JPH07123758A - Thermoelectric power generator - Google Patents

Thermoelectric power generator

Info

Publication number
JPH07123758A
JPH07123758A JP5260294A JP26029493A JPH07123758A JP H07123758 A JPH07123758 A JP H07123758A JP 5260294 A JP5260294 A JP 5260294A JP 26029493 A JP26029493 A JP 26029493A JP H07123758 A JPH07123758 A JP H07123758A
Authority
JP
Japan
Prior art keywords
heat
pipe
heat pipe
thermoelectric conversion
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5260294A
Other languages
Japanese (ja)
Inventor
Riichi Sawano
理一 澤野
Izumi Azuma
泉 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5260294A priority Critical patent/JPH07123758A/en
Publication of JPH07123758A publication Critical patent/JPH07123758A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide a thermoelectric power generator which is constituted by combining a combustor and thermoelectric conversion modules and is contrived to efficiently heat the heated surfaces of the modules and to prevent the thermal destruction of the modules. CONSTITUTION:A variable conductance type heating heat pipe 2 is installed, with its heat receiving section 2c facing a combustor 1, and, at the same time, multiple thermoelectric conversion modules 3 are arranged on the peripheral surface of the heat radiating section 2d of the pipe 2 in a heat transferring state. In addition, a gas reservoir section 2e in which a non-condensable gas is enclosed and which is equipped with heat radiating fins 2f is continuously provided on the heat radiating section 2d of the pipe 2 and the heated surfaces (on a high-temperature interface side) of the modules 3 are uniformly heated by supplying the combustion heat of the combustor 1 to the modules 3 by using the pipe 2 as a heat carrying means. At the same time, the abnormal overheating of module elements is prevented when the inputted quantity of heat increases by using the variable conductance function of the pipe 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼器と熱電変換モジ
ュールを組み合わせて構成した熱電発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator which is constructed by combining a combustor and a thermoelectric conversion module.

【0002】[0002]

【従来の技術】ゼーベック効果を応用した熱電発電装置
として、頭記のように燃焼器を熱源としてこれに多数の
半導体熱電変換素子を直並列に接続して構成した熱電変
換モジュールを組合わせた方式のものが周知である。こ
こで、従来における熱電発電装置では、バーナと燃焼筒
を組合わせた燃焼器に対し、その燃焼筒の外周面上に複
数の熱電変換モジュールを伝熱的に結合して該モジュー
ルの被加熱面(熱電変換素子の高温接合点)を加熱する
とともに、前記被加熱面と反対側の被冷却面(熱電変換
素子の低温接合点)に放熱フィンを取付けて冷却ファン
により強制空冷し、これにより熱電変換モジュールの高
温接合点と低温接合点の間に温度差を与えて電気出力
(熱起電力)を得るよう構成されている。
2. Description of the Related Art As a thermoelectric power generator applying the Seebeck effect, a method in which a combustor is used as a heat source and a large number of semiconductor thermoelectric conversion elements are connected in series and in parallel as shown in the preceding paragraph. Are well known. Here, in the conventional thermoelectric power generation device, a plurality of thermoelectric conversion modules are heat-conductively coupled on the outer peripheral surface of the combustion cylinder with respect to the combustor in which the burner and the combustion cylinder are combined, and the surface to be heated of the module is heated. While heating (the high temperature junction point of the thermoelectric conversion element), a radiation fin is attached to the surface to be cooled (the low temperature junction point of the thermoelectric conversion element) opposite to the surface to be heated and forced air cooling is performed by a cooling fan. It is configured to provide a temperature difference between the hot junction and the cold junction of the conversion module to obtain an electrical output (thermoelectromotive force).

【0003】[0003]

【発明が解決しようとする課題】ところで、前記した従
来構成の熱電発電装置では、性能,信頼性の面で次記の
ような問題点がある。 (1)燃焼器のバーナ,燃焼筒を横軸配置とした場合に
は、バーナから燃焼筒内に吹き出す火炎が筒内での熱対
流の影響により上向きに方向を転じて片寄るため、燃焼
筒の上半部と下半部とが均一に加熱されなくなる。ま
た、バーナ,燃焼筒を縦軸配置した場合には、火炎がバ
ーナから垂直に吹き上がるので燃焼筒の上部域と下部域
とが均一に加熱されない。このために、燃焼筒の周面上
に分散配置した各熱電変換モジュールに対する被加熱面
の加熱温度が異なり、この結果としてモジュール相互間
の出力電圧に差が生じて高い発電効率を得ることができ
ない。しかも、燃焼温度の高い領域に配置した熱電変換
モジュールは、バーナに異常燃焼などが生じた際に素子
が許容温度以上に過熱されて熱破壊を生じることがあ
る。
By the way, the above-mentioned conventional thermoelectric generator has the following problems in terms of performance and reliability. (1) When the burner and the combustion cylinder of the combustor are arranged on the horizontal axis, the flame blown out from the burner into the combustion cylinder turns upward due to the effect of thermal convection in the cylinder, and is biased upward. The upper half and the lower half are not heated uniformly. Further, when the burner and the combustion cylinder are arranged vertically, the flame blows up vertically from the burner, so that the upper region and the lower region of the combustion cylinder are not heated uniformly. For this reason, the heating temperature of the surface to be heated for each thermoelectric conversion module dispersedly arranged on the peripheral surface of the combustion cylinder is different, and as a result, there is a difference in output voltage between the modules, and high power generation efficiency cannot be obtained. . Moreover, in the thermoelectric conversion module arranged in the region where the combustion temperature is high, the element may be overheated to the allowable temperature or higher and may be thermally destroyed when abnormal combustion occurs in the burner.

【0004】(2)また、熱電変換モジュールの被冷却
面側に取付けた放熱フィンに向けて冷却ファンから冷却
空気を吹付ける冷却方式では、冷却空気流の上流側に並
ぶモジュールと下流側に並ぶモジュールとが均一に冷却
されず、これが基で各モジュールの間に冷却温度差が生
じて出力電圧にばらつきが現れる。本発明は上記の点に
かんがみなされたものであり、燃焼器と熱電変換モジュ
ールを組合わせた先記の熱電発電装置を対象に、その目
的は前記課題を解決して熱電変換モジュールの被加熱
面,並びに被冷却面を均一に効率よく加熱,冷却して発
電効率の改善が図れるようにした熱電発電装置を提供す
ることにある。
(2) Further, in the cooling system in which the cooling air is blown from the cooling fan toward the radiating fins mounted on the surface to be cooled of the thermoelectric conversion module, the modules arranged in the upstream side of the cooling air flow and the modules arranged in the downstream side of the cooling air flow. The modules and the modules are not uniformly cooled, and this causes a difference in cooling temperature between the modules, which causes variations in the output voltage. The present invention has been made in view of the above points, and is intended for the above-mentioned thermoelectric power generation device in which a combustor and a thermoelectric conversion module are combined, the object of which is to solve the above problems and to provide a heated surface of the thermoelectric conversion module. In addition, it is to provide a thermoelectric power generation device capable of uniformly and efficiently heating and cooling the surface to be cooled to improve the power generation efficiency.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱電発電装置は次記のように構成するもの
とする。 (1)燃焼器に受熱部を対面させて可変コンダクタンス
型の加熱用ヒートパイプを設置するとともに、該ヒート
パイプの放熱部周面上に複数の熱電変換モジュールを伝
熱的に配置して構成する。
In order to achieve the above object, the thermoelectric generator of the present invention is constructed as follows. (1) A variable-conductance-type heat pipe for heating is installed in the combustor so that the heat receiving part faces it, and a plurality of thermoelectric conversion modules are arranged in a heat transfer manner on the peripheral surface of the heat radiating part of the heat pipe. .

【0006】(2)前項(1)において、熱電変換モジ
ュールの被冷却面に冷却用ヒートパイプの受熱部を伝熱
的に取付け、該ヒートパイプの放熱部を強制冷却するよ
う構成する。 (3)前項(1)または(2)において、加熱用ヒート
パイプの放熱部に連ねて非凝縮性ガスを封入した放熱フ
ィン付きガス溜部を設ける。
(2) In the above item (1), the heat receiving portion of the cooling heat pipe is attached to the surface to be cooled of the thermoelectric conversion module in a heat conductive manner, and the heat radiating portion of the heat pipe is forcibly cooled. (3) In the above item (1) or (2), a gas reservoir portion with a heat radiating fin in which a non-condensable gas is sealed is provided in series with the heat radiating portion of the heating heat pipe.

【0007】(4)前項(2)における冷却用ヒートパ
イプの放熱部と、前項(3)における加熱用ヒートパイ
プのガス溜部とを冷却ファンの送風路に並置配備して構
成する。
(4) The heat radiating portion of the cooling heat pipe in the preceding paragraph (2) and the gas reservoir portion of the heating heat pipe in the preceding paragraph (3) are arranged side by side in the air passage of the cooling fan.

【0008】[0008]

【作用】上記の構成において、加熱用ヒートパイプは次
記のように作動する。すなわち、燃焼器で発生した燃焼
熱は加熱用ヒートパイプの受熱部を加熱し、ヒートパイ
プに封入した作動液を蒸発させる。また、作動液の蒸気
はヒートパイプ内を拡散し、その放熱部で凝縮した後再
び受熱部に還流するように蒸発/凝縮サイクルを繰り返
し、この過程で放熱部に伝熱結合された熱電変換モジュ
ールの被加熱面を加熱する。この場合に放熱部に壁面温
度の低い部分があれば、作動液の蒸気はその部分に多く
凝縮するので、放熱部全域での壁面温度は常に均一とな
り、これにより放熱部の周面上に分散配置した各熱電変
換モジュールの被加熱面も均一な温度に加熱される。
In the above structure, the heating heat pipe operates as follows. That is, the combustion heat generated in the combustor heats the heat receiving portion of the heating heat pipe and evaporates the working fluid sealed in the heat pipe. Further, the vapor of the working fluid diffuses in the heat pipe, is condensed in the heat radiating portion, and then repeats the evaporation / condensing cycle so as to be returned to the heat receiving portion, and in this process, the thermoelectric conversion module heat-transfer coupled to the heat radiating portion. The heated surface of is heated. In this case, if there is a portion with a low wall surface temperature in the heat radiation part, the vapor of the hydraulic fluid will condense much in that portion, so the wall surface temperature throughout the heat radiation part will always be uniform, so that it will be dispersed on the peripheral surface of the heat radiation part. The heated surface of each thermoelectric conversion module arranged is also heated to a uniform temperature.

【0009】ここで、前記の加熱用ヒートパイプとし
て、パイプ内に作動液体ととともに非凝縮性ガスを封入
した可変コンダクタンス型ヒートパイプを採用すること
により、よく知られているようにヒートパイプへの入熱
量の増減に対応して放熱部として機能する有効領域が増
減する(自己制御機能)。したがって、燃焼器での燃焼
状態変化によりヒートパイプへの入熱量が変動した場合
でも、ヒートパイプの放熱部周域に配置した熱電変換モ
ジュールに与える放熱量はほぼ一定に保たれるので、燃
焼器の異常燃焼などが原因でモジュールの被加熱面が異
常に過熱されてモジュールの熱電変換素子が熱破壊する
といった不具合な事態が回避できる。特に、この加熱用
ヒートパイプの放熱部に連ねて非凝縮性ガスを封入する
放熱フィン付きガス溜を設けておくことにより、前記の
可変コンダクタンス機能が効果的に働くようになる。
Here, as a well-known heat pipe for heating, by adopting a variable conductance type heat pipe in which a non-condensable gas is enclosed together with a working liquid in the pipe, as well known, The effective area that functions as a heat radiating unit increases / decreases in response to the increase / decrease in heat input (self-control function). Therefore, even if the heat input to the heat pipe fluctuates due to changes in the combustion state in the combustor, the amount of heat given to the thermoelectric conversion module placed in the peripheral region of the heat pipe heat-dissipation section is kept almost constant, so It is possible to avoid a troubled situation in which the surface to be heated of the module is abnormally overheated due to abnormal combustion or the like and the thermoelectric conversion element of the module is thermally destroyed. In particular, by providing a gas reservoir with a radiation fin for connecting the non-condensable gas to the radiation portion of the heating heat pipe, the variable conductance function can be effectively operated.

【0010】また、熱電変換モジュールの被冷却面側に
付設した冷却用ヒートパイプは次のように作動する。す
なわち、熱電変換モジュール自身を通じてその被加熱面
側から被冷却面側に熱が伝熱すると、冷却用ヒートパイ
プはその熱を受熱して作動液が蒸発し、その際の蒸発潜
熱でモジュールの被冷却面から熱を奪うとともに、作動
液の蒸気は放熱部に移動して凝縮し、その凝縮熱がヒー
トパイプの放熱部を通じて外部に熱放散される。しか
も、作動液の蒸発は受熱部への入熱量に割合に応じて行
われるので、受熱部の表面温度,したがって各熱電変換
モジュールの被冷却面も均一温度に冷却されるようにな
る。
The cooling heat pipe attached to the surface to be cooled of the thermoelectric conversion module operates as follows. That is, when heat is transferred from the heated surface side to the cooled surface side through the thermoelectric conversion module itself, the cooling heat pipe receives the heat and the working liquid evaporates. While taking heat from the cooling surface, the vapor of the working liquid moves to the heat radiating section and is condensed, and the condensed heat is radiated to the outside through the heat radiating section of the heat pipe. Moreover, the evaporation of the working liquid is performed in proportion to the amount of heat input to the heat receiving portion, so that the surface temperature of the heat receiving portion, and thus the surface to be cooled of each thermoelectric conversion module, is also cooled to a uniform temperature.

【0011】これにより、各熱電変換モジュールの被加
熱面,および被冷却面の温度は均一となって、各モジュ
ールの相互間での電気出力(熱起電力)に電圧差がなく
なるので、発電装置全体で高い発電効率が得られるとと
もに、併せて局部過熱に起因する熱電変換モジュール素
子の熱破損が防げる。
As a result, the temperature of the heated surface and the cooled surface of each thermoelectric conversion module becomes uniform, and there is no voltage difference in the electrical output (thermoelectromotive force) between the modules, so that the power generator High power generation efficiency can be obtained as a whole, and heat damage to the thermoelectric conversion module element due to local overheating can be prevented.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 実施例1:図1は請求項1,3に対応する実施例を示す
ものであり、図において、1は燃焼器、2は加熱用ヒー
トパイプ、3は熱電変換モジュール、4は冷却ファンで
あり、前記の加熱用ヒートパイプ2として作動液2aと
ともに非凝縮性ガス2bをパイプ内に封入した重力形の
可変コンダクタンス型ヒートパイプが採用されている。
そして、該ヒートパイプ2は受熱部(蒸発部)2cを下
にして燃焼器1の上方に配置し、放熱部(凝縮部)2d
として機能するヒートパイプの上部周面上には被加熱面
を放熱部の壁面に重ね合わせて複数の熱電変換モジュー
ル3が伝熱的に設置されており、かつ熱電変換モジュー
ル3の被冷却面(被加熱面と反対側の面)には放熱用の
ブロックフィン5が取付けてある。さらに、ヒートパイ
プ2の頂部は非凝縮性ガス2bのガス溜部2eとしてそ
の外周面に放熱フィン2eを備えている。そして、前記
の放熱フィン2f,放熱フィン(ブロックフィン)5に
向けて冷却ファン4が対向配置されている。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 shows an embodiment corresponding to claims 1 and 3, in which 1 is a combustor, 2 is a heating heat pipe, 3 is a thermoelectric conversion module, and 4 is a cooling fan. As the heating heat pipe 2, a gravity-type variable conductance heat pipe in which a non-condensable gas 2b is enclosed together with a working fluid 2a is adopted.
The heat pipe 2 is arranged above the combustor 1 with the heat receiving portion (evaporating portion) 2c facing down, and the heat radiating portion (condensing portion) 2d.
A plurality of thermoelectric conversion modules 3 are installed on the upper peripheral surface of the heat pipe that functions as a heat transfer surface by superimposing the surface to be heated on the wall surface of the heat dissipation portion, and the surface to be cooled of the thermoelectric conversion module 3 ( A block fin 5 for heat radiation is attached to the surface opposite to the surface to be heated. Further, the top of the heat pipe 2 is provided with a radiation fin 2e on its outer peripheral surface as a gas reservoir 2e for the non-condensable gas 2b. The cooling fan 4 is disposed so as to face the heat radiation fins 2f and the heat radiation fins (block fins) 5.

【0013】かかる構成で、燃焼器1に燃料を供給して
燃焼すると、燃焼器1から吹き出す火炎1aの燃焼熱に
よりヒートパイプ2の受熱部2cが加熱されて作動液2
aが蒸発するとともに、その蒸気2gはヒートパイプの
内部を拡散しつつその蒸気圧で非凝縮性ガス2bを頂部
のガス溜部2eの方に押しやる(図中のPは作動液の蒸
気2gと非凝縮性ガス2eとの境界面を表している)と
ともに、放熱部2dの壁面で凝縮して熱電変換モジュー
ル3の被加熱面を加熱する。また、熱電変換モジュール
3の被冷却面,およびヒートパイプ2のガス溜部2eは
冷却ファン4の送風で強制空冷される。これにより、熱
電変換モジュール3の高温接合点と低温接合点の間に温
度差が生じ、ゼーベック効果によりモジュール3に熱起
電力が発生する。
With this structure, when fuel is supplied to the combustor 1 for combustion, the heat receiving portion 2c of the heat pipe 2 is heated by the combustion heat of the flame 1a blown out from the combustor 1, and the working fluid 2 is discharged.
As a vaporizes, the vapor 2g diffuses inside the heat pipe and pushes the non-condensable gas 2b toward the gas reservoir 2e at the top due to the vapor pressure (P in the figure is the vapor 2g of the working fluid). Along with the boundary surface with the non-condensable gas 2e), it condenses on the wall surface of the heat dissipation portion 2d and heats the heated surface of the thermoelectric conversion module 3. The surface to be cooled of the thermoelectric conversion module 3 and the gas reservoir 2e of the heat pipe 2 are forcedly cooled by the air blown by the cooling fan 4. As a result, a temperature difference occurs between the high temperature junction and the low temperature junction of the thermoelectric conversion module 3, and a thermoelectromotive force is generated in the module 3 due to the Seebeck effect.

【0014】また、この状態で燃焼器1での燃焼熱が高
まってヒートパイプ2の受熱部2aに加わる入熱量が増
加すると、これに伴って作動液2aの蒸気圧も増えるの
で、これにより非凝縮性ガス2bの容積が減少して前記
の境界面Pが上方に移動する。この結果として放熱部の
有効領域長が増加し、作動液蒸気2gはガス溜部2eの
領域でも壁面,放熱フィン2fより外部に放熱して凝縮
するようにヒートパイプ全体での放熱量が増大する。逆
に、受熱部2aの入熱量が減少すると、作動液の蒸気圧
が下がって非凝縮性ガスが膨張し、放熱部の有効領域長
が減少する。したがって、非凝縮性ガス2bの封入量を
あらかじめ適正化しておくことにより、入熱量が増減し
ても熱電変換モジュール3の被加熱面温度が大きく変動
することがなく、また入熱量が増大してもモジュールが
異常過熱されることはない。
Further, in this state, when the heat of combustion in the combustor 1 increases and the amount of heat input to the heat receiving portion 2a of the heat pipe 2 increases, the vapor pressure of the working fluid 2a also increases accordingly. The volume of the condensable gas 2b decreases and the boundary surface P moves upward. As a result, the effective area length of the heat radiating portion increases, and the amount of heat radiated in the entire heat pipe increases so that the working liquid vapor 2g radiates heat to the outside through the wall surface and the heat radiation fins 2f even in the area of the gas reservoir 2e. . On the contrary, when the heat input amount of the heat receiving portion 2a decreases, the vapor pressure of the working fluid decreases, the non-condensable gas expands, and the effective area length of the heat radiating portion decreases. Therefore, by optimizing the enclosed amount of the non-condensable gas 2b in advance, even if the heat input amount increases or decreases, the temperature of the surface to be heated of the thermoelectric conversion module 3 does not significantly change, and the heat input amount increases. However, the module is not overheated abnormally.

【0015】実施例2:図2は前記実施例1の応用実施
例を示すものであり、加熱用ヒートパイプ2は平形構造
であり、その底面側を受熱部2c,上面側を放熱部2d
とし、さらに放熱部2dに連ねて上面側中央部には上方
に起立した非凝縮性ガス2bのガス溜部2eが設けてあ
る。そして、熱電変換モジュール3はヒートパイプ2の
上面側放熱部2dに分散して装着している。なお、前記
ガス溜部2eの周面に設けた放熱フィン2fに対向して
冷却ファン4を備えている。
Embodiment 2 FIG. 2 shows an application example of Embodiment 1, wherein the heating heat pipe 2 has a flat structure, the bottom surface side thereof is the heat receiving portion 2c, and the top surface side thereof is the heat radiating portion 2d.
Further, a gas reservoir 2e of the non-condensable gas 2b standing upward is provided in the central portion on the upper surface side so as to be continuous with the heat radiating portion 2d. Then, the thermoelectric conversion modules 3 are dispersed and mounted on the upper surface side heat radiation portion 2d of the heat pipe 2. A cooling fan 4 is provided so as to face the heat radiation fins 2f provided on the peripheral surface of the gas reservoir 2e.

【0016】かかる構成による作用,動作は実施例1と
同様である。 実施例3:図3は請求項2,4に対応する実施例を示す
ものであり、加熱用ヒートパイプ2の放熱部2dの周面
上に被加熱面を重ねて配置した熱電変換モジュール3に
対し、その被冷却面側には先記の実施例1,2における
放熱フィン5に替えて重力形の冷却用ヒートパイプ6の
受熱部(蒸発部)が伝熱的に結合されている。また、冷
却用ヒートパイプ6の上部側の放熱部(凝縮部)には放
熱フィン6aを設けて可変コンダクタンス型の加熱用ヒ
ートパイプ2のガス溜部2eと同じ高さに並べ、その側
方に冷却ファン4を対向配置して冷却用ヒートパイプ6
の放熱部,および加熱用ヒートパイプ2のガス溜部2e
を強制風冷するようにしている。
The operation and operation of this structure are the same as in the first embodiment. Embodiment 3 FIG. 3 shows an embodiment corresponding to claims 2 and 4, and a thermoelectric conversion module 3 in which a heated surface is superposed on the peripheral surface of the heat radiating portion 2d of the heating heat pipe 2 is arranged. On the other hand, the heat receiving portion (evaporating portion) of the gravity type heat pipe 6 for cooling is heat-transferably coupled to the surface to be cooled in place of the heat radiation fins 5 in the above-described first and second embodiments. In addition, a radiation fin 6a is provided in the heat radiation portion (condensing portion) on the upper side of the cooling heat pipe 6 and is arranged at the same height as the gas reservoir portion 2e of the variable conductance type heating heat pipe 2, and is arranged on the side thereof. Cooling heat pipe 6 with cooling fan 4 arranged oppositely
Radiating portion of the gas and the gas reservoir 2e of the heating heat pipe 2
Is forced to cool.

【0017】かかる構成により、熱電変換モジュール3
の被加熱面側から被冷却面側へ伝熱して来た熱は冷却用
ヒートパイプ6の受熱部に伝熱し、ヒートパイプの蒸発
/凝縮サイクル動作により放熱部の放熱フィン6aを通
じて熱放散される。この場合に冷却用ヒートパイプ6の
作動液の蒸発は受熱部への入熱量に応じて行われるの
で、各熱電変換モジュール3の被冷却面は均一温度に保
持される。また、この状態で燃焼器1から加熱用ヒート
パイプ2に加わる入熱量が増加した場合でも、実施例1
で述べたようにヒートパイプの可変コンダクタンス機能
が働いて熱電変換モジュール5の被加熱面が異常過熱さ
れるおそれはなく、均一温度に加熱される。なお、この
場合に加熱用ヒートパイプ2のガス溜部2eと冷却用ヒ
ートパイプ6の放熱部を冷却ファン4の送風経路に並置
することで、両者を同時に冷却ファン4で風冷すること
ができる。
With this configuration, the thermoelectric conversion module 3
The heat transferred from the heated surface side to the cooled surface side is transferred to the heat receiving portion of the cooling heat pipe 6, and is dissipated through the radiation fins 6a of the heat radiation portion by the evaporation / condensation cycle operation of the heat pipe. . In this case, the working liquid in the cooling heat pipe 6 is evaporated in accordance with the amount of heat input to the heat receiving portion, so that the surface to be cooled of each thermoelectric conversion module 3 is maintained at a uniform temperature. Further, even if the heat input amount from the combustor 1 to the heating heat pipe 2 increases in this state, the first embodiment
As described above, the variable conductance function of the heat pipe does not cause the surface to be heated of the thermoelectric conversion module 5 to be abnormally overheated, and the surface is heated to a uniform temperature. In this case, by arranging the gas reservoir 2e of the heating heat pipe 2 and the heat radiating portion of the cooling heat pipe 6 side by side in the ventilation path of the cooling fan 4, both can be cooled by the cooling fan 4 at the same time. .

【0018】[0018]

【発明の効果】以上述べたように本発明の構成によれば
次記の効果を奏する。 (1)請求項1,3の構成によれば、加熱用ヒートパイ
プを熱輸送手段として燃焼器の燃焼熱を熱電変換モジュ
ールに与えて各熱電変換モジュールの被加熱面を均一温
度に加熱することができるとともに、加熱用ヒートパイ
プを可変コンダクタンス型ヒートパイプとしたことで、
熱源の発生熱量が異常に増加した場合でも熱電変換モジ
ュールの被加熱面を異常過熱することなしに、モジュー
ル素子の熱破壊を安全に防ぐことができる。これによ
り、各熱電変換モジュールの出力電圧を一定にして発電
装置全体での発電効率の向上が図れる。また、特に加熱
用ヒートパイプに対して非凝縮性ガスを封入する放熱フ
ィン付きガス溜部を設けておくことにより、熱源からの
入熱量増加に伴う可変コンダクタンス機能を効果的に機
能させることができる。
As described above, the structure of the present invention has the following effects. (1) According to the constitutions of claims 1 and 3, the combustion heat of the combustor is applied to the thermoelectric conversion modules by using the heating heat pipe as a heat transport means to heat the heated surfaces of the thermoelectric conversion modules to a uniform temperature. In addition to being able to do, the heat pipe for heating is a variable conductance type heat pipe,
Even if the amount of heat generated by the heat source is abnormally increased, thermal destruction of the module element can be safely prevented without abnormally overheating the surface to be heated of the thermoelectric conversion module. Thereby, the output voltage of each thermoelectric conversion module can be made constant, and the power generation efficiency of the entire power generation device can be improved. Further, in particular, by providing a gas reservoir with a radiation fin for enclosing the non-condensable gas in the heating heat pipe, the variable conductance function can be effectively functioned as the heat input from the heat source increases. .

【0019】(2)また、請求項1,3の構成に請求項
2,4の構成を組合わせることにより、冷却用ヒートパ
イプを介して熱電変換モジュールの被冷却面を効率よく
均一温度に冷却することができるとともに、特に冷却用
ヒートパイプの放熱部と加熱用ヒートパイプのガス溜部
を冷却ファンの送風路に並置することで、同じ冷却ファ
ンにより冷却用ヒートパイプの放熱部を冷却しつつ、同
時に加熱用ヒートパイプのガス溜部も冷却できるので構
成が簡単となる。
(2) By combining the constitutions of claims 1 and 3 with the constitutions of claims 2 and 4, the surface to be cooled of the thermoelectric conversion module can be efficiently cooled to a uniform temperature via the cooling heat pipe. In addition to arranging the heat radiation part of the cooling heat pipe and the gas reservoir part of the heating heat pipe side by side in the air passage of the cooling fan, it is possible to cool the heat radiation part of the cooling heat pipe with the same cooling fan. At the same time, the gas reservoir of the heating heat pipe can also be cooled, which simplifies the structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による熱電発電装置の構成図FIG. 1 is a configuration diagram of a thermoelectric generator according to a first embodiment of the present invention.

【図2】本発明の実施例2による熱電発電装置の構成図FIG. 2 is a configuration diagram of a thermoelectric power generator according to a second embodiment of the present invention.

【図3】本発明の実施例3による熱電発電装置の構成図FIG. 3 is a configuration diagram of a thermoelectric generator according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 燃焼器 2 加熱用ヒートパイプ 2a 作動液 2b 非凝縮性ガス 2c 受熱部 2d 放熱部 2e ガス溜部 2f 放熱フィン 2g 作動液の蒸気 3 熱電変換モジュール 4 冷却ファン 5 放熱フィン 6 冷却用ヒートパイプ 6a 放熱フィン DESCRIPTION OF SYMBOLS 1 Combustor 2 Heating heat pipe 2a Hydraulic fluid 2b Non-condensable gas 2c Heat receiving part 2d Radiating part 2e Gas storage part 2f Radiating fin 2g Steam of working fluid 3 Thermoelectric conversion module 4 Cooling fan 5 Radiating fin 6 Cooling heat pipe 6a Radiation fin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃焼器を熱源として熱電変換モジュールに
より発電する熱電発電装置であって、燃焼器に受熱部を
対面させて可変コンダクタンス型の加熱用ヒートパイプ
を設置するとともに、該ヒートパイプの放熱部周面上に
複数の熱電変換モジュールを伝熱的に配置して構成した
ことを特徴とする熱電発電装置。
1. A thermoelectric power generator for generating power by a thermoelectric conversion module using a combustor as a heat source, wherein a heat receiving pipe of variable conductance type is installed with a heat receiving portion facing the combustor, and heat radiation of the heat pipe is performed. A thermoelectric power generation device comprising a plurality of thermoelectric conversion modules arranged in a heat transfer manner on a peripheral surface.
【請求項2】請求項1記載の熱電発電装置において、熱
電変換モジュールの被冷却面に冷却用ヒートパイプの受
熱部を伝熱的に取付け、該ヒートパイプの放熱部を強制
冷却することを特徴とする熱電発電装置。
2. The thermoelectric generator according to claim 1, wherein the heat receiving portion of the cooling heat pipe is attached to the surface to be cooled of the thermoelectric conversion module in a heat conductive manner, and the heat radiating portion of the heat pipe is forcibly cooled. And a thermoelectric generator.
【請求項3】請求項1または2記載の熱電発電装置にお
いて、加熱用ヒートパイプの放熱部に連ねて非凝縮性ガ
スを封入した放熱フィン付きガス溜部を設けたことを特
徴とする熱電発電装置。
3. The thermoelectric generator according to claim 1 or 2, further comprising: a gas reservoir portion with a radiation fin filled with a non-condensable gas, which is connected to the heat radiation portion of the heating heat pipe. apparatus.
【請求項4】請求項2に記載した冷却用ヒートパイプの
放熱部と、請求項3に記載した加熱用ヒートパイプのガ
ス溜部とを冷却ファンの送風路に並置配備したことを特
徴とする熱電発電装置。
4. The heat radiating portion of the cooling heat pipe according to claim 2 and the gas reservoir portion of the heating heat pipe according to claim 3 are arranged side by side in the air passage of the cooling fan. Thermoelectric generator.
JP5260294A 1993-10-19 1993-10-19 Thermoelectric power generator Pending JPH07123758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260294A JPH07123758A (en) 1993-10-19 1993-10-19 Thermoelectric power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260294A JPH07123758A (en) 1993-10-19 1993-10-19 Thermoelectric power generator

Publications (1)

Publication Number Publication Date
JPH07123758A true JPH07123758A (en) 1995-05-12

Family

ID=17346053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260294A Pending JPH07123758A (en) 1993-10-19 1993-10-19 Thermoelectric power generator

Country Status (1)

Country Link
JP (1) JPH07123758A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004648A (en) * 2001-07-06 2003-01-15 박양석 A portable Generator
JP2008147026A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Solid oxide fuel cell
WO2009064551A2 (en) * 2007-11-09 2009-05-22 The Boeing Company Device and method for generating electrical power
US8519254B2 (en) 2008-04-08 2013-08-27 The Boeing Company Device and method for generating electrical power
WO2021193833A1 (en) * 2020-03-25 2021-09-30 学校法人東京理科大学 Thermoelectric device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004648A (en) * 2001-07-06 2003-01-15 박양석 A portable Generator
JP2008147026A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Solid oxide fuel cell
WO2009064551A2 (en) * 2007-11-09 2009-05-22 The Boeing Company Device and method for generating electrical power
WO2009064551A3 (en) * 2007-11-09 2009-12-03 The Boeing Company Device and method for generating electrical power
US8633371B2 (en) 2007-11-09 2014-01-21 The Boeing Company Device and method for generating electrical power
US10230037B2 (en) 2007-11-09 2019-03-12 The Boeing Company Device and method for generating electrical power
US8519254B2 (en) 2008-04-08 2013-08-27 The Boeing Company Device and method for generating electrical power
US9054273B2 (en) 2008-04-08 2015-06-09 The Boeing Company Device and method for generating electrical power
WO2021193833A1 (en) * 2020-03-25 2021-09-30 学校法人東京理科大学 Thermoelectric device

Similar Documents

Publication Publication Date Title
KR102517065B1 (en) Cooling generator
US20090294117A1 (en) Vapor Chamber-Thermoelectric Module Assemblies
US9184363B2 (en) Power generator
JPH07123758A (en) Thermoelectric power generator
JPH05219765A (en) Thermo electric generator
JP2007115917A (en) Thermal dissipation plate
RU2345294C1 (en) Cooling unit for heat-producing hardware
JP2006202798A (en) Heat sink
US20060112687A1 (en) Stirling engine assembly
JP2008218513A (en) Cooling device
JPH11243289A (en) Electronic equipment
JPH0544961A (en) Air-conditioner
KR20150008974A (en) Fluid dynamic pressure heat dissipating device
JPH02303381A (en) Cogeneration facility
JP2008244320A (en) Cooling apparatus
JPH10141668A (en) Alcohol stove including thermoelectric converter
JP2002289962A (en) Optical element module provided with heat transfer medium utilizing phase change
RU2186005C2 (en) Device and method for functioning of panel unit with thermal tubes
KR200143379Y1 (en) Heat plate in heat pump
JPS5869361A (en) Solar heat collector
JPH02187594A (en) Heat pipe type heat exchanger
KR20150113295A (en) Thermoelectric generator
WO2021193833A1 (en) Thermoelectric device
KR200240139Y1 (en) thermoelectric use of heating and cooling with realization unit
CN210399204U (en) Air conditioner