JPH071230B2 - How to measure ingredients - Google Patents

How to measure ingredients

Info

Publication number
JPH071230B2
JPH071230B2 JP18156586A JP18156586A JPH071230B2 JP H071230 B2 JPH071230 B2 JP H071230B2 JP 18156586 A JP18156586 A JP 18156586A JP 18156586 A JP18156586 A JP 18156586A JP H071230 B2 JPH071230 B2 JP H071230B2
Authority
JP
Japan
Prior art keywords
measuring
reaction
sample
measurement
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18156586A
Other languages
Japanese (ja)
Other versions
JPS6338141A (en
Inventor
隆三 辻野
忠 濱中
晴樹 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP18156586A priority Critical patent/JPH071230B2/en
Publication of JPS6338141A publication Critical patent/JPS6338141A/en
Publication of JPH071230B2 publication Critical patent/JPH071230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は試験片を用いる溶液中の成分の測定方法に関す
るものである。
The present invention relates to a method for measuring components in a solution using a test piece.

〔発明の背景〕[Background of the Invention]

測定対象物質を化学反応又は酵素反応により呈色させ、
あるいは測定可能な物質に変化させ測定する溶液中の成
分の測定法は、測定試験中に検体溶液を添加して反応を
行わせる溶液法(以下ウェット法と略記する。)と、測
定試薬を含浸、乾燥させて調整した試験紙片に検体溶液
を含浸させて反応を行わせる試験紙法や種々の目的を有
する層を積層して調製されたフィルム上に検体溶液を滴
下して反応を行わせるフィルム法等に代表される所謂ド
ライ法とに大別することができる。
The target substance is colored by a chemical reaction or an enzymatic reaction,
Alternatively, the measuring method of the component in the solution which is changed into a measurable substance and measured is a solution method (hereinafter referred to as a wet method) in which a sample solution is added during a measurement test to cause a reaction, and a measuring reagent , A test paper method of impregnating a dried and prepared test paper piece with a sample solution to carry out a reaction, or a film prepared by dropping a test solution on a film prepared by laminating layers having various purposes The method can be roughly classified into a so-called dry method represented by a method.

ウェット法は、ドライ法に比べより正確な測定の出来る
長所はあるが、測定試薬の調製並びに測定器具類の準
備、後片付など実作業が煩雑である点や調製された測定
試液が長期間にわたる安定性を有しない点などの欠点が
ある。
The wet method has the merit of being able to perform more accurate measurement than the dry method, but the fact that the actual work such as preparation of measuring reagents, preparation of measuring instruments, and cleaning up is complicated, and the prepared measuring reagent solution is for a long time. There are drawbacks such as lack of stability over time.

これに対し、ドライ法は、試験紙片やフィルムの状態で
長期間安定であり、測定時に測定試液等の調製が全く不
要であるなど実作業は簡便であるが、化学反応あるいは
酸素反応による呈色などの点からみると、反応相が制約
された状態であるため、反応の到達度が低いという欠点
がある。特に酸化酵素を利用した測定系においては、反
応に液相中の溶存酸素が関与するが、ドライ法では酸素
の液相への供給が不充分な為、反応が途中で停止してし
まい、本来濃度の高い検体の測定値が実際よりも低くで
てしまって不正確であたったり、また酸素の供給速度が
律速段階となって、目的とする酵素などの反応速度を正
確に測定できないなどの欠点があった。また、従来のド
ライ法の光学的測定法は、反応に基づき呈する色を、試
験紙片やフィルムの表面若しくは裏面に光を当て、その
反射光を測定することにより検体溶液中の成分濃度を測
定していたが、その為、試験紙片やフィルムの表面状態
が密でなければならないなどの制約があり、また、表面
状態の影響により測定値に誤差を生じる場合もあった。
On the other hand, the dry method is stable in the state of test strips and films for a long period of time and requires no preparation of a measurement reagent solution at the time of measurement. From the point of view of the above, there is a drawback that the reaction reach is low because the reaction phase is restricted. Especially in a measurement system using an oxidase, dissolved oxygen in the liquid phase is involved in the reaction, but in the dry method, the supply of oxygen to the liquid phase is insufficient, so the reaction stops halfway and It is inaccurate because the measured value of a high-concentration sample is lower than it actually is, and the oxygen supply rate is a rate-determining step, so the reaction rate of the target enzyme etc. can not be measured accurately was there. Further, the conventional optical measurement method of the dry method measures the concentration of the component in the sample solution by irradiating the surface or the back surface of the test paper piece or the film with the color exhibited based on the reaction and measuring the reflected light. However, because of this, there are restrictions such as the fact that the surface condition of the test strip or film must be dense, and in some cases, the measured value may have an error due to the influence of the surface condition.

〔発明の目的〕[Object of the Invention]

本発明は、主として生体試料である検体溶液中の成分測
定法に於て、ドライ法の有する問題点即ち、反応相が制
約された条件下で反応を行う為反応の到達度が低く正確
さに欠けるという点を改善すべくなされたもので、ドラ
イ法の利点をそのまま保持し、且つ正確で信頼性の高い
測定値が得られる所謂試験紙法の光学的測定法を提供す
ることを目的とする。
INDUSTRIAL APPLICABILITY The present invention mainly has a problem in the method of measuring components in a sample solution which is a biological sample, that is, since the reaction is carried out under the condition that the reaction phase is restricted, the reaction reachability is low and the accuracy is high. The purpose of the present invention is to provide an optical measurement method of a so-called test strip method, which has been made to improve the point of lacking, and retains the advantages of the dry method as it is, and obtains accurate and reliable measurement values. .

〔発明の構成〕[Structure of Invention]

上記目的を達成する為、本発明は次の構成からなる。 In order to achieve the above object, the present invention has the following constitution.

「測定用試薬組成物を含浸及び乾燥させた吸収性担体
に、試料又は希釈された試料を含浸させて反応を開始さ
せ、該吸収性担体を物理的に収縮させることにより生じ
た反応液相部分で反応経過若しくは反応終了状態を光学
的に測定することにより溶液成分の測定を行うことを特
徴とする、溶液成分の測定方法。」 即ち、本発明の測定法は、測定用試薬を吸収性担体に含
浸させて乾燥したもの(以下、試薬含浸体と略記す
る。)を反応容器に入れ、試料溶液若しくは、反応及び
測定に必要な量の液相が存在するように水或は水溶液等
で希釈した試料溶液を含浸させて反応させ、反応経過或
は反応終了状態を、試薬含浸体を反応容器から除去する
ことなく、該試薬含浸体部分を物理的に収縮させること
により生ずる液相部分で光学的に測定することを特徴と
する。
"A reaction liquid phase part generated by impregnating an absorbent carrier impregnated with a reagent composition for measurement and dried with a sample or a diluted sample to start a reaction and physically contracting the absorbent carrier The method for measuring a solution component is characterized in that the solution component is measured by optically measuring the progress of the reaction or the reaction completion state. What was impregnated with and dried (hereinafter abbreviated as reagent impregnated body) was put in a reaction vessel and diluted with water or an aqueous solution so that a sample solution or a liquid phase in an amount necessary for reaction and measurement existed. The sample solution is impregnated and reacted, and the reaction progress or the reaction completion state is optically measured by a liquid phase portion generated by physically contracting the reagent impregnated body portion without removing the reagent impregnated body from the reaction vessel. To measure And are characterized.

本発明に於て、試薬含浸体を物理的に収縮させる手段と
しては、反応容器を限定しない場合には、例えば、特開
昭48−47877号公報に示された様な、更に具体的には第
2図に記載の様な挿入式の光学的測定手段であって試薬
含浸体を収縮させる手段が一体となっているか、若しく
は一連に作動するような器具を用いることで充分足り
る。即ち、例えば第2図に示す如き、反射鏡A、光コネ
クターB、照射光用光ファイバーC、受光用光ファイバ
ーDからなる光ファイバープローブを有し、第3図に示
す如き構成、即ち、該光ファイバープローブ4と安定化
光源5、安定化電源6、光検出器7、増幅器8、吸光度
変換器9及び表示部10とから光学的測定手段を用い、安
定化電源6及び安定化光源5から成る光源部より光コネ
クターB及び照射光用光ファイバーCを通じて照射され
る特定のスペクトル分布を持つ光が、反射鏡Aにより反
射された受光用光ファイバーDに到達する間に試験薬3
によって吸収される光の量を、光検知器7、増幅器8、
吸光度変換器9及び表示部10からなる検知部で吸光度と
して測定することによりこれを行うことができる。第1
図にこの方法で実施した場合の断面図を示す。また、一
般の分光光度計で使用されている石英セル等を用いて測
定を行う場合には、例えば第5図に示すような、底面
が、試薬含浸体を収縮させるが試験液は通過させる様な
構造、例えば網目構造になっている挿入式の補助器具を
用いることで足りる。
In the present invention, as a means for physically shrinking the reagent-impregnated body, when the reaction container is not limited, for example, as shown in JP-A-48-47877, more specifically, It is sufficient to use an insertion type optical measuring means as shown in FIG. 2 which is integrated with a means for contracting the reagent-impregnated body or which uses a device which operates in series. That is, for example, as shown in FIG. 2, it has an optical fiber probe composed of a reflecting mirror A, an optical connector B, an optical fiber C for irradiation light, and an optical fiber D for receiving light, and has a structure as shown in FIG. And a stabilized light source 5, a stabilized power source 6, a photodetector 7, an amplifier 8, an absorbance converter 9 and a display unit 10 are used as optical measuring means, and a light source unit composed of the stabilized power source 6 and the stabilized light source 5 is used. While the light having a specific spectral distribution emitted through the optical connector B and the irradiation optical fiber C reaches the light receiving optical fiber D reflected by the reflecting mirror A, the test drug 3
The amount of light absorbed by the photodetector 7, amplifier 8,
This can be done by measuring the absorbance as a value with a detection unit composed of the absorbance converter 9 and the display unit 10. First
The figure shows a cross-sectional view when this method is used. Further, when the measurement is performed using a quartz cell or the like used in a general spectrophotometer, for example, as shown in FIG. 5, the bottom surface shrinks the reagent impregnated body but allows the test solution to pass through. It is sufficient to use an insertion-type auxiliary device having a different structure, for example, a mesh structure.

試薬含浸体を形成する吸収性担体としては、例えば、不
織布、綿、海綿様発泡体、織物、ガラスウール等が代表
的なものとして挙げられるが、これらに限定されるもの
ではない。また、一般に弾力性があり繊維クズなどが出
来にくいものが好適である。
Typical examples of the absorbent carrier forming the reagent-impregnated body include, but are not limited to, non-woven fabric, cotton, sponge-like foam, woven fabric, and glass wool. In addition, those that are generally elastic and are unlikely to cause fiber scraps are suitable.

吸収性担体に含浸される測定用試液としては、測定対象
物を測定するのに必要な酵素、基質、発色剤、緩衝剤、
補酵素、酵素賦活剤、酵素や発色剤の安定化剤、皮膜形
成剤、溶剤などを必要に応じて適宜含有する溶液が用い
られる。
As the measuring reagent solution impregnated in the absorbent carrier, an enzyme, a substrate, a color former, a buffering agent necessary for measuring an object to be measured,
A solution containing a coenzyme, an enzyme activator, a stabilizer for an enzyme or a color former, a film-forming agent, a solvent and the like as needed is used.

測定用試液を吸収性担体に含浸させる際には、1回の含
浸操作で行ってもよいが、必要に応じて数回繰り返し行
ってもよく、また、目的によっては、測定用試液の成分
を数種類の溶液に分割し順次含浸及び乾燥を繰り返し行
ってもよい。
When the absorbent carrier is impregnated with the measuring reagent solution, it may be carried out by a single impregnation operation, but may be repeated several times if necessary, and depending on the purpose, the components of the measuring reagent solution may be mixed. It may be divided into several kinds of solutions and sequentially impregnated and dried.

また、本発明の方法による測定に際し用いられる、検体
溶液の希釈液としては、通常蒸留水、イオン交換水等が
適しているが、要すれば塩類、緩衝剤、界面活性剤、防
腐剤或は有機溶媒類等を適宜含有する溶液とすることも
可能である。
Distilled water, ion-exchanged water or the like is usually suitable as a diluted solution of the sample solution used in the measurement by the method of the present invention, but if necessary, salts, buffers, surfactants, preservatives or It is also possible to prepare a solution that appropriately contains organic solvents and the like.

本発明で使用する反応容器としては、挿入式の光学的手
段を用いれば光透過性のセルである必要はなく、材質も
反応に影響を与えないものであれば特に限定されるもの
ではない。
The reaction vessel used in the present invention does not have to be a light-transmissive cell as long as an insertion type optical means is used, and the material is not particularly limited as long as it does not affect the reaction.

本発明の方法により測定可能な測定対象物としては、例
えば、グルコース、コレステロール、トリグラセライ
ド、尿酸、尿素窒素、ビリルビン、クレアチニン、アル
カリホスファーゼ、GOT、GPT、LDH、γ−GTP等の生体成
分等が挙げられるが、これに限定されるものではない。
As the measurement object that can be measured by the method of the present invention, for example, glucose, cholesterol, triglaceride, uric acid, urea nitrogen, bilirubin, creatinine, alkaline phosphatase, GOT, GPT, LDH, γ-GTP living body Examples thereof include components, but are not limited thereto.

以下に実施例を挙げるが、本発明はこれら実施例により
何ら限定されるものではない。
Examples will be given below, but the present invention is not limited to these examples.

〔実施例〕〔Example〕

実施例1.血清中のグルコースの定量(反応時間の追跡) (グルコース測定用試薬含浸体の作製) 直径1cm,厚さ7mmのレーヨン製不織布(担体)に下記の
測定用試液80μlを含浸させた後乾燥させた。
Example 1. Determination of glucose in serum (tracking of reaction time) (Preparation of reagent impregnated body for glucose measurement) A rayon non-woven fabric (carrier) having a diameter of 1 cm and a thickness of 7 mm was impregnated with 80 μl of the following measuring reagent solution. It was then dried.

測定用試液処方 グルコースオキシターゼ 50,000単位 ペルオキシターゼ 1,500単位 ムタロターゼ 100単位 4−アミノアンチピリン 0.2g フェノール 0.5g リン酸1カリウム 0.5g リン酸2カリウム 2.5g 牛アルブミン 1.0g 精製水 全量100mlとした。Test solution formulation for measurement glucose oxidase 50,000 units peroxidase 1,500 units mutarotase 100 units 4-aminoantipyrine 0.2 g phenol 0.5 g 1 potassium phosphate 0.5 g dipotassium phosphate 2.5 g bovine albumin 1.0 g purified water 100 ml in total.

(試料) 血清検体を水で、100倍に希釈したものを試料とした。(Sample) A serum sample diluted 100 times with water was used as a sample.

(測定方法) 直径1.2cm,深さ1.5cmのプラスチック性容器に、前記試
薬含浸体1枚及び試料1.0mlを加え、37℃で反応させ
た。途中、吸収性担体に保持された試薬と検体との反応
を促進させる為に、数回不織布を伸縮させた。第2図に
示す如き、光ファイバープローブを第1図のように反応
容器に挿入し、生じた液相部分の波長505nmに於ける吸
光度(以下、ESと略記する。)を測定した。
(Measurement Method) One piece of the reagent-impregnated body and 1.0 ml of the sample were added to a plastic container having a diameter of 1.2 cm and a depth of 1.5 cm and reacted at 37 ° C. On the way, the nonwoven fabric was expanded and contracted several times in order to accelerate the reaction between the reagent held on the absorbent carrier and the sample. As shown in FIG. 2, an optical fiber probe was inserted into the reaction vessel as shown in FIG. 1, and the absorbance at the wavelength of 505 nm (hereinafter abbreviated as E S ) of the generated liquid phase portion was measured.

血清検体の代りに、水又は濃度既知のグルコース標準液
を用いて同様に操作し、求めた吸光度をそれぞれ盲検の
吸光度(以下、EBlと略記する。)、及び標準の吸光度
(以下、EStdと略記する。)とした。
Instead of the serum sample, water or a glucose standard solution having a known concentration was used in the same manner, and the obtained absorbances were respectively blinded to the absorbance (hereinafter, abbreviated as E Bl ) and the standard absorbance (hereinafter, E B ). Abbreviated as Std .).

第4図に吸光度の経時変化を示す。FIG. 4 shows the change in absorbance with time.

第4図から明らかな如く、本試薬含浸体を用いての、検
体中にグルコースとの反応は、37℃では5分以内に終了
する。
As is clear from FIG. 4, the reaction of the reagent-impregnated body with glucose in the sample is completed within 5 minutes at 37 ° C.

実施例2.血清中のグルコースの定量 (グルコース測定用試薬含浸体の作製) 実施例1.に同じ。Example 2. Determination of glucose in serum (preparation of reagent impregnated body for glucose measurement) The same as in Example 1.

(試料) 人血清10検体を水で100倍に希釈したものを試料とし
た。
(Sample) Ten samples of human serum diluted 100 times with water were used as samples.

(測定方法) 実施例1.と同様に行い、5分後のES,EStd,EBlを測定
した。
(Measurement method) The measurement was performed in the same manner as in Example 1, and after 5 minutes, E S , E Std , and E Bl were measured.

次式に従い人血清中のグルコース値を算出した。The glucose level in human serum was calculated according to the following formula.

[200*:グルコース標準液中のグルコース値(mg/d
l)] 参考例1.血清中のグルコースの定量 実施例2.と同じ試料を用い、グルコース測定用の市販キ
ット〔グルコースC−テストワコー,和光純薬工業
(株)製〕を、使用して、グルコース値を測定した。
[200 * : glucose level in glucose standard solution (mg / d
l)] Reference Example 1. Determination of glucose in serum Using the same sample as in Example 2, using a commercially available kit for glucose measurement [Glucose C-Test Wako, manufactured by Wako Pure Chemical Industries, Ltd.] The glucose level was measured.

実施例2.と参考例1.の測定結果を表1に併せて示す。The measurement results of Example 2 and Reference Example 1 are also shown in Table 1.

表1から明らかな如く、本発明の方法による実施例2の
測定法により得られたグルコースの測定値は、市販キッ
トを用いた従来法のそれと良い相関を示している。
As is clear from Table 1, the glucose measurement values obtained by the measurement method of Example 2 according to the method of the present invention show a good correlation with those of the conventional method using a commercially available kit.

実施例3.血清中の尿酸の定量 (尿酸測定用試薬含浸体の作製) 直径10mm,厚さ7mmの発泡ウレタンに下記の測定用試液10
0μlを含浸さた後乾燥させた。
Example 3. Determination of uric acid in serum (preparation of reagent-impregnated body for measuring uric acid) A urethane foam having a diameter of 10 mm and a thickness of 7 mm was used to measure 10
After impregnating with 0 μl, it was dried.

測定用試液処方 ウリカーゼ 50単位 ペルオキシダーゼ 2,500単位 アスコルビン酸オキシダーゼ 5,000単位 リポプロティンリパーゼ 50,000単位 4−アミノアンチピリン 0.12g N−エチル−N−(2−ハイドロキシ−3−スルホプロ
ピル)−m−トルイジン・Na塩 0.2g リン酸1カリウム 5g リン酸2カリウム 2g 水溶性ゼラチン 1g 精製水 全量100mlとした。
Test solution formulation Uricase 50 units Peroxidase 2,500 units Ascorbate oxidase 5,000 units Lipoprotein lipase 50,000 units 4-Aminoantipyrine 0.12 g N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-toluidine / Na salt 0.2 g 1 potassium phosphate 5 g 2 potassium phosphate 2 g Water-soluble gelatin 1 g Purified water Total amount 100 ml.

(試料) 人血清10検体を水で60倍に希釈したものを試料とした。(Sample) A sample was prepared by diluting 10 human serum samples 60-fold with water.

(測定方法) 直径1.0cm,深さ1.5cmのプラスチック性容器に、前記試
薬含浸体1枚及び試料1.0mlを加え、37℃で5分間反応
させた。途中、吸収性担体に含浸された試薬と検体との
反応を促進される為に、数回発泡ウレタンを伸縮させ
た。第2図に示す如き、光ファイバープローブを第1図
のように反応容器に挿入し、生じた液相部分の波長555n
mに於ける吸光度ESを測定した。
(Measurement Method) One piece of the reagent-impregnated body and 1.0 ml of the sample were added to a plastic container having a diameter of 1.0 cm and a depth of 1.5 cm and reacted at 37 ° C. for 5 minutes. On the way, in order to accelerate the reaction between the reagent impregnated in the absorbent carrier and the sample, the urethane foam was expanded and contracted several times. As shown in Fig. 2, the optical fiber probe was inserted into the reaction vessel as shown in Fig. 1, and the wavelength of the generated liquid phase portion was 555n.
The absorbance E S at m was measured.

血清検体の代りに、水又は濃度既知の尿酸標準液を用い
て同様に操作し、EBl及びEStdを測定した。
E Bl and E Std were measured in the same manner by using water or a uric acid standard solution of known concentration instead of the serum sample.

次式に従い人血清中の尿酸値を算出した。The uric acid level in human serum was calculated according to the following formula.

[10**:尿酸標準液中の尿酸値(mg/dl)] 参考例2.血清中の尿酸の定量 実施例3.と同じ試料を用い、尿酸測定用の市販キット
〔尿酸C−テストワコー,和光純薬工業(株)製〕を使
用して、尿酸値を測定した。
[10 ** : Uric acid value in uric acid standard solution (mg / dl)] Reference example 2. Determination of uric acid in serum Using the same sample as in Example 3, a commercial kit for measuring uric acid [Uric acid C-Test Wako , Wako Pure Chemical Industries, Ltd.] was used to measure the uric acid value.

実施例3.と参考例2.の測定結果を表2に併せて示す。The measurement results of Example 3 and Reference Example 2 are also shown in Table 2.

表2から明らかな如く、本発明の方法による実施例3.の
測定法により得られた尿酸の測定値は、市販キットを用
いた従来法のそれと良い相関を示している。
As is clear from Table 2, the measured value of uric acid obtained by the measuring method of Example 3 according to the method of the present invention shows a good correlation with that of the conventional method using a commercially available kit.

実施例4.血清中のグルコースの定量 (グルコース測定用試薬含浸体の作製) 実施例1.に同じ。Example 4. Quantification of glucose in serum (Preparation of reagent impregnated body for glucose measurement) Same as in Example 1.

実施例.2で使用した人血清10検体を水で、200倍に希釈
したものを試料とした。
Ten human serum samples used in Example 2 were diluted 200 times with water and used as samples.

(測定方法) 石英セル(10×10mm,深さ4cm)に前記試薬含浸体1枚を
入れ、試料2.0mlを加えて37℃で5分間反応させた。途
中、吸収性担体に含浸された試薬と検体とを十分反応さ
せる為に、第5図に示す様な、先端にネットを付けた器
具で不織布を数回伸縮させた。最終的に不織布を第6図
に示す用に前記器具を用いて、分光光度計の光路にかか
らないように圧縮し、生じた液相部分の、波長504nmに
於ける吸光度ESを測定した。
(Measurement Method) One piece of the above-mentioned reagent-impregnated body was placed in a quartz cell (10 × 10 mm, depth 4 cm), 2.0 ml of a sample was added, and the mixture was reacted at 37 ° C. for 5 minutes. On the way, in order to sufficiently react the reagent impregnated in the absorptive carrier with the sample, the nonwoven fabric was expanded and contracted several times with a device having a net at its tip as shown in FIG. Finally, the non-woven fabric was compressed using the above-mentioned instrument as shown in FIG. 6 so as not to cover the optical path of the spectrophotometer, and the absorbance E S of the resulting liquid phase portion at a wavelength of 504 nm was measured.

また、血清検体の代りに水又は濃度既知のグルコース標
準液を用いて同様に操作し、EBl及びEStdを測定した
(日立556型分光光度計使用)。次式に従い人血清中の
グルコース値を算出した。
Further, E Bl and E Std were measured in the same manner by using water or a glucose standard solution having a known concentration instead of the serum sample (using a Hitachi 556 spectrophotometer). The glucose level in human serum was calculated according to the following formula.

[200*:グルコース標準液中のグルコース値(mg/d
l)] 実施例4.と前記参考例1.の測定結果を表3に併せて示
す。
[200 * : glucose level in glucose standard solution (mg / d
l)] The measurement results of Example 4 and Reference Example 1 are also shown in Table 3.

表3から明らかな如く、本発明の方法による実施例4.の
測定法により得られたグルコースの測定値は、市販キッ
トを用いた従来法のそれと良い相関を示している。
As is clear from Table 3, the measured values of glucose obtained by the measuring method of Example 4 according to the method of the present invention show a good correlation with that of the conventional method using a commercially available kit.

〔発明の効果〕〔The invention's effect〕

以上の述べた如く、本発明は以下に述べる様な点で顕著
な効果を奏する発明であり、斯業に貢献するところ甚だ
大なるものである。
As described above, the present invention is an invention that exhibits remarkable effects in the following points, and is a great contribution to the art.

(1)本発明の測定法に於ては、測定試薬は例えば不織
布等の吸収性担体に含浸及び乾燥させたドライタイプと
して供給される為、安定であり、取扱いが簡便である。
(1) In the measuring method of the present invention, the measuring reagent is stable and easy to handle because it is supplied as a dry type by impregnating and drying an absorbent carrier such as a nonwoven fabric.

(2)反応は量的に十分な液相中で行なえる為、通常の
ドライ法の反応より、反応の進行が速く、到達度が高
い。
(2) Since the reaction can be carried out in a liquid phase that is quantitatively sufficient, the reaction progresses faster and the degree of achievement is higher than that in the usual dry method reaction.

(3)従来のドライ法の光学的測定法の様に試験紙片表
面からの反射光を測定する方法ではない為、表面状態の
影響による誤差がなく、精度及び再現性の高い測定が可
能である。
(3) Since it is not a method of measuring the reflected light from the surface of the test strip unlike the conventional optical measurement method of the dry method, there is no error due to the influence of the surface condition, and measurement with high accuracy and reproducibility is possible. .

(4)光学的に測定する際、試薬含浸体を除去すること
なく測定できるので操作が簡便であり、特に反応容器中
への挿入式の光学機器を用いた場合には、更に操作が容
易となる。
(4) The operation is simple because it can be measured without removing the reagent-impregnated body in the optical measurement, and the operation is easier especially when an optical instrument that can be inserted into the reaction vessel is used. Become.

(5)挿入式の光学機器を用いる測定法に於ては、試薬
含浸体と反応容器の適切な組合わせを選択することによ
り、使い捨て可能な、簡便で廉価な測定法を組み立てる
ことも可能である。
(5) In the measuring method using the insertion type optical instrument, it is possible to construct a disposable, convenient and inexpensive measuring method by selecting an appropriate combination of the reagent impregnated body and the reaction container. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の測定法を、吸収性担体を物理的に収
縮させる手段が光学的測定手段と一体となった挿入式光
度計を用いて実施した場合の断面図であり、第2図及び
第3図は挿入式光度計の概略図を例示したものである。 第4図は、実施例1で得られた血清中のグルコース測定
時の吸光度の経時変化を示し、横軸の各時間(分)につ
いて得られた吸光度を縦軸に沿ってプロットした点を結
んだものである。 第5図は、本発明の測定法を一般の分光光度計を用いて
実施する場合に使用する挿入式の補助器具の一例で、第
6図はそれを実際の測定に用いたところを図示したもの
である。 図中の各記号の示す内容を以下に列記する。 1:反応容器、2:圧縮された担体、3:試験液、4:光ファイ
バープローブ、5:安定化光源、6:安定化電源、7:光検出
器、8:増幅器、9:吸光度変換器、10:表示部、11:補助器
具、12:石英セル、13:圧縮された担体、A:反射鏡、B:光
源部及び光検出器への接続コネクター、C:照射光用光フ
ァイバー、D:受光用光ファイバー、a:盲検、b:血清試
料、c:標準。
FIG. 1 is a cross-sectional view when the measuring method of the present invention is carried out by using an insertion type photometer in which a means for physically contracting an absorptive carrier is integrated with an optical measuring means. FIG. 3 and FIG. 3 exemplify a schematic view of an insertion type photometer. FIG. 4 shows the time-dependent change in the absorbance during glucose measurement in serum obtained in Example 1, and the points obtained by plotting the absorbance obtained for each time (minute) on the horizontal axis along the vertical axis are connected. It is FIG. 5 shows an example of an insert-type auxiliary device used when the measuring method of the present invention is carried out using a general spectrophotometer, and FIG. 6 shows a case where it is used for actual measurement. It is a thing. The contents indicated by each symbol in the figure are listed below. 1: reaction vessel, 2: compressed carrier, 3: test solution, 4: optical fiber probe, 5: stabilized light source, 6: stabilized power supply, 7: photodetector, 8: amplifier, 9: absorbance converter, 10: Display unit, 11: Auxiliary equipment, 12: Quartz cell, 13: Compressed carrier, A: Reflector, B: Connector for connecting to light source unit and photodetector, C: Optical fiber for irradiation light, D: Light receiving Optical fiber for use, a: blinded, b: serum sample, c: standard.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−62561(JP,A) 特開 昭48−47877(JP,A) 特開 昭57−182638(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-62561 (JP, A) JP-A-48-47877 (JP, A) JP-A-57-182638 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】測定用試薬組成物を含浸及び乾燥させた吸
収性担体に、試料又は希釈された試料を含浸させて反応
を開始させ、該吸収性担体を物理的に収縮させることに
より生じた反応液相部分で反応経過若しくは反応終了状
態を光学的に測定することにより溶液成分の測定を行う
ことを特徴とする、溶液成分の測定方法。
1. A method in which an absorbent carrier impregnated with a reagent composition for measurement and dried is impregnated with a sample or a diluted sample to initiate a reaction and physically shrink the absorbent carrier. A method for measuring a solution component, which comprises measuring a solution component by optically measuring a reaction progress or a reaction completion state in a reaction liquid phase portion.
【請求項2】吸収性担体を物理的に収縮させる手段が、
光学的測定手段と一体であるか、若しくは一連に作動す
るものである、特許請求の範囲第1項に記載の測定方
法。
2. Means for physically shrinking the absorbent carrier comprises:
The measuring method according to claim 1, wherein the measuring method is integral with the optical measuring means or operates in series.
【請求項3】吸収性担体を物理的に収縮させる手段が、
挿入式器具を用いる方法である、特許請求の範囲第1項
に記載の測定方法。
3. Means for physically shrinking the absorbent carrier comprises:
The measuring method according to claim 1, which is a method using an insertable instrument.
JP18156586A 1986-08-01 1986-08-01 How to measure ingredients Expired - Fee Related JPH071230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18156586A JPH071230B2 (en) 1986-08-01 1986-08-01 How to measure ingredients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18156586A JPH071230B2 (en) 1986-08-01 1986-08-01 How to measure ingredients

Publications (2)

Publication Number Publication Date
JPS6338141A JPS6338141A (en) 1988-02-18
JPH071230B2 true JPH071230B2 (en) 1995-01-11

Family

ID=16103019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18156586A Expired - Fee Related JPH071230B2 (en) 1986-08-01 1986-08-01 How to measure ingredients

Country Status (1)

Country Link
JP (1) JPH071230B2 (en)

Also Published As

Publication number Publication date
JPS6338141A (en) 1988-02-18

Similar Documents

Publication Publication Date Title
JP3342077B2 (en) Improved oxidative coupling dyes for spectrophotometric determination of analytes
KR970003312B1 (en) Minimum procedure system for the determination of analysis
CA1340389C (en) Defined volume test device
EP0020788B1 (en) Test piece for measuring glucose
CA1320115C (en) Diagnostic assay employing signal producing agent on support
US6242207B1 (en) Diagnostic compositions and devices utilizing same
US5972294A (en) Reagent test strip for determination of blood glucose
JPH1031024A (en) Reagent test strip for blood glucose measurement
MXPA97002503A (en) Reagent test stress to determine glucose in the san
JP2003232789A (en) Stabilized tetrazolium dye reagent composition and method for use thereof
EP0110173B1 (en) Test device and method for in a colored aqueous fluid by diffuse reflectance detecting a soluble analyte measurement
JPS5926061A (en) Test piece for determining component in bodily fluid
JP2950592B2 (en) Multilayer analytical tool for fructosamine measurement
WO2000008207A1 (en) Uric acid assay device with stabilized uricase reagent composition
JPH071230B2 (en) How to measure ingredients
JPS6338142A (en) Method for measuring component
JPH057500A (en) Method and element for measuring amylase in dry state
IE83676B1 (en) Method for measuring the concentration of an analyte in whole blood
JPH01117799A (en) Test paper for measuring living body components
IE84259B1 (en) Test strip for the determination of glucose

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees