JPH07122930A - Circular polarized wave planar antenna - Google Patents
Circular polarized wave planar antennaInfo
- Publication number
- JPH07122930A JPH07122930A JP28884293A JP28884293A JPH07122930A JP H07122930 A JPH07122930 A JP H07122930A JP 28884293 A JP28884293 A JP 28884293A JP 28884293 A JP28884293 A JP 28884293A JP H07122930 A JPH07122930 A JP H07122930A
- Authority
- JP
- Japan
- Prior art keywords
- circularly polarized
- dielectric plate
- power feeding
- circular polarization
- curved surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、円偏波特性(軸比)を
広角化すると共に、円偏波特性(軸比)の周波数帯域幅
を広帯域化した円偏波平面アンテナに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circular polarization plane antenna having a wide angle circular polarization characteristic (axial ratio) and a wide frequency bandwidth of the circular polarization characteristic (axial ratio).
【0002】[0002]
【従来の技術】図4の(a)は、特開昭63−3390
5号公報において提案された円偏波平面アンテナ(マイ
クロストリップアンテナ)(以下、第1の従来例とい
う)の平面図であり、図4の(b)はその断面図であ
る。また図5の(a)は、特開平3−80703公報に
おいて開示された円偏波マイクロストリップアンテナ
(以下、第2の従来例という)の平面図であり、図5の
(b)はその断面図を示す。2. Description of the Related Art FIG.
5 is a plan view of a circularly polarized plane antenna (microstrip antenna) proposed in Japanese Patent Publication No. 5 (hereinafter referred to as a first conventional example), and FIG. 4B is a sectional view thereof. Further, FIG. 5A is a plan view of a circularly polarized microstrip antenna (hereinafter referred to as a second conventional example) disclosed in Japanese Patent Laid-Open No. 3-80703, and FIG. 5B is a cross section thereof. The figure is shown.
【0003】これら第1の従来例及び第2の従来例は、
それぞれ回転曲面状に形成した誘電体板8及び12の凸
面上に放射導体7及び11を配して指向特性の広角化を
意図したものである。The first conventional example and the second conventional example are
The radiation conductors 7 and 11 are arranged on the convex surfaces of the dielectric plates 8 and 12 which are respectively formed in the shape of a curved surface, and the widening of the directional characteristics is intended.
【0004】又、図6の(a)は、平坦な誘電体板16
上に4個の“直線”偏波放射素子15a,15b,15
c,15dを方形に配置し、各放射素子に対し、それぞ
れ90゜の位相差で高周波電流を順次供給するよう給電
用マイクロストリップ線路を接続することにより、円偏
波の電波を放射するよう構成したマイクロストリップア
ンテナ(以下第3の従来例という)の平面図であり、図
6の(b)はその断面図を示す。Further, FIG. 6A shows a flat dielectric plate 16
Four "linear" polarized radiation elements 15a, 15b, 15 on top
Circularly polarized radio waves are radiated by arranging c and 15d in a rectangular shape and connecting a microstrip line for power supply to each radiating element to sequentially supply a high frequency current with a phase difference of 90 °. FIG. 7B is a plan view of the microstrip antenna (hereinafter referred to as a third conventional example), and FIG. 6B is a sectional view thereof.
【0005】[0005]
【発明が解決しようとする課題】以上挙げた第1及び第
2の従来例は、その何れも指向特性の広角化を図ったも
のであって、以下で述べるように、円偏波特性(軸比)
に対する周波数帯域幅が狭く、第3の従来例は円偏波特
性(軸比)に対する周波数帯域幅が狭い上、円偏波特性
(軸比)を保持しうる範囲が狭角であるという問題があ
った。The above-mentioned first and second conventional examples are each intended to widen the directional characteristics, and as described below, the circular polarization characteristics ( Axial ratio)
Is narrow, the third conventional example has a narrow frequency bandwidth with respect to the circular polarization characteristic (axial ratio), and the range in which the circular polarization characteristic (axial ratio) can be maintained is narrow. There was a problem.
【0006】すなわち、第1及び第2の従来例の場合、
低仰角(例えば、水平方向を仰角=0度とした場合)1
5度におけるアンテナの周波数−円偏波特性(軸比)
は、図3に示すように正確な円偏波が発生するのは、受
信周波数がアンテナの共振周波数f0の場合に限られ、
受信周波数がf0から外れると次第に楕円偏波が合成さ
れるようになる。That is, in the case of the first and second conventional examples,
Low elevation angle (for example, when the horizontal elevation angle is 0 degrees) 1
Frequency-circular polarization characteristics (axial ratio) of the antenna at 5 degrees
As shown in FIG. 3, accurate circular polarization is generated only when the reception frequency is the resonance frequency f0 of the antenna,
When the reception frequency deviates from f0, elliptically polarized waves are gradually combined.
【0007】例えば、このアンテナを用いて低軌道を周
回する通信衛星からの電波を受信する場合、衛星からの
電波の周波数がアンテナの共振周波数f0から外れるほ
ど円偏波特性(軸比)が悪化するため、衛星からの直接
波(主偏波)の代わりに、建物等の障害物から反射した
反射波(交差偏波)を受信してしまうと言う問題があっ
た。これは円偏波特性(軸比)の悪化による交差偏波識
別度の低下によるものである。For example, when radio waves from a communication satellite orbiting a low earth orbit are received using this antenna, the circular polarization characteristic (axial ratio) is increased as the frequency of the radio wave from the satellite deviates from the resonance frequency f0 of the antenna. Since it deteriorates, there is a problem that instead of the direct wave (main polarization) from the satellite, the reflected wave (cross polarization) reflected from an obstacle such as a building is received. This is due to the deterioration of the cross polarization discrimination due to the deterioration of the circular polarization characteristics (axial ratio).
【0008】又、上記第3の従来例においては、2つの
直線偏波の放射素子15a及び15bを物理的に直交す
るよう配置し、これら2つの素子間に与えられる給電位
相差が90゜となるよう給電することにより、円偏波の
電波を発生させるよう構成したものである。即ち、2つ
の直線偏波の放射素子をペアー(第1のペアーとよぶ)
とすることにより円偏波を得るようにした。In the third conventional example, the two linearly polarized radiation elements 15a and 15b are arranged so as to be physically orthogonal to each other, and the feeding phase difference provided between these two elements is 90 °. The power is supplied so that a circularly polarized radio wave is generated. That is, two linearly polarized radiating elements are paired (called the first pair).
By doing so, circularly polarized waves are obtained.
【0009】直線偏波の放射素子15c,15dからな
る第2のペアーも、第1のペアーと同様にして円偏波を
発生させ、これらの2つのペアーの円偏波を合成する事
により正確な円偏波を合成するようにした。しかし、こ
の場合も、第1及び第2の従来例と同じように、給電位
相差がそれぞれ90゜となるような4分の1波長間隔の
マイクロストリップ線路(線路長l=λg/4)の周波
数f0(共振周波数) f0=(3*10^8)*η/λg ここで、λg=線路波長,η=波長短縮率 の時に正確な円偏波が発生し、周波数がf0から外れる
と次第に楕円偏波が合成されるようになる。The second pair of linearly polarized radiating elements 15c and 15d also generate circularly polarized waves in the same manner as the first pair, and the circularly polarized waves of these two pairs are combined to obtain an accurate result. It was designed to synthesize circularly polarized waves. However, also in this case, as in the first and second conventional examples, a microstrip line (line length l = λg / 4) having quarter wavelength intervals such that the feeding phase difference is 90 ° is provided. Frequency f0 (resonance frequency) f0 = (3 * 10 ^ 8) * η / λg Here, when λg = line wavelength and η = wavelength reduction ratio, an accurate circular polarization is generated, and when the frequency deviates from f0, Elliptical polarization will be synthesized.
【0010】従って、この場合も、第1及び第2の従来
例と同様に、円偏波特性(軸比)の周波数帯域幅が狭帯
域になるという問題があった。又、図6(b)の断面図
に示すように、平板状の誘電体板上に放射素子を設けて
いるため、図の水平方向における円偏波特性(軸比)が
悪化するという問題、すなわち円偏波特性を保持しうる
角度の範囲が狭角であるという問題があった。Therefore, also in this case, similarly to the first and second conventional examples, there is a problem that the frequency bandwidth of the circular polarization characteristic (axial ratio) becomes narrow. Further, as shown in the cross-sectional view of FIG. 6B, the radiation element is provided on the flat dielectric plate, so that the circular polarization characteristic (axial ratio) in the horizontal direction of the figure is deteriorated. That is, there is a problem that the range of angles that can maintain the circular polarization characteristics is a narrow angle.
【0011】以上説明したように、従来の円偏波平面ア
ンテナは円偏波特性(軸比)に対する周波数帯域幅が狭
帯域であり、且つ円偏波特性を保持しうる角度の範囲が
狭角であるという欠点を持つという問題があった。As described above, the conventional circularly polarized plane antenna has a narrow frequency band with respect to the circularly polarized wave characteristic (axial ratio) and has an angular range in which the circularly polarized wave characteristic can be maintained. There was the problem of having the drawback of being a narrow angle.
【0012】従って、本発明は、上記従来技術における
問題に鑑みてなされたもので、アンテナの円偏波特性
(軸比)の周波数特性を広帯域化すると共に、円偏波特
性(軸比)を維持しうる角度を広角化するようにした円
偏波平面アンテナを提供することを目的とする。Therefore, the present invention has been made in view of the above problems in the prior art. The frequency characteristic of the circular polarization characteristic (axial ratio) of the antenna is widened and the circular polarization characteristic (axial ratio) is increased. It is an object of the present invention to provide a circularly polarized plane antenna in which the angle that can maintain the above) is widened.
【0013】[0013]
【課題を解決するための手段】本発明による円偏波平面
アンテナは、上記の目的を達成するため、誘電体板を挟
み、一方の面には4個の円偏波放射マイクロストリップ
パッチ素子を配し、対向する他方の面には接地導体板を
設けた円偏波平面アンテナであって、前記誘電体板は立
体曲面形状とし、前記4個の円偏波放射マイクロストリ
ップパッチ素子は前記立体曲面の中心から放射状に0
度、90度、180度、270度なる間隔で、且つそれ
ぞれの給電位相差が0度、90度、180度、270度
なる如く構成したことを特徴とするものである。In order to achieve the above-mentioned object, a circularly polarized plane antenna according to the present invention sandwiches a dielectric plate and has four circularly polarized radiation microstrip patch elements on one surface. A circular polarization plane antenna in which a grounding conductor plate is provided on the other surface facing each other, wherein the dielectric plate has a three-dimensional curved surface shape, and the four circular polarization radiation microstrip patch elements are the three-dimensional shape. 0 from the center of the curved surface
It is characterized in that the power feeding phase difference is 0 degree, 90 degrees, 180 degrees, and 270 degrees at intervals of 90 degrees, 90 degrees, 180 degrees, and 270 degrees.
【0014】更に、本発明による円偏波平面アンテナ
は、上記の目的を達成するため、前記立体曲面の中心が
その頂点であり、前記4個の円偏波放射マイクロストリ
ップパッチ素子は前記頂点を中心に対称配置するように
したことを特徴とするものである。Further, in the circularly polarized plane antenna according to the present invention, in order to achieve the above-mentioned object, the center of the three-dimensional curved surface is its apex, and the four circularly polarized radiation microstrip patch elements have the apexes. The feature is that they are symmetrically arranged in the center.
【0015】本発明による円偏波平面アンテナは、更に
詳細には、上記の目的を達成するため、誘電体板の形状
を立体曲面とし、その誘電体板の両面に金、銀、銅、又
はアルミ等の導体板(または導体層)を熱圧着又は接着
剤等で積層し、更に、その表面には、エッチング手段等
により、前記曲面の頂点を中心に4個の円偏波放射マイ
クロストリップパッチ素子を90゜づつ点対象に回転し
た位置に配置し、裏面全面には接地導体板を設ける。
又、円偏波放射マイクロストリップパッチ素子と同一面
上には、各円偏波放射マイクロストリップパッチ素子に
対する給電用マイクロストリップ線路を設け、それぞれ
線路の長さを4分の1波長ずつ長くすることにより90
゜づつ位相差を設けるようにして合成し、合成した出力
を接地導体板側より同軸線路を介して取り出すよう構成
したことを特徴とするものである。More specifically, in order to achieve the above-mentioned object, the circularly polarized plane antenna according to the present invention has a shape of a dielectric plate having a three-dimensional curved surface, and gold, silver, copper, or both surfaces of the dielectric plate. A conductor plate (or conductor layer) made of aluminum or the like is laminated by thermocompression bonding or an adhesive agent, and further four circularly polarized radiation microstrip patches centering on the apex of the curved surface by etching means or the like on the surface thereof. The element is arranged at a position rotated by 90 ° in points, and a ground conductor plate is provided on the entire back surface.
In addition, a power supply microstrip line for each circularly polarized radiation microstrip patch element is provided on the same plane as the circularly polarized radiation microstrip patch element, and the length of each line is lengthened by a quarter wavelength. By 90
It is characterized in that it is configured such that a phase difference is provided for each degree, and the combined output is taken out from the ground conductor plate side via a coaxial line.
【0016】[0016]
【作用】本発明による円偏波平面アンテナは、上記のよ
うに構成したことにより、4個の円偏波放射マイクロス
トリップパッチ素子(以下、放射素子と略称する)の受
信周波数がアンテナの共振周波数f0から外れて各放射
素子が楕円偏波を放射するようになった場合、次に述べ
るように作用する。すなわち、第1の放射素子1aから
発生した楕円偏波と第2の放射素子1bから発生した楕
円偏波とは、物理的に90度反時計回りに回転した位置
から発生し、又、第2の放射素子1bの給電位相が第1
の放射素子1aの給電位相に対し90度遅れるように、
給電用マイクロストリップ線路の長さを4分の1波長
〔(b〜e)−(a〜e)=λg/4〕ずらして構成し
たので、これら2つの楕円偏波を合成すると完全な円偏
波が発生する。Since the circularly polarized planar antenna according to the present invention is configured as described above, the reception frequencies of the four circularly polarized radiation microstrip patch elements (hereinafter referred to as "radiating elements") are the resonance frequencies of the antenna. When each radiating element radiates an elliptically polarized wave outside f0, it operates as described below. That is, the elliptically polarized wave generated from the first radiating element 1a and the elliptically polarized wave generated from the second radiating element 1b are generated from a position physically rotated 90 degrees counterclockwise, and The radiating element 1b has a first feeding phase
Is delayed by 90 degrees with respect to the feeding phase of the radiating element 1a of
Since the length of the feeding microstrip line is shifted by a quarter wavelength [(b to e)-(a to e) = λg / 4], the two elliptical polarized waves are combined into a complete circular polarization. Waves are generated.
【0017】又、第1の放射素子1aの物理的配置を0
度、第2の放射素子1bを第1の放射素子1aに対し9
0度、第3の放射素子1cを第1の放射素子1aに対し
180度、第4の放射素子1dを第1の放射素子1aに
対し270度となるよう配置にしているため、第2の放
射素子1bから発生した楕円偏波と第3の放射素子1c
から発生した楕円偏波とは、物理的に90度反時計回り
に回転した位置にあり、第3の放射素子1cの給電位相
は第2の放射素子1bの給電位相に対し90度遅れとな
る。そのため、これら第2及び第3、2つの楕円偏波の
合成により完全な円偏波が発生する。The physical arrangement of the first radiating element 1a is set to 0.
9 times the second radiating element 1b with respect to the first radiating element 1a.
The third radiating element 1c is arranged at 180 degrees with respect to the first radiating element 1a, and the fourth radiating element 1d is arranged at 270 degrees with respect to the first radiating element 1a. Elliptical polarization generated from the radiating element 1b and the third radiating element 1c
The elliptically polarized wave generated from is located at a position physically rotated counterclockwise by 90 degrees, and the feeding phase of the third radiating element 1c is delayed by 90 degrees with respect to the feeding phase of the second radiating element 1b. . Therefore, perfect circular polarization is generated by combining these second, third, and elliptical polarizations.
【0018】同様に、第3及び第4、2つの楕円偏波の
合成により完全な円偏波が発生し、第4及び第1、2つ
の楕円偏波の合成によっても完全な円偏波が発生する。
その結果、給電用マイクロストリップ線路の出力点Pで
は、これら方向を異にする楕円偏波の合成により、完全
な円偏波が生じる。従って、円偏波の受信が可能な周波
数帯域幅が大幅に拡大される。Similarly, perfect circular polarization is generated by combining the third, fourth, and second elliptical polarizations, and perfect circular polarization is also generated by combining the fourth, first, and second elliptical polarizations. Occur.
As a result, at the output point P of the feeding microstrip line, perfect circular polarization occurs due to the combination of elliptical polarizations having different directions. Therefore, the frequency bandwidth capable of receiving circularly polarized waves is greatly expanded.
【0019】その上、立体曲面形状の誘電体板上に放射
マイクロストリップパッチ素子を設けたことにより、放
射マイクロストリップパッチ素子の側面方向に対する視
野面積が向上したため、水平方向に対する円偏波特性
(軸比)が広角化され、広い角度範囲で円偏波特性(軸
比)の周波数帯域幅の広帯域化が達成される。In addition, since the radiation microstrip patch element is provided on the three-dimensional curved dielectric plate, the field of view in the lateral direction of the radiation microstrip patch element is improved, so that the circular polarization characteristic in the horizontal direction ( The axial ratio is widened, and the frequency band width of the circular polarization characteristic (axial ratio) is widened in a wide angular range.
【0020】[0020]
【実施例】以下、添付図面に基づき本発明の一実施例を
詳細に説明する。図1の(a)は、本発明の一実施例に
よる円偏波平面アンテナ(マイクロストリップアンテ
ナ)の平面図、図1の(b)は、その側面図を示す。
又、図2はその断面図である。図1において、1a,1
b,1c,1dは円偏波放射のための放射マイクロスト
リップパッチ素子、2は接地導体板、3は誘電体板であ
る。4a,4b,4c,4d,5a,5bは給電用マイ
クロストリップ線路、6は給電用同軸線路である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1A is a plan view of a circularly polarized planar antenna (microstrip antenna) according to an embodiment of the present invention, and FIG. 1B is a side view thereof.
2 is a sectional view thereof. In FIG. 1, 1a, 1
b, 1c and 1d are radiation microstrip patch elements for circularly polarized radiation, 2 is a ground conductor plate, and 3 is a dielectric plate. Reference numerals 4a, 4b, 4c, 4d, 5a and 5b are microstrip lines for feeding, and 6 is a coaxial line for feeding.
【0021】本実施例においては、誘電体板3は、図2
の断面図に示すように、その断面が楕円の長軸A−Bに
平行な直線A’−B’より上部の部分からなるように構
成され、この誘電体板3の頂点Dを中心に、誘電体板の
上面の曲率にそい、4個の放射マイクロストリップパッ
チ素子1a,1b,1c,1dがそれぞれ90゜づつ回
転配置して設けられる。接地導体板2は誘電体板3の下
面の曲率にそって設けられ、放射素子1a,1b,1
c,1dと同一面上に給電用マイクロストリップ線路4
a,4b,4c,4d,5a,5bが設けられ、給電用
合成点である給電点Pから接地導体板2の側に設けられ
た出力用の給電用同軸線路6を介して給電される。In this embodiment, the dielectric plate 3 is the same as that shown in FIG.
As shown in the cross-sectional view of FIG. 3, the cross-section is composed of a portion above the straight line A′-B ′ parallel to the major axis AB of the ellipse, and with the vertex D of the dielectric plate 3 as the center, Four radiating microstrip patch elements 1a, 1b, 1c and 1d are provided by rotating 90 ° each along the curvature of the upper surface of the dielectric plate. The ground conductor plate 2 is provided along the curvature of the lower surface of the dielectric plate 3, and the radiating elements 1a, 1b, 1
Microstrip line 4 for feeding on the same plane as c and 1d
a, 4b, 4c, 4d, 5a, and 5b are provided, and power is fed from a power feeding point P, which is a power feeding composite point, through an output power feeding coaxial line 6 provided on the ground conductor plate 2 side.
【0022】このような構成において、4個の放射マイ
クロストリップパッチ素子の4つの給電点a,b,c,
d,を結ぶ各給電用マイクロストリップ線路4a,4
b,4c,4d,5a,5bの線路長はそれぞれ以下の
ように設定される。In such a structure, four feeding points a, b, c, of the four radiating microstrip patch elements are provided.
microstrip lines 4a, 4 for feeding each connecting d,
The line lengths of b, 4c, 4d, 5a and 5b are set as follows.
【0023】 4a=(a〜e) 4b=(b〜e)=4a+(λg/4) 4c=(c〜f)=(a〜e) 4d=(d〜f)=4c+(λg/4) 5a=(e〜p)=5b−(λg/2) 5b=(f〜p) 但し(λ
g=線路波長)4a = (a to e) 4b = (b to e) = 4a + (λg / 4) 4c = (c to f) = (a to e) 4d = (d to f) = 4c + (λg / 4 ) 5a = (e to p) = 5b- (λg / 2) 5b = (f to p) where (λ
g = line wavelength)
【0024】給電ポイントa,b,c,dは、曲面の頂
点Dを中心に点対象に反時計回りに90゜ずつ回転した
位置に配置される。この4つの出力を上記のように設定
した線路長の給電用マイクロストリップ線路(4a,4
b,4c,4d,5a,5b)において合成することに
より、それぞれ0゜,90゜,180゜,270゜とそ
の給電に位相差をもたせるようにしている。The feeding points a, b, c and d are arranged at positions rotated by 90 ° counterclockwise about a point D of the curved surface as a point object. These four outputs have the line lengths set as described above and are used for feeding microstrip lines (4a, 4
b, 4c, 4d, 5a, 5b), the respective feedings have a phase difference of 0 °, 90 °, 180 ° and 270 °.
【0025】このような構成にする事により、給電用マ
イクロストリップ線路の出力点Pでは、方向を異にする
4つの楕円偏波の合成により、完全な円偏波を発生す
る。従って、円偏波の受信が可能な周波数帯域幅が大幅
に拡大される。With this structure, at the output point P of the feeding microstrip line, perfect circular polarization is generated by combining four elliptical polarizations having different directions. Therefore, the frequency bandwidth capable of receiving circularly polarized waves is greatly expanded.
【0026】更に、立体曲面形状の誘電体板上に放射マ
イクロストリップパッチ素子を設けたことにより、放射
マイクロストリップパッチ素子の側面方向に対する視野
面積が拡大したため、円偏波特性(軸比)の広角化がな
され、その広い角度範囲における円偏波特性(軸比)の
周波数帯域幅の広帯域化が達成された。Further, since the radiating microstrip patch element is provided on the three-dimensional curved dielectric plate, the field of view in the lateral direction of the radiating microstrip patch element is expanded, so that the circular polarization characteristic (axial ratio) is improved. A wide angle has been achieved, and the frequency band width of the circular polarization characteristic (axial ratio) in the wide angle range has been widened.
【0027】図3は、図1に示した本考案によるアンテ
ナの円偏波特性(軸比)−周波数特性(実線)と、図4
に示した従来例のアンテナの円偏波特性(軸比)−周波
数特性(点線)とを示した線図である。例えば、軸比1
dBのレベルで比較すると、、従来例では、±1%弱の
帯域幅しか得られないのに対し、本実施例においては、
±2.5%強の帯域幅を得ることができるということが
わかる。FIG. 3 shows a circular polarization characteristic (axial ratio) -frequency characteristic (solid line) of the antenna according to the present invention shown in FIG.
FIG. 7 is a diagram showing a circular polarization characteristic (axial ratio) -frequency characteristic (dotted line) of the antenna of the conventional example shown in FIG. For example, axial ratio 1
Comparing at the level of dB, in the conventional example, only a bandwidth of less than ± 1% can be obtained, whereas in the present example,
It can be seen that a bandwidth of ± 2.5% or more can be obtained.
【0028】[0028]
【発明の効果】本発明は、以上の説明から明かなよう
に、誘電体板の形状を立体的な曲面形状とし、その曲面
に沿って4個の円偏波放射用放射マイクロストリップパ
ッチ素子を、放射状にそれぞれ90゜ずつ回転配置し、
4個のアンテナ出力が給電用マイクロストリップ線路に
おいて、その位相差が0゜90゜180゜270゜とな
るように設定してそれらを合成するようにしたことによ
り、アンテナの円偏波特性(軸比)の周波数帯域幅が広
帯域化されると共に、円偏波特性(軸比)の周波数帯域
幅の広帯域化の範囲を広角にして、円偏波平面アンテナ
の性能を大きく向上することができた。As is apparent from the above description, the present invention makes the shape of the dielectric plate a three-dimensional curved surface, and provides four circularly polarized radiation microstrip patch elements along the curved surface. , Each of which is rotated radially by 90 °,
The circular polarization characteristics of the antennas were set by setting the phase difference of the four antenna outputs to 0 ° 90 ° 180 ° 270 ° in the feeding microstrip line and combining them. Along with widening the frequency bandwidth of the axial ratio), the range of widening the frequency bandwidth of the circular polarization characteristic (axial ratio) can be widened to greatly improve the performance of the circular polarization planar antenna. did it.
【図1】(a)は本発明の一実施例による円偏波平面ア
ンテナの平面図 (b)は同実施例による円偏波平面アンテナの側面図1A is a plan view of a circularly polarized plane antenna according to an embodiment of the present invention, and FIG. 1B is a side view of a circularly polarized plane antenna according to the embodiment.
【図2】図1に示す実施例による円偏波平面アンテナの
断面図FIG. 2 is a sectional view of a circularly polarized planar antenna according to the embodiment shown in FIG.
【図3】アンテナの円偏波特性(軸比)−周波数特性図[Fig. 3] Circular polarization characteristic (axial ratio) -frequency characteristic diagram of the antenna
【図4】(a)は第1の従来例の平面図 (b)は同従来例の断面図FIG. 4A is a plan view of a first conventional example, and FIG. 4B is a sectional view of the same conventional example.
【図5】(a)は第2の従来例の平面図 (b)は同従来例の断面図FIG. 5A is a plan view of a second conventional example, and FIG. 5B is a sectional view of the same conventional example.
【図6】(a)は第3の従来例の平面図 (b)は同従来例の断面図FIG. 6A is a plan view of a third conventional example, and FIG. 6B is a sectional view of the same conventional example.
1a,1b,1c,1d 放射マイクロストリップパッ
チ素子 2 接地導体板 3 誘電体板 4a,4b,4c,4d, 給電用マイクロストリップ
線路 5a,5b 給電用マイクロストリップ線路 6 給電用同軸線路 7,11 放射マイクロストリップパッチ素子 8,12 誘電体板 9,13 接地導体板 10,14 給電用同軸線路 15a,15b,15c,15d 直線偏波放射素子 16 平坦な誘電体板 17 給電用マイクロストリップ線路 18 接地導体板 a,b,c,d 各アンテナの給電点 e,f 分岐点 p 給電点 D 頂点1a, 1b, 1c, 1d Radiation microstrip patch element 2 Ground conductor plate 3 Dielectric plates 4a, 4b, 4c, 4d, Microstrip line for feeding 5a, 5b Microstrip line for feeding 6 Coaxial line for feeding 7, 11 Radiation Microstrip patch element 8,12 Dielectric plate 9,13 Grounding conductor plate 10,14 Feeding coaxial line 15a, 15b, 15c, 15d Linearly polarized radiation element 16 Flat dielectric plate 17 Feeding microstrip line 18 Grounding conductor Plate a, b, c, d Feeding point of each antenna e, f Branching point p Feeding point D Vertex
Claims (2)
波放射マイクロストリップパッチ素子を配し、対向する
他方の面には接地導体板を設けた円偏波平面アンテナで
あって、前記誘電体板は立体曲面形状とし、前記4個の
円偏波放射マイクロストリップパッチ素子は前記立体曲
面の中心から放射状に0度、90度、180度、270
度なる間隔で、且つそれぞれの給電位相差が0度、90
度、180度、270度なる如く構成したことを特徴と
する円偏波平面アンテナ。1. A circularly polarized plane antenna in which four circularly polarized radiation microstrip patch elements are arranged on one side of a dielectric plate and a grounding conductor plate is provided on the other opposite side. The dielectric plate has a three-dimensional curved surface shape, and the four circularly polarized radiation microstrip patch elements are 0 °, 90 °, 180 °, and 270 radially from the center of the three-dimensional curved surface.
And the feeding phase difference of each is 0 degree, 90 degrees.
A circularly polarized plane antenna characterized in that the angle is 180 degrees and 270 degrees.
記4個の円偏波放射マイクロストリップパッチ素子は前
記頂点を中心に対称配置することを特徴とする請求項1
記載の円偏波平面アンテナ。2. The center of the three-dimensional curved surface is its apex, and the four circularly polarized radiation microstrip patch elements are symmetrically arranged about the apex.
The circularly polarized plane antenna described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28884293A JPH07122930A (en) | 1993-10-26 | 1993-10-26 | Circular polarized wave planar antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28884293A JPH07122930A (en) | 1993-10-26 | 1993-10-26 | Circular polarized wave planar antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07122930A true JPH07122930A (en) | 1995-05-12 |
Family
ID=17735457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28884293A Pending JPH07122930A (en) | 1993-10-26 | 1993-10-26 | Circular polarized wave planar antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07122930A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19614068A1 (en) * | 1996-04-09 | 1997-10-16 | Fuba Automotive Gmbh | Flat antenna |
JP2003234617A (en) * | 2002-02-07 | 2003-08-22 | Yokowo Co Ltd | Composite antenna |
JP2004221964A (en) * | 2003-01-15 | 2004-08-05 | Fdk Corp | Antenna module |
CN106025533A (en) * | 2016-07-11 | 2016-10-12 | 北京航大泰科信息技术有限公司 | Left-handed circularly polarized antenna |
CN106450762A (en) * | 2016-10-19 | 2017-02-22 | 厦门致联科技有限公司 | Compact symmetrical feed network |
CN109560372A (en) * | 2018-10-30 | 2019-04-02 | 华南理工大学 | A kind of circular polarization ceramic substrate microstrip antenna |
JP2019080128A (en) * | 2017-10-23 | 2019-05-23 | 日本アンテナ株式会社 | Circularly polarized omnidirectional antenna, array antenna, and polarization diversity communication system using the same |
KR20230018973A (en) * | 2021-07-30 | 2023-02-07 | 주식회사 에이치제이웨이브 | 3D Vertically Polarized Antenna Structure |
-
1993
- 1993-10-26 JP JP28884293A patent/JPH07122930A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19614068A1 (en) * | 1996-04-09 | 1997-10-16 | Fuba Automotive Gmbh | Flat antenna |
US5818394A (en) * | 1996-04-09 | 1998-10-06 | Fuba Automotive Gmbh | Flat antenna |
JP2003234617A (en) * | 2002-02-07 | 2003-08-22 | Yokowo Co Ltd | Composite antenna |
JP2004221964A (en) * | 2003-01-15 | 2004-08-05 | Fdk Corp | Antenna module |
CN106025533A (en) * | 2016-07-11 | 2016-10-12 | 北京航大泰科信息技术有限公司 | Left-handed circularly polarized antenna |
CN106450762A (en) * | 2016-10-19 | 2017-02-22 | 厦门致联科技有限公司 | Compact symmetrical feed network |
JP2019080128A (en) * | 2017-10-23 | 2019-05-23 | 日本アンテナ株式会社 | Circularly polarized omnidirectional antenna, array antenna, and polarization diversity communication system using the same |
CN109560372A (en) * | 2018-10-30 | 2019-04-02 | 华南理工大学 | A kind of circular polarization ceramic substrate microstrip antenna |
KR20230018973A (en) * | 2021-07-30 | 2023-02-07 | 주식회사 에이치제이웨이브 | 3D Vertically Polarized Antenna Structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5594455A (en) | Bidirectional printed antenna | |
JP3856835B2 (en) | Dual polarization array antenna with central polarization controller | |
US7724200B2 (en) | Antenna device, array antenna, multi-sector antenna, high-frequency wave transceiver | |
CA2721438C (en) | Circularly polarized loop reflector antenna and associated methods | |
US6690331B2 (en) | Beamforming quad meanderline loaded antenna | |
WO2006030583A1 (en) | Antenna assembly and multibeam antenna assembly | |
JP4073130B2 (en) | Cross dipole antenna | |
JP3273402B2 (en) | Printed antenna | |
JPH0270104A (en) | Wide directional microstrip antenna | |
JPH07122930A (en) | Circular polarized wave planar antenna | |
JP5924959B2 (en) | Antenna device | |
CN112688057B (en) | Broadband circularly polarized microstrip antenna based on crossed dipole | |
CN116315621B (en) | Navigation enhancement type four-arm spiral antenna | |
Kola et al. | An array of tulip-flower shaped printed radiators for direct broadcast satellite (DBS) applications | |
JP2013219533A (en) | Antenna device | |
US4315264A (en) | Circularly polarized antenna with circular arrays of slanted dipoles mounted around a conductive mast | |
CN117080757A (en) | Design method of left-right circular polarization switchable microstrip array antenna | |
JP4025499B2 (en) | Circularly polarized antenna and circularly polarized array antenna | |
JP4202572B2 (en) | Omnidirectional antenna | |
Akbar et al. | 360° Beam Steering with Circular Polarization Based on the Superposition of Circular $\text {TE} _ {\mathrm {n} 1} $ Modes | |
Zhang et al. | A broadband circularly polarized substrate integrated antenna with dual magnetoelectric dipoles coupled by crossing elliptical slots | |
Matsunaga et al. | A circularly polarized spiral/loop antenna and its simple feeding mechanism | |
Zhang et al. | Broadband Circularly-Polarized slotted waveguide array antenna with low axial ratio | |
Meng et al. | Novel wideband low-profile dual-circularly polarized metasurface antenna | |
George et al. | Investigations of an aperture coupled circular polarized via walls backed microstrip patch linear array antenna for beam steering performance |