electromagnetic on-off valve is sent to the machining-fluid supply device through the signal line S2 as described above. The circulation path of is switched to the water processing liquid. When the water processing liquid is selected and the SW is ON, other switching signals are ignored to prevent water and oil from being mixed with each other. Similarly, when the combination (b) is selected, a signal for switching to the oil processing liquid supply circuit is sent to the processing liquid supply device 60. The same applies to the case of (c), and the machining liquid supply path is switched as described above.

【0034】(ニ)が選択された場合は、電磁開閉弁1
a、電磁開閉弁17fのみが開放され、ポンプ17cが
駆動され加工タンク1に油加工液が供給され加工タンク
1のドレインが閉められているので、加工液が所定の液
面になるまで溜められる。ここで、図示していない液面
センサーで加工液が設定値まで達したことを検出し、電
磁開閉弁1a及び電磁開閉弁17fを閉め電磁開閉弁1
8gおよび電磁開閉弁18fを開放し、ポンプ18cを
駆動させることにより、上ノズル5c及び下ノズル6c
からのみ粉末混入加工液を供給する循環路になる。
When (d) is selected, the solenoid opening / closing valve 1
a, only the electromagnetic on-off valve 17f is opened, the pump 17c is driven, the oil processing liquid is supplied to the processing tank 1 and the drain of the processing tank 1 is closed, so that the processing liquid is accumulated until a predetermined liquid level is reached. . Here, a liquid level sensor (not shown) detects that the machining fluid has reached the set value, and closes the electromagnetic on-off valve 1a and the electromagnetic on-off valve 17f to close the electromagnetic on-off valve 1.
8 g and the solenoid on-off valve 18 f are opened, and the pump 18 c is driven to drive the upper nozzle 5 c and the lower nozzle 6 c.
It becomes a circulation path for supplying the powder-mixed working liquid only.

【0035】つぎに、加工液選択手段43は上記(ハ)
及び(ニ)の組合せが選択されると、信号線S3を通し
て制御信号が出力線接続部44に送られ、出力線を図3
に示す通り出力線21と22を切り換える制御を行う。
これについて、図3を用いて説明する。図中同一符号の
部分は同じものを示している。図3A於いては、副電源
装置42から出た正極側と負極側の出力線は、正極側出
力線21を芯線として負極側出力線22aで囲まれた同
軸線となっており、往路及び復路を流れる電流により限
りなくインダクタンスを小さくしたもので、また、通常
のシールド線のようにキャパシタンスを有するものでは
なく、インダクタンスとキャパシタンスがお互いに打ち
消し合うよう製作された低インピーダンス線である。こ
の低インピーダンス線で加工間隙の近傍まで接続されて
いる。
Next, the machining liquid selecting means 43 is set to the above (c).
When the combination of (d) and (d) is selected, a control signal is sent to the output line connection section 44 through the signal line S3, and the output line is connected to
Control for switching the output lines 21 and 22 is performed as shown in FIG.
This will be described with reference to FIG. In the figure, the same reference numerals indicate the same parts. In FIG. 3A, the output lines on the positive electrode side and the negative electrode side output from the sub power supply device 42 are coaxial lines surrounded by the negative electrode side output line 22a with the positive electrode side output line 21 as the core wire, and the forward and return paths are provided. The inductance is infinitely reduced by the current flowing through the wire, and it is a low impedance wire manufactured so that the inductance and the capacitance cancel each other out, not having the capacitance like the usual shielded wire. The low impedance wire is connected to near the machining gap.

【0036】加工間隙近傍では、正極側出力線21と負
極側出力線22は、再び単線として、それぞれ上給電駒
5b、下給電駒6b及び被加工物3に接続されている。
電源装置から加工間隙の近傍まで導かれた正極側出力線
21と単線部との間に出力線切換手段23aが設けられ
ており、前記加工液選択手段で粉末混入加工液が選択さ
れていると、正極側出力線21は、図に示す接続となり
十数μHから30μHのインダクタンスを有する経路と
なる。インダクタンスの値としては、加工する電流値等
の加工条件により選択されるべきであるが、加工ON時
間4.5μSEC、加工休止時間1.5μSEC、電流
波高値1アンペア(短絡時)、電源電圧80V、補助電
源電圧250V(短絡時電流値0.3A)の条件では2
0μH程度が良質の平滑面が得るのに好ましい値であっ
た。
In the vicinity of the machining gap, the positive electrode side output line 21 and the negative electrode side output line 22 are again connected as a single line to the upper power feeding piece 5b, the lower power feeding piece 6b and the work piece 3, respectively.
An output line switching means 23a is provided between the positive electrode side output wire 21 guided from the power supply device to the vicinity of the machining gap and the single wire portion, and the powder mixed working fluid is selected by the working fluid selection means. The output line 21 on the positive electrode side becomes the connection shown in the figure, and serves as a path having an inductance of several ten μH to 30 μH. The value of the inductance should be selected according to the processing conditions such as the current value to be processed, but the processing ON time is 4.5 μSEC, the processing pause time is 1.5 μSEC, the current peak value is 1 ampere (at the time of short circuit), and the power supply voltage is 80V. , 2 under the condition of auxiliary power supply voltage 250V (current value at short circuit 0.3A)
About 0 μH was a preferable value for obtaining a good-quality smooth surface.

【0037】図3Bに於いては、副電源装置42の出口
部分で出力線を2経路設け、加工速度の必要な前工程の
加工に於いては低インピーダンス線(22a,21)を
利用して加工パルスを供給し、本発明のインダクタンス
を有する出力線(22b,21a)を別経路としたもの
であり、選択された加工液により切換装置23bが切り
換えられる。なお、実施例では、被加工物側にインダク
タンスを有する経路として示したが、負極側出力線22
側に挿入してもよい。
In FIG. 3B, two output lines are provided at the outlet of the sub-power supply device 42, and the low impedance line (22a, 21) is used in the preceding process, which requires a high processing speed. The output line (22b, 21a) of the present invention, which supplies a machining pulse and has an inductance, is used as another path, and the switching device 23b is switched by the selected machining liquid. In the embodiment, the path having the inductance on the side of the workpiece is shown, but the output wire 22 on the negative electrode side is provided.
May be inserted on the side.

【0038】次に、使用される粉末混入加工液について
説明する。本発明の装置では、油加工液として鉱油系の
炭化水素油が用いられ、特に火災などの危険性を鑑み
て、一般的に放電加工に用いられる第4類第3石油類を
加工液として用い、前記加工液に半導電性粉末、Gr,
Al等の粉末を混合したものを用いることができる。好
ましくは、多結晶シリコン粉末を1〜1.5重量パーセ
ントの割合で混合した混合液で、粉末粒径が2μm以
下、さらに好ましくは1μm以下の粒径が適切である。
これは、5μm以上の粒径が主成分となっている加工液
を用いると被加工物3の上面と低面付近や加工形状のコ
ーナ部にだれを生じること、加工間隙が広くなりすぎ加
工精度を損なうことがあるためである。なお、混合され
る粒子の電導度が高い場合は濃度を調整し、加工液の抵
抗値が少なくとも1cm当り10,000オーム以上を
にすればよい。
Next, the powder-mixed working liquid used will be described. In the device of the present invention, a mineral oil-based hydrocarbon oil is used as the oil processing liquid, and in view of the danger of fire in particular, the fourth type third petroleum oil generally used for electric discharge machining is used as the processing liquid. , Semi-conductive powder, Gr,
A mixture of powders such as Al can be used. It is preferably a mixed liquid in which polycrystalline silicon powder is mixed at a ratio of 1 to 1.5 weight percent, and a powder particle size of 2 μm or less, more preferably 1 μm or less is suitable.
This is because when a machining liquid having a particle size of 5 μm or more as a main component is used, sagging occurs near the upper surface and the lower surface of the workpiece 3 or in the corner portion of the machining shape, and the machining gap becomes too wide. This is because it may damage the When the conductivity of the mixed particles is high, the concentration may be adjusted so that the resistance of the working fluid is at least 10,000 ohms per cm.

【0039】最後に、本発明の装置を使用した実験例を
挙げて全体的な動作とその結果について説明する。 [実験例]ワイヤ電極にタングステンを用い鉄系被加工
物を輪郭形状に5回加工して仕上げる場合で、第一加工
工程から油系加工液を用いて加工を行った場合の例を示
す。 被加工物 材質 SKD−61 板厚 2mm 電極材質及び径 0.05mm (i)第一加工工程 加工液の選択 SO(油系加工液浸漬加工) 加工条件設定 無負荷電圧 :80V パルス幅 :オン時間 2μSEC オフ時間 11μSEC 電流波高値 :2.4A 補助電源無負荷電圧: 150V直流電圧 短絡時最大電流 : 0.15A(VR抵抗値1Kオ
ーム) 間隙コンデンサ : 0.01μF サーボ電圧 : 95V オフセット値 : 45μm 加工状態 平均加工電圧 : 105V 平均加工電流 : 約0.07A 加工移動速度 : 0.8mm/min
Finally, the overall operation and the result thereof will be described with reference to an experimental example using the apparatus of the present invention. [Experimental Example] An example is shown in which tungsten is used for the wire electrode and an iron-based workpiece is processed into a contour shape five times for finishing, and processing is performed using an oil-based processing liquid from the first processing step. Workpiece material SKD-61 Plate thickness 2 mm Electrode material and diameter 0.05 mm (i) First machining process Machining fluid selection SO (Oil-based machining fluid immersion machining) Machining condition setting No load voltage: 80 V Pulse width: On-time 2μSEC OFF time 11μSEC Current peak value: 2.4A Auxiliary power supply no-load voltage: 150V DC voltage Maximum current during short circuit: 0.15A (VR resistance value 1K ohm) Gap capacitor: 0.01μF Servo voltage: 95V Offset value: 45μm Processing State Average processing voltage: 105V Average processing current: Approx. 0.07A Processing movement speed: 0.8mm / min

【0040】(ii)第二加工工程 加工液の選択 SOP(粉末混入油系加工液浸漬加
工) Loffオン(インダクタンス使用せず) 加工液 粉末微粒子 :多結晶シリコン 添加量 :1.5重量% 添加粉平均粒径 :2μm 加工条件設定 無負荷電圧 :80V パルス幅 :オン時間 0.5μSEC オフ時間 5μSEC 電流波高値 :4A 補助電源無負荷電圧: 150V直流電圧 短絡時最大電流 : 0.15A(VR抵抗値1Kオ
ーム) 間隙コンデンサ : 使用せず サーボ電圧 : 100V オフセット値 : 45μm 加工状態 平均加工電圧 : 113V 平均加工電流 : 約0.7A 加工移動速度 : 7mm/min
(Ii) Second processing step Selection of processing liquid SOP (powder-mixed oil-based processing liquid immersion processing) Loff on (without using inductance) Processing liquid powder fine particles: polycrystalline silicon addition amount: 1.5% by weight addition Powder average particle size: 2 μm Processing condition setting No load voltage: 80 V Pulse width: On time 0.5 μSEC Off time 5 μSEC Current peak value: 4 A Auxiliary power source no load voltage: 150 V DC voltage Maximum current at short circuit: 0.15 A (VR resistance) Value 1K ohm) Gap capacitor: Not used Servo voltage: 100V Offset value: 45 μm Machining state Average machining voltage: 113V Average machining current: Approx. 0.7A Machining speed: 7mm / min

【0041】(iii)第三工程 上記第二工程と異なる部分についてのみ記載する。 サーボ電圧 : 90V 加工状態 平均加工電圧 : 123V 平均加工電流 : 約0.05A 加工移動速度 : 7.4mm/min 加工面粗度 : 約5μRmax(Iii) Third Step Only parts different from the above second step will be described. Servo voltage: 90V Machining state Average machining voltage: 123V Average machining current: about 0.05A Machining speed: 7.4mm / min Machining surface roughness: About 5μRmax

【0042】(iV)第四工程 加工液の選択 SOP(粉末混入油系加工液浸漬加
工) 加工液 粉末微粒子 :多結晶シリコン 添加量 :1.5重量% 添加粉平均粒径 :2μm 加工条件設定 無負荷電圧 :80V パルス幅 :オン時間 4.5μSEC オフ時間 1.5μSEC 電流波高値 :2.4A 補助電源無負荷電圧: 250V直流電圧 短絡時最大電流 : 0.25A(VR抵抗値1Kオ
ーム) 間隙コンデンサ : 使用せず サーボ電圧 : 200V オフセット値 : 70μm 加工状態 平均加工電圧 : 250V 平均加工電流 : 約0.05A 加工移動速度 : 7.2mm/min 加工面粗度 : 約2μRmax 以上の加工設定により加工した結果平滑な加工面が得ら
れた。
(IV) Fourth Step Selection of Processing Liquid SOP (Powder-mixed oil-based processing liquid immersion processing) Processing liquid Powder fine particles: Polycrystalline silicon Addition amount: 1.5% by weight Additive powder average particle diameter: 2 μm Processing condition setting No-load voltage: 80V Pulse width: On-time 4.5μSEC Off-time 1.5μSEC Current peak value: 2.4A Auxiliary power source no-load voltage: 250V DC voltage Short-circuit maximum current: 0.25A (VR resistance value 1K ohm) Gap Capacitor: Not used Servo voltage: 200V Offset value: 70 μm Machining state Average machining voltage: 250 V Average machining current: Approx. 0.05 A Machining speed: 7.2 mm / min Machining surface roughness: Machining with machining settings of approximately 2 μRmax or more As a result, a smooth machined surface was obtained.

【0043】次に動作について上記実験例を参照しなが
ら簡単に説明する。先ず、第一加工工程では、図示して
いない入力装置から加工プログラムが入力され、プログ
ラムに記載された種々の加工パラメータが数値制御装置
12から信号線S1により種々の設定信号として、主電
源装置41と副u電源装置42の加工パルス制御装置4
2a(主電源装置41の加工パルス制御装置は図示して
いない)に送られ複数のスイッチング回路が導通制御さ
れ、可変電源及び可変抵抗が所定の値に設定される。
Next, the operation will be briefly described with reference to the above experimental example. First, in the first machining step, a machining program is input from an input device (not shown), and various machining parameters described in the program are supplied as various setting signals from the numerical controller 12 via the signal line S1 to the main power supply device 41. And machining pulse control device 4 for the sub-u power supply device 42
2a (the processing pulse control device of the main power supply device 41 is not shown) is sent to the plurality of switching circuits for conduction control, and the variable power supply and the variable resistance are set to predetermined values.

【0044】さらに、第一加工工程では、SOが加工液
選択手段43に設定されているので、加工液選択手段4
3は加工液供給装置60に油加工液循環回路になるよう
電磁開閉弁を切換る信号を信号線S3を通じて送る。電
磁開閉弁の制御状態は前述の通りである。なお、加工液
選択手段43でSWを選択し水加工液で加工を行っても
よい。
Further, in the first machining step, since SO is set in the machining fluid selecting means 43, the machining fluid selecting means 4
Reference numeral 3 sends a signal for switching the electromagnetic on-off valve to the working fluid supply device 60 through the signal line S3 so as to form an oil working fluid circulation circuit. The control state of the solenoid opening / closing valve is as described above. In addition, you may select SW by the working fluid selection means 43 and process with a water working fluid.

【0045】次に、第一加工工程が終了すると数値制御
装置12は次のプログラムを呼び出し第二加工工程に当
たる加工パラメータが前記同様に副電源装置42に送ら
れ、第二工程の加工条件で加工パルスが供給される。こ
こで、第二加工工程では、加工液の選択がSOPである
ので、加工液選択手段43は加工液を粉末混入加工液に
切り換えるよう電磁開閉弁の制御信号を加工液供給装置
60に送り、加工液が切りり換えられる。また、Lof
f信号もオンされていることから出力線切換信号は出力
線接続部44には送られない。第三加工工程では、サー
ボ電圧設定が変更されているだけであるので残りの加工
条件パラメータは変更されずに加工が継続される。
Next, when the first machining step is completed, the numerical controller 12 calls the following program and the machining parameters corresponding to the second machining step are sent to the auxiliary power supply device 42 in the same manner as described above, and machining is performed under the machining conditions of the second step. A pulse is delivered. Here, in the second machining step, since the selection of the machining fluid is SOP, the machining fluid selection means 43 sends the control signal of the electromagnetic opening / closing valve to the machining fluid supply device 60 so as to switch the machining fluid to the powder-mixed machining fluid. The working fluid is switched. Also, Lof
Since the f signal is also turned on, the output line switching signal is not sent to the output line connecting section 44. In the third machining step, since the servo voltage setting is only changed, the machining is continued without changing the remaining machining condition parameters.

【0046】さらに、第四加工工程に入ると加工条件が
前述と同様に変更されると共に、Loff信号がないた
め、出力線接続部44の正極側出力線21がインダクタ
ンスを有する回路に変更され加工が行われる。この際、
加工液は粉末混入加工液がそのまま使用されており、本
発明の目的とする平滑でかつ微細な加工面が形成され
る。なお、被加工物の板厚が80mm程度まで容易に同
様の加工面が得られることが確認されている。
Further, in the fourth processing step, the processing conditions are changed in the same manner as described above, and since there is no Loff signal, the positive side output line 21 of the output line connecting portion 44 is changed to a circuit having an inductance and processed. Is done. On this occasion,
As the working liquid, the powder-mixed working liquid is used as it is, and a smooth and fine working surface which is the object of the present invention is formed. It has been confirmed that a similar machined surface can be easily obtained up to a plate thickness of about 80 mm.

【0047】図5に従来の加工により得られた5μRm
axの加工面と粉末混入加工液を使用して、さらにイン
ダクタンス20μHの出力線を介して出力パルスを供給
した場合の加工面の状態を挙げておく。図5Aは、本発
明の装置で加工をした場合に得られる加工面であり、図
5bは、通常の油系加工液を用いて、放電オジ時間0.
5μSEC、放電休止時間1μSEC、電流波高値3.
2A、無負荷電圧80Vで加工した場合に得られる加工
面を示している。
FIG. 5 shows 5 μRm obtained by conventional processing.
The state of the machined surface when the machined surface of ax and the machining fluid containing powder are used and an output pulse is further supplied through the output line having the inductance of 20 μH will be described. FIG. 5A is a machined surface obtained when machining is performed by the apparatus of the present invention, and FIG. 5b is a case where a discharge oil aging time of 0.
5 μSEC, discharge pause time 1 μSEC, current peak value 3.
It shows a machined surface obtained when machined at 2 A and a no-load voltage of 80 V.

【0048】[0048]

【発明の効果】上述のように、加工液に半導電性等の粉
末微粒子が混入された加工液を用い出力線をインダクタ
ンスを有する出力線と変更して加工することにより、従
来得ることが難しかった加工面を容易にかつ短い加工時
間で得ることできる。また、加工面に平滑な面が必要な
場合でも、本発明の装置によれば、磨きが最小限におさ
えることができ、射出成形金型等では、離型性のきわめ
て良好な加工面を得ることができる。
As described above, it is difficult to obtain the conventional method by using the working fluid in which the fine particles of powder such as semiconductivity are mixed in the working fluid and changing the output line to the output line having the inductance. The machined surface can be easily obtained in a short processing time. Even when a smooth surface is required, the apparatus of the present invention can minimize polishing, and in the case of an injection molding die or the like, a processed surface having excellent releasability can be obtained. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体構成図FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】電源装置部及び加工液選択手段の詳の細構成図FIG. 2 is a detailed detailed configuration diagram of a power supply unit and a processing liquid selection unit.

【図3】出力線の切換接続を示す詳細部分図FIG. 3 is a detailed partial view showing a switching connection of output lines.

【図4】従来のワイヤカット放電加工の構成図[Fig. 4] Configuration diagram of conventional wire-cut electric discharge machining

【図5】本発明の装置を用いて加工した被加工物の加工
面と従来の加工面の凹凸を測定した図
FIG. 5 is a diagram in which unevenness of a machined surface of a workpiece machined using the apparatus of the present invention and a conventional machined surface are measured.

【符号の説明】[Explanation of symbols]

1 加工タンク 2 XYクロステーブル 3 被加工物 4 ワイヤ電極 5 上噴流ワイヤガイド部材 6 下噴流ワイヤガイド部材 5a,6a 上下ワイヤガイド 5b,6b 上下給電駒 12 数値制御装置 16 水加工液供給装置 17 油加工液供給装置 18 粉末混入加工液供給装置 16g,16f 電磁開閉弁 17g,17f 18g,18f 21 正極側出力線21 22 負極側出力線22 23a,b 出力線切換器 42 副電源装置 43 加工液選択手段 44 出力線切換接続部 1 Processing Tank 2 XY Cross Table 3 Workpiece 4 Wire Electrode 5 Upper Jet Wire Guide Member 6 Lower Jet Wire Guide Member 5a, 6a Upper and Lower Wire Guides 5b, 6b Vertical Feeding Piece 12 Numerical Control Device 16 Water Processing Liquid Supply Device 17 Oil Processing liquid supply device 18 Powder mixed processing liquid supply device 16g, 16f Electromagnetic on-off valve 17g, 17f 18g, 18f 21 Positive side output line 21 22 Negative side output line 22 23a, b Output line switch 42 Sub power supply device 43 Processing liquid selection Means 44 Output line switching connection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の間隔を置いて配置されたガイド間
にワイヤ電極を軸方向に更新移動せしめ前記軸方向と略
直角方向から被加工物を微小間隙にて相対向させて、該
間隙に間欠的な電圧パルスを供給する電源装置を備え、
加工液を介して発生する放電パルスにより加工を行い、
前記ワイヤ電極と被加工物間に相対的加工送りを与えて
所望の輪郭形状を加工するワイヤカット放電加工装置に
於て、 所望の放電オン時間、放電加工休止時間等の加工パラメ
ータの加工パルスを前記加工間隙に供給する電源回路
と、 油系加工液と前記油系加工液に粉末微粒子を混入させた
加工液を前記加工間隙に供給する加工液供給装置と、 前記加工液供給装置からの加工液を選択して前記間隙に
供給するための加工液選択手段と、 前記加工液供給装置から半導電性粉末混入加工液を使用
し仕上げ加工を行う場合に、前記電源回路と前記加工間
隙の被加工物側あるいはワイヤ電極側間に接続される放
電加工パルス出力線の少なくとも一方にインダクタンス
素子を挿入する挿入手段、あるいは十分に大きいインダ
クタンスを有する出力線に前記放電加工パルス出力線に
切換える切換手段を有することを特徴とするワイヤカッ
ト放電加工装置。
1. A wire electrode is axially renewedly moved between a pair of guides arranged at a distance, and a workpiece is made to face each other with a minute gap in a direction substantially perpendicular to the axial direction, and the gap is provided in the gap. Equipped with a power supply that supplies intermittent voltage pulses,
Machining is performed by the electric discharge pulse generated through the machining fluid,
In a wire cut electric discharge machine that gives a relative machining feed between the wire electrode and the work piece to machine a desired contour shape, a machining pulse of a machining parameter such as a desired discharge on time and an electric discharge machining pause time is set. A power supply circuit for supplying to the machining gap, a machining liquid supply device for supplying an oil-based machining liquid and a machining liquid obtained by mixing fine particles of powder in the oil-based machining liquid to the machining gap, and machining from the machining liquid supply device. A machining liquid selecting means for selecting and supplying a liquid to the gap, and a finishing liquid using a semiconductive powder-mixed machining liquid from the machining liquid supply device, the power circuit and the machining gap Insertion means for inserting an inductance element into at least one of the electric discharge machining pulse output lines connected between the workpiece side or the wire electrode side, or before the output line having a sufficiently large inductance A wire-cut electric discharge machine having a switching means for switching to the electric discharge pulse output line.
JP15305393A 1993-05-18 1993-05-18 Wire cut electric discharge machine Expired - Fee Related JP3335711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15305393A JP3335711B2 (en) 1993-05-18 1993-05-18 Wire cut electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15305393A JP3335711B2 (en) 1993-05-18 1993-05-18 Wire cut electric discharge machine

Publications (2)

Publication Number Publication Date
JPH071243A true JPH071243A (en) 1995-01-06
JP3335711B2 JP3335711B2 (en) 2002-10-21

Family

ID=15553953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15305393A Expired - Fee Related JP3335711B2 (en) 1993-05-18 1993-05-18 Wire cut electric discharge machine

Country Status (1)

Country Link
JP (1) JP3335711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180734A (en) * 2013-03-19 2014-09-29 Fanuc Ltd Wire electric discharge machine having function for discriminating state in processing tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180734A (en) * 2013-03-19 2014-09-29 Fanuc Ltd Wire electric discharge machine having function for discriminating state in processing tank

Also Published As

Publication number Publication date
JP3335711B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US2818490A (en) Means for use in the working of metals by electro-erosion
JP4288223B2 (en) Method for processing arbitrary shape on workpiece made of conductive material and composite processing apparatus
CN1676258A (en) Flushing and filtering system for electroerosion machining
WO1985000543A1 (en) Wire-cut electric discharge machining apparatus
JP2954736B2 (en) Control system for electric discharge machine
US5605638A (en) Electric discharge machining (EDM) apparatus
US4508950A (en) EDM Method and apparatus using liquid hydrocarbon decomposition yielded gases and a deionized water liquid
Coteaţă et al. Pulse generator for obtaining surfaces of small dimensions by electrical discharge machining
JP2000052151A (en) Method and device for achieving fine surface finishing in wire cut electric discharge machining device
JP3335711B2 (en) Wire cut electric discharge machine
US6320150B1 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, and mold for extrusion
US4578556A (en) EDM method and apparatus utilizing water vapor
DE3225424C2 (en)
JP2887635B2 (en) Wire cut electric discharge machining method
US6642469B2 (en) Electrode clamping system for sink-type electrical discharge machines
JP3519150B2 (en) Circuit device for electric discharge machining and electric discharge machine
JP3058308B2 (en) Wire cut electric discharge machining method
JP2008062328A (en) Compound machining apparatus capable of performing water jet machining and wire electric discharge machining
GB2082954A (en) Wire-cutting electroerosion machining method and apparatus
JP2681817B2 (en) Processing liquid supply device and processing liquid supply method
JPH01306127A (en) Electric treatment method for metal
JP2559219B2 (en) Perforation electric discharge machine
SU862492A1 (en) Electrical discharge machine
GB2073641A (en) Controlling crater shape in electrical discharge machining
JPH08150515A (en) Wire discharge finishing work method and power source for wire discharge finishing work

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees