JPH07123607A - Charging circuit - Google Patents

Charging circuit

Info

Publication number
JPH07123607A
JPH07123607A JP26000693A JP26000693A JPH07123607A JP H07123607 A JPH07123607 A JP H07123607A JP 26000693 A JP26000693 A JP 26000693A JP 26000693 A JP26000693 A JP 26000693A JP H07123607 A JPH07123607 A JP H07123607A
Authority
JP
Japan
Prior art keywords
charging current
charging
detection resistor
current supply
rechargeable battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26000693A
Other languages
Japanese (ja)
Inventor
Susumu Yamanaka
進 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26000693A priority Critical patent/JPH07123607A/en
Publication of JPH07123607A publication Critical patent/JPH07123607A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lessen voltage loss by providing a diode and a detecting transistor which detect the potential difference between both terminals of a detecting resistor which varies according to charge current, and turn on when the potential difference is large, controlling the current supply of a charge current supply circuit. CONSTITUTION:Setting is so made that a detecting transistor 10 may be biased and turned on when a diode 12 is in the on-state, and the potential difference between both terminals of a detecting resistor 9 becomes larger since current flowing through a rechargeable cell 6 is larger at the time of charge start. Accordingly, the diode 12 connected in parallel is turned on, and along with it a detecting transistor 10 is biased and turned on. Then the detected signal is inputted to a charge control circuit 8 to control a charge-current supply circuit 7, and charge current is supplied to the cell 6. And when the charged capacity increases, the charge current decrease, and when it decreases down to a set value, the diode 12 and the detecting transistor 10 are turned off, and the supply of the charge current is stopped. Consequently, it becomes possible to raise the charged capacity nearly to 100%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電式電池の充電回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging circuit for a rechargeable battery.

【0002】[0002]

【従来の技術】携帯して使用されるディスクプレーヤー
やテープレコーダー等の音響機器が普及しているが、斯
かる音響機器は屋外で使用されるため、電源として電池
が使用される。そして、最近では、斯かる電池としてニ
ッカド電池等の充電式電池を使用する機器が増加しつつ
ある。
2. Description of the Related Art Audio equipment such as disk players and tape recorders, which are used by being carried around, is in widespread use. However, since such audio equipment is used outdoors, a battery is used as a power source. In recent years, the number of devices using rechargeable batteries such as NiCd batteries as such batteries is increasing.

【0003】充電式電池の充電電流と充電時間との関係
は、充電開始時大きな電流が流れ、充電動作が行われて
電池の充電電圧が高くなるにつれて充電電流が減少する
関係にある。
The relationship between the charging current and the charging time of a rechargeable battery is that a large current flows at the start of charging, and the charging current decreases as the charging operation is performed and the charging voltage of the battery increases.

【0004】斯かる充電電流の変化を検出することによ
って充電式電池の充電動作を制御するようにした充電回
路が一般に使用されているが、斯かる技術としては、例
えば実開昭64−16143号公報に開示されたものが
ある。
A charging circuit is generally used in which the charging operation of a rechargeable battery is controlled by detecting such a change in charging current. As such a technique, for example, Japanese Utility Model Laid-Open No. 64-16143. Some are disclosed in the official gazette.

【0005】[0005]

【発明が解決しようとする課題】前述した公報に記載さ
れている技術における充電電流の検出動作は、充電電流
の供給路内に挿入されている検出用抵抗の両端の電位差
を検出することによって行われる。
The detection operation of the charging current in the technique described in the above publication is performed by detecting the potential difference between both ends of the detection resistor inserted in the charging current supply path. Be seen.

【0006】充電式電池がニッカド電池の場合の充電方
法は、定電流にて行われるため、この電流値に合わせて
検出用抵抗の抵抗値を設定することができるが、最近使
用されつつあるリチウムイオン電池と呼ばれる充電式電
池の場合には、次のような問題がある。
The charging method in the case where the rechargeable battery is a nickel-cadmium battery is carried out at a constant current, so the resistance value of the detection resistor can be set in accordance with this current value. The rechargeable battery called an ion battery has the following problems.

【0007】即ち、リチウムイオン電池の充電特性は、
図2に示したように充電電流の値が大きく変化する。従
って、充電電流の検出を行うために充電電流の供給路内
に挿入される検出用抵抗の抵抗値を電流が大きい点に合
わせて設定すると電流が小さい点で検出することができ
ない。反対に電流が小さい点に合わせて設定すると電圧
ロスが大きくなるという問題がある。
That is, the charging characteristics of the lithium ion battery are
As shown in FIG. 2, the value of the charging current changes greatly. Therefore, if the resistance value of the detection resistor inserted in the charging current supply path for detecting the charging current is set in accordance with the point where the current is large, it cannot be detected at the point where the current is small. On the contrary, if it is set according to the point that the current is small, there is a problem that the voltage loss increases.

【0008】本発明は、斯かる点を改良した充電回路を
提供しようとするものである。
The present invention seeks to provide a charging circuit that improves on this point.

【0009】[0009]

【課題を解決するための手段】本発明の充電回路は、充
電式電池に充電電流を供給する充電電流供給回路と充電
式電池との間の充電電流供給路内に挿入接続されている
検出用抵抗と、該検出用抵抗を流れる充電電流に応じて
変化する該検出用抵抗の両端の電位差を検出するととも
に該電位差が大のとき導通し、且つ前記充電電流供給回
路の充電電流供給動作を制御する検出用トランジスター
と、前記検出用抵抗に並列接続されたダイオードとより
構成されている。
SUMMARY OF THE INVENTION A charging circuit according to the present invention is for detection which is inserted and connected in a charging current supply path between a charging current supply circuit for supplying a charging current to a rechargeable battery and the rechargeable battery. Detects a potential difference between both ends of the resistance and the detection resistor, which changes according to the charging current flowing through the detection resistor, and conducts when the potential difference is large, and controls the charging current supply operation of the charging current supply circuit. And a diode connected in parallel with the detection resistor.

【0010】[0010]

【作用】本発明は、充電電流を検出するべく充電電流供
給路内に挿入接続されている検出用抵抗にダイオードを
並列接続することによって充電電流が大きい状態におけ
る電圧ロスを小さくするようにしたものである。
In the present invention, a diode is connected in parallel to a detection resistor that is inserted and connected in the charging current supply path to detect the charging current, thereby reducing the voltage loss in the state where the charging current is large. Is.

【0011】[0011]

【実施例】図1に示した回路は、本発明の充電回路の一
実施例である。同図において、1は商用交流電源に接続
される電源端子、2は交流電圧を所定の電圧に降圧する
電源トランス、3は該電源トランス2によって降圧され
た交流を直流に整流するダイオードブリッジ回路、4は
該ダイオードブリッジ回路3によって整流された信号を
平滑する平滑用コンデンサーであり、該ダイオードブリ
ッジ回路3と共に直流電源回路を構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The circuit shown in FIG. 1 is an embodiment of the charging circuit of the present invention. In the figure, 1 is a power supply terminal connected to a commercial AC power supply, 2 is a power supply transformer for stepping down an AC voltage to a predetermined voltage, 3 is a diode bridge circuit for rectifying the AC stepped down by the power supply transformer 2 to DC, Reference numeral 4 is a smoothing capacitor for smoothing the signal rectified by the diode bridge circuit 3, and constitutes a DC power supply circuit 5 together with the diode bridge circuit 3.

【0012】6はリチウムイオン電池等の充電式電池、
7は前記直流電源回路より直流電源が供給される充電
電流供給回路であり、充電制御回路8の制御動作に基い
て前記充電式電池6に充電電流を供給する作用を有して
いる。
6 is a rechargeable battery such as a lithium ion battery,
A charging current supply circuit 7 is supplied with DC power from the DC power supply circuit 5 , and has a function of supplying a charging current to the rechargeable battery 6 based on the control operation of the charging control circuit 8.

【0013】9は前記充電電流供給回路7と充電式電池
6との間の充電電流供給路内に挿入接続されている検出
用抵抗、10は前記検出用抵抗9の両端の電位差を検出
するべくエミッタが該抵抗9の電源側に接続されている
とともにベースが抵抗11を介して該抵抗9の充電式電
池6側に接続されている検出用トランジスターであり、
そのコレクタは前記充電制御回路8に接続されている。
12は前記検出用抵抗9の電源側にアノードが接続され
ているとともにカソードが該抵抗9の充電式電池6側に
接続されているダイオードである。
Reference numeral 9 is a detection resistor that is inserted and connected in the charging current supply path between the charging current supply circuit 7 and the rechargeable battery 6, and 10 is for detecting the potential difference between both ends of the detection resistor 9. A detection transistor whose emitter is connected to the power source side of the resistor 9 and whose base is connected to the rechargeable battery 6 side of the resistor 9 via the resistor 11;
Its collector is connected to the charge control circuit 8.
Reference numeral 12 denotes a diode whose anode is connected to the power source side of the detection resistor 9 and whose cathode is connected to the rechargeable battery 6 side of the resistor 9.

【0014】斯かる回路構成において、ダイオード12
が導通状態にあるとき検出用トランジスター10がバイ
アスされて導通状態になるように抵抗11の値等は設定
されている。また、検出用トランジスター10が導通状
態より非導通状態に反転すると充電制御回路8の制御動
作によって充電電流供給回路7からの充電式電池6への
充電電流の供給動作を停止させるように構成されてい
る。
In such a circuit configuration, the diode 12
The value and the like of the resistor 11 are set so that the detection transistor 10 is biased to be in a conductive state when is in a conductive state. Further, when the detection transistor 10 is inverted from the conductive state to the non-conductive state, the control operation of the charging control circuit 8 stops the supply operation of the charging current from the charging current supply circuit 7 to the rechargeable battery 6. There is.

【0015】以上の如く本発明の充電回路は構成されて
いるが、次に斯かる回路の動作について説明する。電源
端子1より入力された商用交流電源は、電源トランス2
によって降圧されるとともに直流電源回路に供給され
て整流平滑される。前記直流電源回路より直流電圧が
出力されると充電制御回路8による充電電流供給回路7
の制御動作が行われ、該充電電流供給回路7より充電式
電池6へ充電電流が供給される。
The charging circuit of the present invention is configured as described above. Next, the operation of such a circuit will be described. The commercial AC power input from the power terminal 1 is the power transformer 2
Is stepped down and supplied to the DC power supply circuit 5 to be rectified and smoothed. When a DC voltage is output from the DC power supply circuit 5, a charging current supply circuit 7 by a charging control circuit 8
The control operation is performed, and the charging current is supplied from the charging current supply circuit 7 to the rechargeable battery 6.

【0016】そして、充電動作の開始時には、図2に示
す充電特性図より明らかなように充電式電池6に流れる
充電電流が大きいため、検出用抵抗9の両端の電位差が
大きくなる。従って、前記検出用抵抗9に並列接続され
ているダイオード12が導通状態になるとともに検出用
トランジスター10がバイアスされて導通状態になる。
At the start of the charging operation, since the charging current flowing through the rechargeable battery 6 is large as is apparent from the charging characteristic diagram shown in FIG. 2, the potential difference across the detection resistor 9 becomes large. Therefore, the diode 12 connected in parallel to the detection resistor 9 becomes conductive and the detection transistor 10 is biased to become conductive.

【0017】前記検出用トランジスター10が導通状態
になるとそのコレクタより充電制御回路8に検出信号、
即ち充電電流が所定値よりも大きい値にあることを示す
信号が入力される。その結果、前記充電制御回路8が、
充電式電池6に充電されている容量が少ないと判断し、
充電電流供給回路7に対する制御動作を行うので前記充
電式電池6への充電電流の供給動作が行われる。
When the detection transistor 10 is turned on, a detection signal is sent from the collector to the charging control circuit 8,
That is, a signal indicating that the charging current is larger than the predetermined value is input. As a result, the charge control circuit 8
Judging that the capacity of the rechargeable battery 6 is low,
Since the control operation for the charging current supply circuit 7 is performed, the operation for supplying the charging current to the rechargeable battery 6 is performed.

【0018】このように充電電流供給回路7より充電式
電池6に充電電流が供給されて充電動作が行われるが、
充電電流が大きい状態にあるときには、検出用抵抗9及
びダイオード12を通して充電式電池6に充電電流が供
給される。即ち、斯かる充電状態にあるときには、ダイ
オード12が導通状態にあるため、検出用抵抗9の両端
の電位差は、前記ダイオード12の順方向電圧である
0.7〜1.0Vに抑えられている。それ故、充電電流
が大きくても電圧ロスを小さくすることができる。
As described above, the charging current is supplied from the charging current supply circuit 7 to the rechargeable battery 6 to perform the charging operation.
When the charging current is large, the charging current is supplied to the rechargeable battery 6 through the detection resistor 9 and the diode 12. That is, in such a charging state, the diode 12 is in a conducting state, so that the potential difference across the detection resistor 9 is suppressed to 0.7 to 1.0 V which is the forward voltage of the diode 12. . Therefore, the voltage loss can be reduced even if the charging current is large.

【0019】斯かる状態のままで充電動作は行われる
が、前記充電式電池6の充電によって充電容量が増大す
ると図2の充電特性図より明らかなように充電電流が減
少する。そして、その充電電流の値が設定値であるIま
で減少すると、即ち時間Tまで充電されるとダイオード
12及び検出用トランジスター10が非導通状態に反転
する。
Although the charging operation is performed in such a state, if the charging capacity is increased by charging the rechargeable battery 6, the charging current decreases as apparent from the charging characteristic diagram of FIG. Then, when the value of the charging current decreases to the set value I, that is, when the charging is performed until time T, the diode 12 and the detection transistor 10 are inverted to the non-conducting state.

【0020】前記検出用トランジスター10が非導通状
態に反転すると充電制御回路8に入力される検出信号の
レベルが反転する。その結果、前記充電制御回路8が、
充電式電池6に充電されている容量が所定値に達っした
と判断し、充電電流供給回路7に対する制御動作を行
い、充電式電池6への充電電流の供給動作を停止させ
る。
When the detection transistor 10 is inverted to the non-conducting state, the level of the detection signal input to the charge control circuit 8 is inverted. As a result, the charge control circuit 8
When it is determined that the capacity charged in the rechargeable battery 6 has reached a predetermined value, the charging current supply circuit 7 is controlled to stop the charging current supply operation to the rechargeable battery 6.

【0021】図1に示した実施例による充電動作は、前
述したように行われるが、検出用抵抗9の両端の電位差
はダイオード12の順方向電圧によって決定されるた
め、該検出用抵抗9の抵抗値を大きくすることができ
る。即ち、前記検出用抵抗9の抵抗値を大きくすること
によって、充電電流の検出値であるIの値を小さくする
ことができ、これによって充電式電池6の充電容量を1
00%近くにすることができる。
The charging operation according to the embodiment shown in FIG. 1 is performed as described above. However, since the potential difference across the detection resistor 9 is determined by the forward voltage of the diode 12, the detection resistor 9 is charged. The resistance value can be increased. That is, by increasing the resistance value of the detection resistor 9, the value of I, which is the detection value of the charging current, can be decreased, and thus the charging capacity of the rechargeable battery 6 is reduced to 1
It can be close to 00%.

【0022】図1に示した実施例の動作は以上の如く行
われるが、次に図3に示した実施例について説明する。
図3において、図1と同一のものには同一の番号を付し
ている。
The operation of the embodiment shown in FIG. 1 is performed as described above. Next, the embodiment shown in FIG. 3 will be described.
3, the same parts as those in FIG. 1 are designated by the same reference numerals.

【0023】図3において、13及び14は充電電流供
給回路7と充電式電池6との間の充電電流供給路内に互
いに直列接続されている第1検出用抵抗及び第2検出用
抵抗であり、該第2検出用抵抗14の抵抗値は第1検出
用抵抗13の抵抗値よりも大に設定されている。
In FIG. 3, reference numerals 13 and 14 denote a first detection resistor and a second detection resistor which are connected in series in the charging current supply path between the charging current supply circuit 7 and the rechargeable battery 6. The resistance value of the second detection resistor 14 is set larger than the resistance value of the first detection resistor 13.

【0024】15はショットキーダイオードであり、前
記第2検出用抵抗14の電源側にアノードが接続されて
いるとともにカソードは該第2検出用抵抗14の充電式
電池6側に接続されている。また、本実施例における検
出用トランジスター10のエミッタは、第1検出用抵抗
13の電源側に接続され、ベースは抵抗11を介して第
2検出用抵抗14の充電式電池6側に接続されている。
Reference numeral 15 denotes a Schottky diode, the anode of which is connected to the power source side of the second detection resistor 14 and the cathode of which is connected to the rechargeable battery 6 side of the second detection resistor 14. Further, the emitter of the detection transistor 10 in this embodiment is connected to the power source side of the first detection resistor 13, and the base is connected to the rechargeable battery 6 side of the second detection resistor 14 via the resistor 11. There is.

【0025】斯かる回路構成において、ショットキーダ
イオード15が導通状態にあるとき検出用トランジスタ
ー10がバイアスされて導通状態になるように抵抗11
及び第1検出用抵抗13の値等は設定されている。ま
た、検出用トランジスター10が導通状態より非導通状
態に反転すると充電制御回路8の制御動作によって充電
電流供給回路7からの充電式電池6への充電電流の供給
動作を停止させるように構成されている。
In such a circuit configuration, when the Schottky diode 15 is in the conducting state, the detection transistor 10 is biased to bring it into the conducting state.
The value of the first detection resistor 13 and the like are set. Further, when the detection transistor 10 is inverted from the conductive state to the non-conductive state, the control operation of the charging control circuit 8 stops the supply operation of the charging current from the charging current supply circuit 7 to the rechargeable battery 6. There is.

【0026】斯かる回路における充電動作は、図1に示
した実施例と同様に行われるが、充電動作の開始時には
充電式電池6に流れる充電電流が大きいため、第1検出
用抵抗13と第2検出用抵抗14の両端の電位差が大き
くなるとともに第2検出用抵抗14の両端の電位差が大
きくなる。従って、前記第2検出用抵抗14に並列接続
されているショットキーダイオード15が導通状態にな
るとともに検出用トランジスター10がバイアスされて
導通状態になる。
The charging operation in such a circuit is performed in the same manner as in the embodiment shown in FIG. 1, but since the charging current flowing in the rechargeable battery 6 is large at the start of the charging operation, the first detection resistor 13 and The potential difference between both ends of the second detection resistor 14 increases and the potential difference between both ends of the second detection resistor 14 increases. Therefore, the Schottky diode 15 connected in parallel to the second detection resistor 14 becomes conductive and the detection transistor 10 is biased to become conductive.

【0027】斯かる状態のままで充電動作は行われる
が、充電電流が大きい状態にあるときには、ショットキ
ーダイオード15が導通状態にあるため、第1検出用抵
抗13及び第2検出用抵抗14とショットキーダイオー
ド15の並列回路を通して充電式電池6に充電電流が供
給される。即ち、斯かる充電状態にあるときには、ショ
ットキーダイオード15が導通状態にあるため、第2検
出用抵抗14の両端の電位差は、前記ショットキーダイ
オード15の順方向電圧である0.3〜0.5V程度に
抑えられている。それ故、第2検出用抵抗14の抵抗値
を大にしても該第2検出用抵抗14の両端の電位差が大
きくなることはなく、充電動作時の電圧ロスを小さくす
ることができる。
Although the charging operation is performed in such a state, when the charging current is large, the Schottky diode 15 is in a conducting state, so that the first detection resistor 13 and the second detection resistor 14 are connected to each other. A charging current is supplied to the rechargeable battery 6 through a parallel circuit of the Schottky diode 15. That is, when the Schottky diode 15 is in the charged state, the Schottky diode 15 is in the conductive state, so that the potential difference across the second detection resistor 14 is 0.3 to 0. It is suppressed to about 5V. Therefore, even if the resistance value of the second detection resistor 14 is increased, the potential difference between both ends of the second detection resistor 14 does not increase, and the voltage loss during the charging operation can be reduced.

【0028】充電動作が行われて、充電式電池6の充電
容量が増大すると前述したように充電電流が減少する。
そして、その充電電流の値が設定値であるIまで減少す
ると、即ち時間Tまで充電されるとショットキーダイオ
ード15及び検出用トランジスター10が非導通状態に
反転する。
When the charging operation is performed and the charging capacity of the rechargeable battery 6 increases, the charging current decreases as described above.
Then, when the value of the charging current is reduced to the set value I, that is, when the charging is performed until the time T, the Schottky diode 15 and the detection transistor 10 are inverted to the non-conducting state.

【0029】前記検出用トランジスター10が非導通状
態に反転すると充電制御回路8が、充電式電池6に充電
されている容量が所定値に達っしたと判断し、充電電流
供給回路7からの充電式電池6への充電電流の供給動作
を停止させる。
When the detection transistor 10 is turned off, the charging control circuit 8 judges that the capacity charged in the rechargeable battery 6 has reached a predetermined value, and the charging current supply circuit 7 charges the battery. The operation of supplying the charging current to the battery 6 is stopped.

【0030】図3に示した実施例による充電動作は、前
述したように行われるが、第2検出用抵抗14の両端の
電位差はショットキーダイオード15の順方向電圧によ
って決定されるため該第2検出用抵抗14の抵抗値を大
きくすることができる。即ち、前記第2検出用抵抗14
の抵抗値を大きくすることによって、充電電流の検出値
であるIの値を小さくすることができ、これによって充
電式電池6の充電容量を100%近くにすることができ
る。
The charging operation according to the embodiment shown in FIG. 3 is performed as described above, but since the potential difference across the second detection resistor 14 is determined by the forward voltage of the Schottky diode 15, the second operation is performed. The resistance value of the detection resistor 14 can be increased. That is, the second detection resistor 14
The value of I, which is the detected value of the charging current, can be reduced by increasing the resistance value of 1, and thus the charging capacity of the rechargeable battery 6 can be made close to 100%.

【0031】また、図3において第1検出用抵抗13
は、ショットキーダイオード15の順方向電圧が検出用
トランジスター10を導通状態にするために必要な電圧
値より小さいので挿入接続されている。即ち、前述した
検出用トランジスター10の導通状態は、前記第1検出
用抵抗13の両端の電位差にショットキーダイオード1
5の順方向電圧を加えた電圧によって行われるので、該
第1検出用抵抗13の値は該ショットキーダイオード1
5の順方向電圧と検出用トランジスター10の動作点を
考慮して設定される。
Further, in FIG. 3, the first detection resistor 13
Is inserted and connected because the forward voltage of the Schottky diode 15 is smaller than the voltage value required to make the detection transistor 10 conductive. That is, the conductive state of the detection transistor 10 described above is determined by the potential difference across the first detection resistor 13 due to the Schottky diode 1.
The voltage of the first detection resistor 13 is equal to the value of the Schottky diode 1 because the forward voltage of 5 is applied.
It is set in consideration of the forward voltage of 5 and the operating point of the detection transistor 10.

【0032】図1及び図3に示した実施例では、充電電
流の所定値への低下が検出用トランジスター10によっ
て検出されたとき充電電流供給回路7からの充電式電池
6への充電電流の供給動作を停止させるように構成した
が、タイマー回路を設けて所定時間後に充電電流の供給
動作を停止させるようにすることもできる。
In the embodiment shown in FIGS. 1 and 3, the charging current supply circuit 7 supplies the charging current to the rechargeable battery 6 when the decrease of the charging current to a predetermined value is detected by the detection transistor 10. Although the operation is stopped, a timer circuit may be provided to stop the charging current supply operation after a predetermined time.

【0033】即ち、充電電流の所定値への低下が検出用
トランジスター10によって検出されたとき充電制御回
路8に組込まれているタイマー回路のタイマー動作が行
われて所定時間後に充電電流の供給動作を停止させるよ
うに構成する。
That is, when a decrease in the charging current to a predetermined value is detected by the detection transistor 10, the timer circuit incorporated in the charging control circuit 8 performs the timer operation, and the charging current supply operation is started after a predetermined time. Configure to stop.

【0034】斯かるタイマー回路によるタイマー動作時
間は、図2に示した充電特性図に基いて設定される。前
記検出用トランジスター10による充電電流の検出動作
は、電流値がIになったときに行われるが、この電流値
Iを零にすることができないため、この点で充電電流の
充電式電池6への供給動作を断つと該充電式電池6の充
電容量を100%にすることはできない。前記検出用ト
ランジスター10による充電電流の所定値Iの検出動作
が行われた時点Tより所定時間tだけ充電電流の供給動
作を続けると前記充電式電池6の充電容量を略100%
にすることができる。
The timer operating time by the timer circuit is set based on the charging characteristic diagram shown in FIG. The detection operation of the charging current by the detection transistor 10 is performed when the current value becomes I, but since this current value I cannot be made zero, the charging current rechargeable battery 6 is charged at this point. If the supply operation of No. 2 is cut off, the charge capacity of the rechargeable battery 6 cannot be made 100%. If the charging current supply operation of the rechargeable battery 6 is continued for a predetermined time t from the time T when the detection transistor 10 detects the predetermined value I of the charging current, the charging capacity of the rechargeable battery 6 is approximately 100%.
Can be

【0035】[0035]

【発明の効果】本発明は、充電電流を検出するべく充電
電流供給路内に挿入接続されている検出用抵抗にダイオ
ードを並列接続したので、充電電流が大きい状態におけ
る電圧ロスを小さくすることができる。
According to the present invention, since the diode is connected in parallel to the detection resistor inserted in the charging current supply path to detect the charging current, the voltage loss in the state where the charging current is large can be reduced. it can.

【0036】また、検出用抵抗の両端の電位差は、ダイ
オードの順方向電圧によって決定されるため、該検出用
抵抗の抵抗値を大きくすることができる。それ故、検出
される充電電流の値を小さく設定することができ、充電
式電池の充電動作が終了する直前での検出動作を行うこ
とができるという利点を本発明は有している。
Since the potential difference across the detection resistor is determined by the forward voltage of the diode, the resistance value of the detection resistor can be increased. Therefore, the present invention has an advantage that the value of the detected charging current can be set small and the detecting operation can be performed immediately before the charging operation of the rechargeable battery is completed.

【0037】そして、本発明は、充電電流の検出動作が
行われた時点より所定時間充電電流の充電式電池への供
給動作を続けるようにしたので、充電式電池の充電容量
が略100%になるまで充電することができる。
Further, according to the present invention, since the operation of supplying the charging current to the rechargeable battery is continued for a predetermined time from the time when the charging current detection operation is performed, the charging capacity of the rechargeable battery becomes approximately 100%. Can be charged until

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の充電回路の一実施例である。FIG. 1 is an example of a charging circuit of the present invention.

【図2】充電式電池の充電特性図である。FIG. 2 is a charging characteristic diagram of a rechargeable battery.

【図3】本発明の充電回路の一実施例である。FIG. 3 is an example of a charging circuit of the present invention.

【符号の説明】[Explanation of symbols]

6 充電式電池 7 充電電流供給回路 8 充電制御回路 9 検出用抵抗 10 検出用トランジスター 12 ダイオード 13 第1検出用抵抗 14 第2検出用抵抗 15 ショットキーダイオード 6 Rechargeable Battery 7 Charging Current Supply Circuit 8 Charging Control Circuit 9 Detection Resistor 10 Detection Transistor 12 Diode 13 First Detection Resistor 14 Second Detection Resistor 15 Schottky Diode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充電式電池に充電電流を供給する充電電
流供給回路と、該充電電流供給回路と充電式電池との間
の充電電流供給路内に挿入接続されている検出用抵抗
と、該検出用抵抗を流れる充電電流に応じて変化する該
検出用抵抗の両端の電位差を検出するとともに該電位差
が大のとき導通し、且つ前記充電電流供給回路の充電電
流供給動作を制御する検出用トランジスターと、前記検
出用抵抗に並列接続されたダイオードとより成る充電回
路。
1. A charging current supply circuit for supplying a charging current to a rechargeable battery, a detection resistor inserted and connected in a charging current supply path between the charging current supply circuit and the rechargeable battery, A detection transistor that detects a potential difference across the detection resistor that changes according to the charging current flowing through the detection resistor, conducts when the potential difference is large, and controls the charging current supply operation of the charging current supply circuit. And a diode connected in parallel with the detection resistor.
【請求項2】 充電式電池に充電電流を供給する充電電
流供給回路と、該充電電流供給回路と充電式電池との間
の充電電流供給路内に互いに直列接続されている第1検
出用抵抗及び該第1検出用抵抗より大きい抵抗値を有す
る第2検出用抵抗と、前記第1検出用抵抗及び第2検出
用抵抗を流れる充電電流に応じて変化する該検出用抵抗
の両端の電位差を検出するとともに該電位差が大のとき
導通し、且つ前記充電電流供給回路の充電電流供給動作
を制御する検出用トランジスターと、前記第2検出用抵
抗に並列接続されたショットキーダイオードとより成る
充電回路。
2. A charging current supply circuit for supplying a charging current to a rechargeable battery, and first detection resistors connected in series in a charging current supply path between the charging current supply circuit and the rechargeable battery. And a second detection resistor having a resistance value larger than the first detection resistor, and a potential difference between both ends of the detection resistor that changes according to a charging current flowing through the first detection resistor and the second detection resistor. A charging circuit including a detection transistor that detects and conducts when the potential difference is large, and controls the charging current supply operation of the charging current supply circuit, and a Schottky diode connected in parallel to the second detection resistor. .
【請求項3】 検出用トランジスターが非導通状態に反
転したとき充電電流供給回路からの充電式電池への充電
電流の供給動作を停止させるようにしたことを特徴とす
る請求項1または請求項2に記載の充電回路。
3. The method according to claim 1, wherein when the detection transistor is turned off, the operation of supplying the charging current from the charging current supply circuit to the rechargeable battery is stopped. The charging circuit described in.
【請求項4】 検出用トランジスターが非導通状態に反
転したときタイマー動作を行い、タイマー動作による設
定時間が経過したとき充電電流供給回路からの充電式電
池への充電電流の供給動作を停止させるようにしたこと
を特徴とする請求項1または請求項2に記載の充電回
路。
4. A timer operation is performed when the detection transistor is reversed to a non-conducting state, and the operation of supplying the charging current from the charging current supply circuit to the rechargeable battery is stopped when the time set by the timer operation has elapsed. The charging circuit according to claim 1 or 2, wherein
JP26000693A 1993-10-18 1993-10-18 Charging circuit Pending JPH07123607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26000693A JPH07123607A (en) 1993-10-18 1993-10-18 Charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26000693A JPH07123607A (en) 1993-10-18 1993-10-18 Charging circuit

Publications (1)

Publication Number Publication Date
JPH07123607A true JPH07123607A (en) 1995-05-12

Family

ID=17341997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26000693A Pending JPH07123607A (en) 1993-10-18 1993-10-18 Charging circuit

Country Status (1)

Country Link
JP (1) JPH07123607A (en)

Similar Documents

Publication Publication Date Title
US5408170A (en) Device for charging a secondary battery having interrupt means to prevent overcharging
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
JPH03135336A (en) Battery charger
JPH06133465A (en) Method and apparatus for charging secondary battery
US20020060552A1 (en) Battery charger capable of accurately determining fully charged condition regardless of batteries with different charge chracteristics
US5467007A (en) Charging apparatus
JP3177955B2 (en) Rechargeable battery charging method and charging system
JP2827207B2 (en) Charging device
JPH1023683A (en) Charger
JPH07123607A (en) Charging circuit
JP3128221B2 (en) Charging device
KR20030072027A (en) Portable electronic device enable to charge and discharge battery
JPH1028338A (en) Battery charger
JPH09130983A (en) Battery charge control device
JPS58148633A (en) Automatic charger
JP2823167B2 (en) Charging device
JPH07123606A (en) Charging circuit
JPH08317571A (en) Charger circuit of secondary battery
JPH0970145A (en) Constant-voltage charger
JPH0576140A (en) Battery charger
JP2988670B2 (en) Secondary battery charge control method
JPH0721067Y2 (en) Lead acid battery charge control circuit
JP3003210B2 (en) How to charge lead storage batteries
JP2622851B2 (en) Rechargeable battery charger
JPH0633649Y2 (en) Charger