JPH07122004B2 - Plastic modifier and manufacturing method thereof - Google Patents

Plastic modifier and manufacturing method thereof

Info

Publication number
JPH07122004B2
JPH07122004B2 JP4248886A JP24888692A JPH07122004B2 JP H07122004 B2 JPH07122004 B2 JP H07122004B2 JP 4248886 A JP4248886 A JP 4248886A JP 24888692 A JP24888692 A JP 24888692A JP H07122004 B2 JPH07122004 B2 JP H07122004B2
Authority
JP
Japan
Prior art keywords
less
fibers
cellulose
powder
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4248886A
Other languages
Japanese (ja)
Other versions
JPH0673231A (en
Inventor
沢 寿 也 大
野 塚 克 己 小
井 克 己 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP4248886A priority Critical patent/JPH07122004B2/en
Publication of JPH0673231A publication Critical patent/JPH0673231A/en
Publication of JPH07122004B2 publication Critical patent/JPH07122004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は植物繊維からなるプラス
チック改質材とその製造法に関し、特にプラスチック成
形用ペレットの改質に際し、植物繊維を混練するときに
供給するマスタ−バッチおよびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic modifier made of vegetable fibers and a method for producing the same, and more particularly to a master batch to be supplied when kneading vegetable fibers and a method for producing the same when reforming pellets for plastic molding. Regarding

【0002】[0002]

【従来の技術】一般にプラスチックの改質や増量を目的
として繊維をプラスチックに混合することは公知であ
る。最近はエコロジィ−の関係で古紙パルプとの混合が
検討されている。 プラスチックの改質や増量を目的と
して繊維をプラスチックに混合する場合の方法として、
従来は乾式で粉砕した古紙を、混練して軟化状態にある
プラスチック中に練込んでいるのが実情である。
BACKGROUND OF THE INVENTION It is generally known to mix fibers with plastics for the purpose of modifying or increasing the amount of plastics. Recently, mixing with waste paper pulp has been considered due to ecological concerns. As a method of mixing fibers with plastics for the purpose of modifying or increasing the amount of plastics,
The conventional practice is to knead used dry and crushed waste paper into the softened plastic.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術では、
例えば古紙パルプを原料とする場合、その紙粉を単なる
充填剤として利用する以外は下記の問題があり未だ工業
的生産技術は定着していないのが実情である。 (1) 粉砕した古紙が著しく嵩だかのため、そのハン
ドリングが困難を極め、生産性に決定的な障害となって
いる。 (2) 古紙に不可避なホッチキス針、クリップ、リン
グ、ファスナ−などの金属製の異物と粉砕機の粉砕刃と
の接触で発生する火花が、粉砕された紙粉の火種となり
易く、火災の危険が常に大きい。 (3) 乾式の粉砕では繊維の損傷なしに単繊維状に古
紙を解繊することは不可能で、繊維は結束状態で切断さ
れて粉末状となり、繊維としての改質効果は激減する。 (4) 古紙と一緒に粉砕された金属製の異物を、効率
よく乾燥状態の原料から分離・除去することは非常に困
難で、工業的に効率よく確実に除去することは不可能で
ある。 (5) 繊維の長さを温存して、乾式の粉砕を紙片状態
で止め、樹脂に混練しても更に解繊するためには長時間
を要し、樹脂の溶融温度では繊維は絶対乾燥(絶乾)状
態で一層繊維間結合は強固に角質化して脆くなり、繊維
は高温・高剪断の負荷のもとで熱劣化を受けつつ短繊維
化して結局は前記(3)と同様に紙粉化してしまう。
SUMMARY OF THE INVENTION In the above prior art,
For example, when waste paper pulp is used as a raw material, there are the following problems except that the paper powder is simply used as a filler, and the industrial production technology is not established yet. (1) Since crushed waste paper is extremely bulky, its handling is extremely difficult, which is a decisive obstacle to productivity. (2) Sparks generated by contact between metal foreign objects such as staples, clips, rings, fasteners, etc., which are inevitable on used paper, and the crushing blade of the crusher are prone to the fire of crushed paper powder, which is a fire hazard. Is always big. (3) With dry pulverization, it is impossible to disintegrate waste paper into single fibers without damaging the fibers, and the fibers are cut in a bound state to form a powder, and the modifying effect as fibers is drastically reduced. (4) It is extremely difficult to efficiently separate and remove the metallic foreign matter crushed together with the waste paper from the dry raw material, and it is impossible to remove it industrially efficiently and reliably. (5) Even if the length of the fiber is preserved and the dry crushing is stopped in the form of paper pieces and kneaded with the resin, it takes a long time to further defibrate, and the fiber is absolutely dried at the melting temperature of the resin ( In the (dry) state, the fiber-to-fiber bonds are more strongly keratinized and become brittle, and the fibers become short fibers while undergoing thermal deterioration under the load of high temperature and high shear, and eventually paper powder similar to (3) above. Will turn into.

【0004】[0004]

【課題を解決するための手段】古紙は既に成紙であり、
成紙は繊維間結合が水素結合で形成されており、乾燥乃
至脱水によってこの結合は一層強固になる。そこで、繊
維にできるだけ機械的なダメ−ジを与えないで、個々の
単繊維に分離、解繊するための手段としては、古紙を充
分な水で湿潤させ、繊維を膨潤させつつ必要最小限度の
機械的撹拌で解繊しなくてはならない。このように古紙
の湿潤状態での解繊にあっては、金属製の異物は解繊中
の撹拌翼に接触しても水中であるので火花による火災の
危険は全くない。さらに解繊された古紙の懸濁液中にお
いては、金属製異物は比重差による沈降、遠心力による
分離やスリット、メッシュによるスクリ−ニング(scre
ening)で容易に、しかも確実に分離除去することができ
る。また、解繊された古紙の懸濁液においては繊維は均
一に分散、浮遊しているので、目的に応じて複数種類の
古紙を混合することができ、また助剤、添加剤の添加は
最小限度の撹拌で容易に均一におこなわれる。このよう
に本発明は従来、合成樹脂およびその加工技術の分野で
は忌避されていた水を逆に活用して、常識を覆した全く
異質である製紙技術的発想からプラスチック改質材に改
善を加え、具体的には下記の如くこの課題の解決を試み
た。
[Means for Solving the Problems] The used paper is already made of paper,
The bond between fibers of hydrogenated paper is formed by hydrogen bond, and the bond is further strengthened by drying or dehydration. Therefore, as a means for separating and defibrating individual single fibers without giving mechanical damage to the fibers as much as possible, the waste paper is wetted with sufficient water to swell the fibers and to the minimum necessary amount. It must be defibrated by mechanical stirring. As described above, in the defibration of waste paper in a wet state, there is no danger of a fire due to sparks because the metallic foreign matter is in water even if it contacts the stirring blade during defibration. Furthermore, in the defibrated suspension of waste paper, metallic foreign substances settle due to the difference in specific gravity, separation due to centrifugal force, slits, and screening with a mesh (screw).
can be easily and surely separated and removed. In the disintegrated used paper suspension, the fibers are evenly dispersed and suspended, so multiple kinds of used paper can be mixed according to the purpose, and the addition of auxiliary agents and additives is minimal. Easily and uniformly with limited agitation. As described above, the present invention reversely utilizes water, which has been repelled in the field of synthetic resin and its processing technology, to improve the plastic modifier from a completely different papermaking technical idea that overturns common sense. Specifically, we tried to solve this problem as follows.

【0005】(1) 古紙などの単一または複数種類を
組み合わせたパルプ原料をパルパ−で充分離解して水懸
濁液とする。この時、難離解性の原料の場合はパルパ−
よりも強い剪断力が要求されるのでニ−ダ−を利用する
が60%以上の水の存在下で行うことが肝要である。水
分が60%に満たない場合は、動力エネルギ−の消費が
多くなる上に離解効率も悪く、過少の水分のために繊維
の機械的損傷の危険さえある。 (2) この離解原料は必要に応じて希釈してセントリ
−・クリ−ナ−(遠心分離機)にかけて重量異物を除去
する。 (3) さらに粗大な異物はスクリ−ニングで除去す
る。 (4) (2)、(3)の除塵をへて精選されたパルプ
懸濁液に対して、パルプが乾燥しても再び強固な繊維間
結合ができず、かつプラスチック成形用ペレットとの混
練時は繊維の分散を促進させるための添加剤を加え混合
する。
(1) A pulp raw material, such as waste paper, or a combination of a plurality of pulp raw materials is charged and separated with a pulper to obtain a water suspension. At this time, if the raw material is difficult to disintegrate
Since a stronger shearing force is required, it is necessary to use a kneader, but it is important to perform it in the presence of 60% or more of water. If the water content is less than 60%, the kinetic energy consumption is high, the disaggregation efficiency is poor, and there is even a risk of mechanical damage to the fiber due to too little water content. (2) The disaggregation raw material is diluted if necessary and is applied to a centrifuge cleaner (centrifuge) to remove heavy foreign matters. (3) Further coarse foreign matter is removed by screening. (4) The pulp suspension carefully selected by removing the dust of (2) and (3) does not allow strong fiber-to-fiber bonding again even when the pulp is dried, and is kneaded with the plastic molding pellets. At the time, an additive for promoting the dispersion of fibers is added and mixed.

【0006】この添加剤の必要条件は次の通りである。 (1) 繊維間隙に介在して繊維が乾燥するとき繊維間の
水素結合を充分妨げ得るもの。 (2) パルプ繊維をペレットに造粒するとき、その成形
の妨げにならないもの。 (3) 完成されたパルプマスタ−が樹脂と混練されると
き、その温度条件と剪断応力で短時間に、個々の単繊維
状が樹脂中へ均一に分散することを促すことができるも
の。 また、添加剤の添加量は、植物繊維を60%以上の水の
存在下で、粒径830μm 以下の微粒子、繊維径50μ
m 以下の微細繊維、200℃以下の被膜溶融温度または
軟化温度を有する液状物、沸点が200℃以上の可塑剤
またはセルロ−ス疎水化剤のうちの少なくとも1種類を
合計で植物繊維に対し2〜30重量%を添加する。
The requirements for this additive are as follows: (1) Those that can sufficiently prevent hydrogen bonding between fibers when the fibers intervene in the fiber gap and dry. (2) When granulating pulp fibers into pellets, those that do not interfere with the molding. (3) When the completed pulp master is kneaded with a resin, it is possible to promote the uniform dispersion of individual single fibers in the resin in a short time due to the temperature conditions and shear stress. In addition, the amount of the additive added is such that plant fibers are present in the presence of 60% or more of water, fine particles having a particle size of 830 μm or less, and a fiber diameter of 50 μm.
At least one of fine fibers of m or less, liquid having a coating melting temperature or softening temperature of 200 ° C. or less, and a plasticizer having a boiling point of 200 ° C. or more or a cellulose hydrophobizing agent is added to the plant fiber in a total amount of 2 ~ 30 wt% is added.

【0007】この場合、添加剤として微粒子を用いると
きは、その粒径が830μを超えるときは、繊維間隙に
介在して繊維間の水素結合を妨げるに充分な間隔を得る
ことはできるが、その添加量当たりの効率が低くなり、
添加量を増加するとその品質的影響が無視できなくな
る。添加剤として微細繊維の50μを超える繊維径を使
用する場合もこれと同じことがいえる。添加剤として使
用するラテックスの樹脂被膜の軟化温度が200℃を超
えるときは、その温度以上の混練温度で植物繊維を樹脂
に練り込まねば繊維は充分分散しない。しかし、一般に
植物繊維の混練時の熱劣化を配慮すると、その上限温度
が200℃なので実用的ではないのである。添加剤とし
て使用する可塑剤の沸点が200℃を下回る時は、同様
の理由で200℃以下の混練温度で可塑剤は沸騰してし
まうので実用的ではないのである。尚、上記言及した如
く、それぞれに特定した添加剤の添加量の下限未満では
繊維の結束が多くなり、射出成形時のノズルにそれが詰
まり、成形不能か、金型に充分原料が供給されずショ−
ト・ショットを生じ、逆に上限を超える場合は各種の強
度が半減して使用に供し得なかったことより、経験的に
得られた適性範囲である。
In this case, when the fine particles are used as the additive, if the particle size is more than 830 μ, it is possible to intervene in the interstices between the fibers to obtain a sufficient distance to prevent hydrogen bonding between the fibers. The efficiency per addition amount becomes low,
If the added amount is increased, its quality influence cannot be ignored. The same can be said when using a fiber diameter exceeding 50 μ of fine fibers as an additive. When the softening temperature of the resin coating of the latex used as an additive exceeds 200 ° C., the fibers are not sufficiently dispersed unless the plant fibers are kneaded into the resin at a kneading temperature higher than that temperature. However, in consideration of heat deterioration during kneading of plant fibers, the upper limit temperature is generally 200 ° C., which is not practical. When the boiling point of the plasticizer used as an additive is lower than 200 ° C., for the same reason, the plasticizer boils at a kneading temperature of 200 ° C. or less, which is not practical. As mentioned above, if the addition amount of the additive specified for each is less than the lower limit, the binding of fibers will increase, and the nozzle will be clogged with the nozzle during injection molding, and molding will not be possible or the raw material will not be sufficiently supplied to the mold. Show
However, if the strength exceeds the upper limit, the various strengths were reduced by half and the material could not be used. Therefore, the range is empirically obtained.

【0008】粒径830μm 以下の微粒子は、無機物非
金属では炭酸カルシウム、水酸化アルミニウム、アルミ
ナ、カオリン、シリカ、マイカ、亜鉛華、亜鉛白、酸化
チタン、カ−ボンブラック、弁柄が使用される。金属で
は鉄粉、ニッケル粉、銅粉、アルミニウム粉が使用され
る。有機物樹脂ではポリエチレン、ポリプロピレン、ポ
リスチレン、アクリルスチレン、ポリアミド、ポリエス
テル、エポキシ、セルロ−ス誘導体が使用される。繊維
径50μm 以下の微細繊維は、ガラス、カ−ボン、ロッ
クウ−ル、ポリエチレン、ポリプロピレン、ポリアミ
ド、ポリエステル、セルロ−ス誘導体が使用される。2
00℃以下の被膜溶融温度または軟化温度を有する液状
物は、ワックスエマルジョン、ラテックス、C18以下の
脂肪酸またはその金属塩が使用される。沸点が200℃
以上の可塑剤またはセルロ−ス疎水化剤は、芳香族・脂
肪族のエステルまたはアルキルケテンダイマ−(AK
D)、アルケニル琥珀酸無水物(ASA)、無水ステア
リン酸、アルキル・酸クロライド、イソシアネ−ト、Z
r錯化合物、Cr錯化合物が使用される。
As fine particles having a particle size of 830 μm or less, calcium carbonate, aluminum hydroxide, alumina, kaolin, silica, mica, zinc white, zinc white, titanium oxide, carbon black, and rouge are used as inorganic non-metals. . As the metal, iron powder, nickel powder, copper powder, and aluminum powder are used. As the organic resin, polyethylene, polypropylene, polystyrene, acrylic styrene, polyamide, polyester, epoxy, cellulose derivative is used. As the fine fibers having a fiber diameter of 50 μm or less, glass, carbon, rock wool, polyethylene, polypropylene, polyamide, polyester and cellulose derivatives are used. Two
As the liquid having a coating melting temperature or softening temperature of 00 ° C. or lower, a wax emulsion, a latex, a C 18 or lower fatty acid or a metal salt thereof is used. Boiling point is 200 ℃
The above plasticizers or cellulose hydrophobizing agents are aromatic / aliphatic esters or alkyl ketene dimers (AK
D), alkenyl succinic anhydride (ASA), stearic anhydride, alkyl acid chloride, isocyanate, Z
An r complex compound and a Cr complex compound are used.

【0009】[0009]

【作用】植物繊維はセルロ−ス繊維によって構成されて
おり、セルロ−ス繊維は代表的な親水性高分子物質であ
る。その親水性はセルロ−ス分子の水酸基に起因するも
ので、この水酸基は繊維内および繊維間隙において水素
結合を形成している。この水素結合は各O−H基のH原
子が近接する他のO−H基のO原子に引き付けられるた
めにO−H…と表されるような結合を形成し、共有結合
の要素も有してO−H…OとO…H−Oのような二つの
極限構造間の量子力学的共鳴によって結合が形成される
と考えられているものである。セルロ−ス繊維におい
て、この水素結合は繊維内の他のセルロ−ス分子のOH
でも、隣接する繊維表面同志のOHでも、また近接する
水分子のOHでも同様に結合を形成することができる。
The plant fiber is composed of cellulose fiber, and the cellulose fiber is a typical hydrophilic polymer substance. The hydrophilicity is due to the hydroxyl group of the cellulose molecule, and this hydroxyl group forms a hydrogen bond in the fiber and in the fiber gap. This hydrogen bond forms a bond represented as O-H because the H atom of each O-H group is attracted to the O atom of another adjacent O-H group, and also has a covalent bond element. Then, it is believed that a bond is formed by quantum mechanical resonance between two limit structures such as O-H ... O and O ... H-O. In the cellulosic fiber, this hydrogen bond is the OH of other cellulosic molecules in the fiber.
However, bonds can be formed similarly between OHs of adjacent fiber surfaces or OHs of adjacent water molecules.

【0010】一般にセルロ−ス繊維に於いては、繊維内
の結晶領域で分子間水素結合を形成し、結晶間隙の非晶
領域では水分子を介した水素結合を形成している。ミセ
ル、ミクロフィブリル、フィブリル、ラメラ、そして単
繊維、というような繊維の各構成単位の間隙において
も、各構成単位表面のセルロ−ス分子のOHは吸湿状態
に応じた水の多分子層を介して水素結合を形成してい
る。繊維の膨潤状態ではより多くの水の多分子層を構成
単位間隙に介在させて結合するので、繊維は運動の自由
度を得て柔軟になる。逆に乾燥状態では介在する水を失
い構成単位間隙は狭くなり、運動の自由度を失い剛直に
なる。更に強い脱水条件に曝される時は、隣接する二つ
のOHから一分子のH2 Oが脱水されて−O−なるエ−
テル結合を形成する可能性がある。エ−テル結合は水素
結合より強い結合であり、最早、再び水分子の侵入によ
って結合が緩和されることはなく、不可逆的で堅固な結
着を完成する。この場合、単繊維自体も高い抗張力を得
る反面、一層自由度を失い脆くなる。
Generally, in the cellulose fiber, intermolecular hydrogen bonds are formed in the crystal region within the fiber, and hydrogen bonds are formed through water molecules in the amorphous region of the crystal gap. Even in the gaps between the constituent units of fibers such as micelles, microfibrils, fibrils, lamellas, and single fibers, the OH of the cellulosic molecules on the surface of each constituent unit passes through the multi-molecular layer of water according to the hygroscopic state. Form a hydrogen bond. In the swollen state of the fiber, a larger amount of a multi-molecular layer of water intervenes in the gaps between the constituent units to be bonded, so that the fiber has flexibility in movement and becomes flexible. On the contrary, in the dry state, the intervening water is lost and the structural unit gap is narrowed, so that the freedom of movement is lost and the structure becomes rigid. When exposed to stronger dehydration conditions, one molecule of H 2 O is dehydrated from two adjacent OHs to form -O-.
May form tel bonds. The ether bond is a stronger bond than the hydrogen bond, and the bond is no longer relaxed by the invasion of water molecules and completes an irreversible and firm bond. In this case, while the single fiber itself obtains high tensile strength, it loses more freedom and becomes brittle.

【0011】成紙においてその製造工程において製品強
度を発現させている、水素結合を主体とした繊維間結合
は完成されている。従って前述の如く、その水素結合は
乾燥、脱水によって一層強固になる反面、吸水、湿潤に
よって繊維間隙に水の多分子層を形成してその結合力を
容易に弛暖するものである。従来技術における樹脂との
混練状態は、成紙である古紙には乾燥および脱水が条件
である。その水素結合は介在する水を失い、繊維同志の
結束は強固になる。混練する樹脂の溶融、軟化温度は一
般に100℃を超えることからすると、脱水条件でもあ
りうる。この条件では繊維のOH同志の水素結合から、
さらに強固にして自由度の乏しいエ−テル結合を形成す
るに至る。その結果、繊維の結束は固くて脆く、強いて
この結束を解こうとすれば、熱劣化を受けつつある繊維
は止む無く脆く粉砕を余儀なくされる。
In the papermaking process, the fiber-to-fiber bonds mainly composed of hydrogen bonds have been completed, which are used to develop the product strength in the manufacturing process. Therefore, as described above, the hydrogen bond is further strengthened by drying and dehydration, but on the other hand, it absorbs and wets to form a multi-molecular layer of water in the interstices of the fiber to easily relax the bonding force. The kneaded state with the resin in the prior art is such that used paper, which is a synthetic paper, must be dried and dehydrated. The hydrogen bond loses the intervening water and the bond between the fibers becomes stronger. Since the melting and softening temperatures of the resin to be kneaded generally exceed 100 ° C., it may be a dehydration condition. In this condition, from the hydrogen bond of OH of fiber,
Further strengthening and forming an ether bond having a low degree of freedom. As a result, the binding of the fibers is hard and brittle, and if the binding of the fibers is attempted to be released by force, the fibers undergoing thermal deterioration will be fragile and unavoidably crushed.

【0012】これに反し本発明は、先ず従来技術が忌避
する水を充分使って、上記の作用に基づき繊維間結合を
弛めつつ、繊維に機械的損傷を与えることのない必要最
低限度の水力学的剪断力で『完全に単繊維に分散』させ
ることを前提条件とし、次いでそれが完成品に至る間の
乾燥工程においも再び水素結合を形成することなく、し
かも樹脂と混練されるときには樹脂の中に『単繊維とし
て容易に分散する』方法を提供しているのである。解繊
された古紙繊維が後続する乾燥工程で再び水素結合によ
る結束を形成させないためには、原理的には各繊維表面
のOH基を封鎖しなければならず、化学的に疎水基の架
橋反応という分子レベル、物理的にエマルジョンによる
コロイド粒子レベル、同様に填料、顔料などの粉体粒子
レベルなど、目的に応じて各種の添加剤が選ばれる。い
ずれも繊維表面の繊維間結合に活性なOHを効果的に化
学的乃至物理的に封鎖しつつ、各セルロ−スOH基間に
安定的に介在できることが肝要で、水素結合を妨げ、同
時に混練される繊維に樹脂中への分散を促進させ、しか
もペレットに圧縮造粒するときの成形の妨げにならぬも
のに限定されるものである。
Contrary to this, the present invention firstly uses the water repelled by the prior art sufficiently to loosen the inter-fiber bond based on the above-mentioned action, and at the minimum necessary amount of water that does not give mechanical damage to the fiber. It is premised on "completely disperse into single fiber" by mechanical shearing force, and then it does not form hydrogen bond again in the drying process until it becomes a finished product, and when it is kneaded with the resin, It provides a method to "disperse easily as single fibers". In order to prevent the defibrated waste paper fibers from forming a bond due to hydrogen bonds again in the subsequent drying process, in principle, the OH groups on the surface of each fiber must be blocked, and the cross-linking reaction of the hydrophobic group chemically occurs. Various additives are selected according to the purpose, such as the molecular level, the colloidal particle level physically formed by emulsion, and the powder particle level such as filler and pigment. In both cases, it is essential that the active OH is effectively chemically or physically blocked for the inter-fiber bonds on the fiber surface, and stable intercalation between the cellulose OH groups is possible. It is limited to those that promote the dispersion of the fibers in the resin and do not hinder the molding when compression granulating into pellets.

【0013】具体的にこの前提条件を満たすものとして
本発明では、添加剤として、物理的作用のものと化学的
作用のものとに大別し、前者の微粒子、即ち『点』とし
て使用し、微細繊維、即ち一次元の『線』として使用
し、被膜、即ち二次元の『面』として使用し、さらに液
体、即ち三次元の『立体』として使用し、繊維の活性面
を封鎖する物理的方法と、直接効果的にOHに化学的反
応による化学的方法をそれぞれ特定しているのである。
原理的には、物理的、化学的にOH基間に水素結合し難
いものを定着させ、それによってOH間に距離を作るこ
とである。この距離があれば添加剤のような介在する物
が無くとも、即ち空隙があればこの水素結合を妨げるこ
とはできる。事実、紙粉乃至綿状の繊維は上記の添加剤
を使用しなくとも、比較的容易に樹脂中に分散すること
はできる。しかし、著しく嵩高で軽いため、ハンドリン
グが困難であるのみならず、混練時に粘稠な樹脂の中に
容易に混入できず、所定仕込み量を練り込むためには数
回に分けて強制的に押し込むか、時間をかけて練り込む
しかない。その結果、多かれ少なかれ仕込み初めと仕込
み終りとのタイム・ラグは避けられず、繊維の熱履歴に
差を生じ製品品質のバラツキが避けられなくなる。
Specifically, in the present invention as satisfying this prerequisite, the additives are roughly classified into those having a physical action and those having a chemical action, and they are used as the former fine particles, that is, "dots", A physical fiber that is used as a fine fiber, that is, as a one-dimensional "line", as a coating, that is, as a two-dimensional "plane", and as a liquid, that is, as a three-dimensional "three-dimensional", and that seals the active surface of the fiber The method and the chemical method that directly and effectively reacts with OH are specified.
The principle is to physically and chemically fix OH groups which are difficult to hydrogen bond with each other, thereby making a distance between OH groups. With this distance, this hydrogen bond can be prevented even if there is no intervening substance such as an additive, that is, if there is a void. In fact, paper dust or cotton-like fibers can be dispersed in the resin relatively easily without the use of the abovementioned additives. However, because it is extremely bulky and light, it is not only difficult to handle, but it cannot be easily mixed into the viscous resin during kneading, and in order to knead the predetermined amount, it is forcedly pushed in several times. Or, there is no choice but to knead it over time. As a result, a time lag between the beginning and the end of the preparation is more or less unavoidable, and a difference in the heat history of the fibers is generated, and variations in product quality cannot be avoided.

【0014】従って本発明が、その対策として繊維が長
径で30mm以下のペレット乃至塊状の形態を有すること
を特定していることは重要である。その長径を30mm以
下に限定したのは、それを超える時は、混練に比較的時
間がかかる。またホッパ−でブリッジを形成し易くな
り、計量精度が悪くなるなどの問題を生じることを経験
的に得ているからである。本発明のプラスチック改質材
は、再び水中で撹拌すれば懸濁状態に離解する特徴を持
っている。この再離解性は処方の変更や作り直しが繊維
にダメ−ジを与えることなく容易に行えるので、原料の
無駄がなく便利である。このようにして得られた繊維改
質材は、従来法の樹脂との混練で繊維が損傷して短繊維
化することなく、原料の繊維長としてその改質効果を発
揮することができるのである。
Therefore, it is important for the present invention to specify that the fibers have a pellet-like or lump-like form having a major axis of 30 mm or less as a countermeasure. The reason why the major axis is limited to 30 mm or less is that the kneading takes a relatively long time when the major axis is exceeded. Further, it is empirically obtained that a bridge is likely to be formed in the hopper, which causes problems such as deterioration of weighing accuracy. The plastic modifier of the present invention is characterized in that it is disintegrated into a suspended state when stirred again in water. This re-disintegration property is convenient because it is possible to easily change the formulation or remake it without damaging the fiber, so that the raw material is not wasted. The fiber modifier thus obtained can exert its modifying effect as the fiber length of the raw material without the fiber being damaged and shortening due to the kneading with the resin of the conventional method. .

【0015】[0015]

【実施例】実施例1 パルプ濃度3%(水分97%)に相当す量の新聞古紙を
パルパ−に仕込み十分離解した。離解したパルプスラリ
−に、対パルプ3wt%のカチオン性高級脂肪酸エマルジ
ョン、10wt%のカ−ボンブラック(平均粒径0.1
μ)を添加して均一に混合した。この配合原料を高濃度
クリ−ナ−、ラモ−スクリ−ンを通して除塵し、次いで
傾斜エキストラクタ−、スクリュ−プレスと2段の脱水
工程を経て、20〜25%に水分調整した。これを不二
パウダル社製デスクペレッタ−F−60N型で直径5m
m、長さ5mmのペレットに造粒した。
Example 1 Waste newspaper of an amount corresponding to a pulp concentration of 3% (water content of 97%) was put into a pulper and was sufficiently separated. To the disintegrated pulp slurry, a cationic higher fatty acid emulsion containing 3 wt% of pulp and 10 wt% of carbon black (average particle size 0.1
μ) was added and mixed uniformly. Dust was removed from this blended raw material through a high-concentration cleaner and a Ramo-screen, and then the water content was adjusted to 20 to 25% through a two-stage dewatering process with a graded extractor and a screw press. This is a Fuji Paudal desk peretta-F-60N type with a diameter of 5 m.
Granulated into pellets of m and 5 mm in length.

【0016】実施例2 段屑(段ボ−ル古紙)を、実施例1と同様に離解し、解
繊したパルプスラリ−に、10〜15μのポリエチレン
微粉末を対パルプ5wt%を添加し、更にその定着剤とし
て両性ラテックス(融点は約150℃)を対パルプ3wt
%添加し、充分撹拌混合した。この配合原料を、実施例
1と同様に、除塵、造粒して直径5mmのペレットに造粒
した。
Example 2 The step waste (waste ball waste paper) was disintegrated in the same manner as in Example 1, and 10 to 15 μm of polyethylene fine powder was added to the pulp slurry in an amount of 5 wt% with respect to the pulp. Amphoteric latex (melting point is about 150 ° C) as a fixing agent for 3 wt% of pulp
% Was added and thoroughly mixed with stirring. This blended raw material was subjected to dust removal and granulation in the same manner as in Example 1 to form pellets having a diameter of 5 mm.

【0017】実施例3 上質紙古紙の脱インキパルプを、実施例1と同様に離解
し、解繊したパルプスラリ−に、対パルプ、アルケニル
琥珀酸無水物(ASA)2wt%、平均粒径0.5μのタ
ルク10wt%を添加し、均一に混合し、実施例1と同様
に除塵、脱水、水分調整を経て造粒した。そのペレット
は直径5mm、長さ5mmであった。
Example 3 The deinked pulp of high-quality waste paper was disintegrated and disintegrated in the same manner as in Example 1, and the pulp slurry was defibrated with 2% by weight of alkenyl succinic anhydride (ASA) and an average particle size of 0. 5 μl of talc (10 wt%) was added, and the mixture was uniformly mixed, and then, as in Example 1, dust removal, dehydration, and water content adjustment were performed before granulation. The pellet had a diameter of 5 mm and a length of 5 mm.

【0018】ポリプロピレン50部に対して、実施例
1.2.3.で得たペレットを50部を森山製作所社製
MS式加圧ニ−ダ−DS55−100型で混練し、射出
成形してテストピ−スを作り下記の表1のデ−タを得
た。尚、比較に供した従来法のサンプルは、乾式粉砕で
は最も効率がよいとされている、Turbo−mil
l:タ−ボミル(タ−ボ工業社製)で新聞古紙を粉砕
し、上記同様MS式加圧ニ−ダ−でPPと混練して得た
ペレットをテストピ−スに射出成形して供試した。
Example 1.2.3. With 50 parts of polypropylene. Fifty parts of the pellets obtained in 1 above were kneaded with an MS type pressure kneader DS55-100 type manufactured by Moriyama Seisakusho Co., Ltd. and injection-molded to obtain test pieces to obtain the data shown in Table 1 below. The conventional method sample used for comparison is said to have the highest efficiency in dry pulverization.
l: Newspaper waste paper was crushed with Tarbomill (manufactured by Tarbo Kogyo Co., Ltd.), and pellets obtained by kneading with PP with an MS type pressure kneader as described above were injection-molded into a test piece for testing. did.

【0019】本発明の改質材はペレット状で所定の仕込
み量が一回で仕込めたのに対し、従来例の新聞古紙の粉
砕物は軽くて嵩高のため、まず所定量の計量が困難で、
しかも一回で仕込めず、仕込むのに加圧を繰り返し、数
回に分けて仕込み作業をしなければならなかった。その
ため必然的に混練時間が必要以上にかかり、2〜3倍混
練時間を延長しなくてはならなかった。従って従来例の
ものは仕込みの初めと終わりでは大幅に条件が異なり、
品質保証に不安が残った。
The modifying material of the present invention was pelletized and charged in a predetermined amount at one time, whereas the crushed waste paper of the conventional example is light and bulky, so that it is difficult to measure the predetermined amount. ,
Moreover, it was not possible to do it all at once, and it was necessary to repeat the pressurization to do so, and to do the work several times. Therefore, the kneading time inevitably took longer than necessary, and the kneading time of 2 to 3 times had to be extended. Therefore, the conventional example has significantly different conditions at the beginning and the end of preparation,
I was still worried about quality assurance.

【0020】下記表1のデ−タの如く、本発明による実
施例がベ−スレジンのPPはもとより従来法のそれと比
較して、殆ど全ての物性項目において優れていることが
明らかである。従来法のタ−ボミルで粉砕した古紙の混
練は数十分継続しても分散不良の結束繊維の斑点が残
り、終局的には焦臭を発生するに至る。これに対して本
発明によれば数分の混練で均一な分散が完了するので、
繊維に対する機械的、熱的負荷は最小限に止め得た。
As shown in the data in Table 1 below, it is apparent that the examples according to the present invention are superior in almost all physical properties as compared with the PP of the base resin as well as that of the conventional method. Even if the kneading of waste paper pulverized by the conventional method, Tabomill, is continued for several tens of minutes, spots of unsatisfactorily dispersed binding fibers remain and finally a foul odor is generated. On the other hand, according to the present invention, since uniform dispersion is completed by kneading for several minutes,
The mechanical and thermal load on the fibers can be kept to a minimum.

【0021】[0021]

【表1】 [Table 1]

【0022】尚、各添加剤の添加量の特定せる範囲を超
えた場合の比較例を下記表2に纒めた。
A comparative example in the case where the addition amount of each additive exceeds the specified range is shown in Table 2 below.

【表2】 本発明で上表の如く改質されたプラスチック製品は、燃
焼カロリ−が6000〜6500cal/gで生のプラ
スチックのそれよりも著しく低かった。
[Table 2] The plastic products modified according to the present invention as shown in the above table had a combustion calorie of 6000 to 6500 cal / g, which was significantly lower than that of the raw plastic.

【0023】[0023]

【発明の効果】本発明に係るプラスチック改質材は上記
の説明から判るように、粒径830μm以下の微粒子、
繊維径50μm以下の微細繊維、200℃以下の被膜溶
融温度または軟化温度を有する液状物、沸点が200℃
以上の可塑剤またはセルロース疎水化剤のうちの少なく
とも1種類の添加剤を、植物繊維に対し2〜30重量%
含有した植物繊維からなるペレット乃至塊状の粒体が長
径で30mm以下に形成したので、植物繊維自体の機械
的損傷がなく、プラスチック混練前は上記添加剤によっ
て植物繊維間結合が阻止され、プラスチック混練時は
稠な樹脂中に前記長径で30mm以下のペレット乃至塊
状の形態をした繊維が容易に混入されることとなり、し
かも上記添加剤によって植物繊維が均一に分散されるこ
ととなり、引張強度、曲げ強度、曲げ弾性、熱変形温度
などのプラスチックの各種物性を向上させることができ
る。
As can be seen from the above description, the plastic modifier according to the present invention is a fine particle having a particle size of 830 μm or less,
Fine fibers with a fiber diameter of 50 μm or less, film melting at 200 ° C or less
Liquid with melting or softening temperature, boiling point 200 ° C
Less of the above plasticizers or cellulose hydrophobizing agents
2 to 30% by weight of one additive with respect to the plant fiber
Since the pellets or agglomerates of the contained plant fibers are formed to have a major axis of 30 mm or less, there is no mechanical damage to the plant fibers themselves, and before the plastic kneading, the above-mentioned additives prevent the inter-vegetable fiber bonds and the plastic kneading. Time is sticky
Pellets or lumps with a major axis of 30 mm or less in a thick resin
The fibers in the shape of
In addition, the plant fibers are uniformly dispersed by the above additives, and various physical properties of the plastic such as tensile strength, bending strength, bending elasticity, and heat distortion temperature can be improved.

【0024】また、本発明のプラスチック改質材は、再
び水中で撹拌すれば懸濁状態に離解することができる結
果、この再離解性は処方の変更や作り直しが繊維にダメ
−ジを与えることなく容易に行えることとなり、原料を
無駄なく有効に使うことができるという便利さがある。
さらにまた、本発明に係るプラスチック改質材の製造法
は、植物繊維を60%以上の水の存在下で、粒径830
μm 以下の微粒子、繊維径50μm 以下の微細繊維、2
00℃以下の被膜溶融温度または軟化温度を有する液状
物、沸点が200℃以上の可塑剤またはセルロ−ス疎水
化剤のうちの少なくとも1種類を合計で植物繊維に対し
2〜30重量%添加し、単繊維に分散し、除塵、混合
し、次いで脱水し、造粒してなるものであるから、古紙
等を使用して解繊する場合にも金属製の異物の除去が容
易であり、火災等の発生もなく、動力エネルギ−の消費
も少なく、解繊効率も良好であり、かつ樹脂と植物繊維
からなる粒状体との混練に際しても樹脂中に繊維を円
滑、迅速に均一分散させることができる。
Further, the plastic modifier of the present invention can be disintegrated into a suspended state by stirring again in water. As a result, this re-disintegration property causes damage to the fiber when the formulation is changed or remade. It can be done easily without any waste, and there is the convenience that raw materials can be used effectively without waste.
Furthermore, the method for producing a plastic modifier according to the present invention is characterized in that plant fibers are added in the presence of 60% or more of water in a particle size of 830
Fine particles of less than μm, fine fibers of 50 μm or less in diameter,
At least one kind of liquid material having a coating melting temperature or softening temperature of 00 ° C or lower, a plasticizer having a boiling point of 200 ° C or higher or a cellulose hydrophobizing agent is added in a total amount of 2 to 30% by weight based on the plant fiber. Since it is dispersed in single fibers, dust-removed, mixed, then dehydrated and granulated, it is easy to remove metallic foreign substances even when disintegrating using waste paper, etc. Etc., less consumption of power energy, good defibration efficiency, and smooth and rapid uniform dispersion of fibers in the resin even when kneading the resin and the granular material made of plant fibers. it can.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 1:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area // B29K 1:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒径830μm以下の微粒子、繊維径5
0μm以下の微細繊維、200℃以下の被膜溶融温度ま
たは軟化温度を有する液状物、沸点が200℃以上の可
塑剤またはセルロース疎水化剤のうちの少なくとも1種
類の添加剤を、植物繊維に対し2〜30重量%含有した
植物繊維からなるペレット乃至塊状の粒体が長径で30
mm以下であることを特徴とするプラスチック改質材。
1. Fine particles having a particle diameter of 830 μm or less, and a fiber diameter of 5.
Fine fibers of 0 μm or less, coating melting temperature of 200 ° C. or less
Or a liquid with a softening temperature, a boiling point of 200 ° C or higher
At least one of a plasticizer or a cellulose hydrophobizing agent
30 to 30% by weight of pellets or agglomerates of plant fibers containing 2 to 30% by weight of additives of the class 3 to plant fibers.
A plastic modifier characterized by being less than or equal to mm.
【請求項2】 粒径830μm以下の微粒子は、無機物
非金属では炭酸カルシウム、水酸化アルミニウム、アル
ミナ、カオリン、シリカ、マイカ、亜鉛華、亜鉛白、酸
化チタン、カーボンブラック、弁柄、金属では鉄粉、ニ
ッケル粉、銅粉、アルミニウム粉、有機物樹脂ではポリ
エチレン、ポリプロピレン、ポリスチレン、アクリルス
チレン、ポリアミド、ポリエステル、エポキシ、セルロ
ース誘導体であり、繊維径50μm以下の微細繊維は、
ガラス、カーボン、ロックウール、ポリエチレン、ポリ
プロピレン、ポリアミド、ポリエステル、セルロース誘
導体であり、200℃以下の被膜溶融温度または軟化温
度を有する液状物は、ワックスエマルジョン、ラテック
ス、C18以下の脂肪酸またはその金属塩であり、沸点
が200℃以上の可塑剤またはセルロース疎水化剤は、
芳香族・脂肪族のエステルまたはアルキルケテンダイマ
ー(AKD)、アルケニル琥珀酸無水物(ASA)、無
水ステアリン酸、アルキル・酸クロライド、イソシアネ
ート、Zr錯化合物、Cr錯化合物あることを特徴とす
る請求項記載のプラスチック改質材。
2. Fine particles having a particle size of 830 μm or less are calcium carbonate, aluminum hydroxide, alumina, kaolin, silica, mica, zinc white, zinc white, titanium oxide, carbon black, rouge, and iron for metals as inorganic non-metals. Powder, nickel powder, copper powder, aluminum powder, organic resin is polyethylene, polypropylene, polystyrene, acrylic styrene, polyamide, polyester, epoxy, cellulose derivative, and the fine fibers having a fiber diameter of 50 μm or less are
Liquid substances that are glass, carbon, rock wool, polyethylene, polypropylene, polyamide, polyester, and cellulose derivatives, and have a film melting temperature or softening temperature of 200 ° C. or less are wax emulsion, latex, C 18 or less fatty acid or metal salt thereof. And the plasticizer or cellulose hydrophobizing agent having a boiling point of 200 ° C. or higher is
Aromatic / aliphatic ester or alkyl ketene dimer (AKD), alkenyl succinic anhydride (ASA), stearic anhydride, alkyl / acid chloride, isocyanate, Zr complex compound, Cr complex compound. 1. The plastic modifier according to 1 .
【請求項3】 水中で離解、分散することができる、植
物繊維からなるペレット乃至塊状の粒体あることを特徴
とする請求項1又は2記載のプラスチック改質材。
Wherein it is possible disaggregation, dispersed in water, according to claim 1 or 2 plastic reforming material, wherein that the granules of the pellet or lump consisting vegetable fibers.
【請求項4】 植物繊維を60%以上の水の存在下で、
粒径830μm以下の微粒子、繊維径50μm以下の微
細繊維、200℃以下の被膜溶融温度または軟化温度を
有する液状物、沸点が200℃以上の可塑剤またはセル
ロース疎水化剤のうちの少なくとも1種類を合計で植物
繊維に対し2〜30重量%添加し、単繊維に分散し、除
塵、混合し、次いで脱水し、造粒してなることを特徴と
するプラスチック改質材の製造法。
4. Plant fibers in the presence of 60% or more water,
At least one of fine particles having a particle diameter of 830 μm or less, fine fibers having a fiber diameter of 50 μm or less, a liquid substance having a film melting temperature or a softening temperature of 200 ° C. or less, a plasticizer having a boiling point of 200 ° C. or more, or a cellulose hydrophobizing agent. A method for producing a plastic modifier, which comprises adding 2 to 30% by weight to plant fibers in total, dispersing into single fibers, removing dust, mixing, then dehydrating and granulating.
【請求項5】 粒径830μm以下の微粒子は、無機物
非金属では炭酸カルシウム、水酸化アルミニウム、アル
ミナ、カオリン、シリカ、マイカ、亜鉛華、亜鉛白、酸
化チタン、カーボンブラック、弁柄、金属では鉄粉、ニ
ッケル粉、銅粉、アルミニウム粉、有機物樹脂ではポリ
エチレン、ポリプロピレン、ポリスチレン、アクリルス
チレン、ポリアミド、ポリエステル、エポキシ、セルロ
ース誘導体であり、繊維径50μm以下の微細繊維は、
ガラス、カーボン、ロックウール、ポリエチレン、ポリ
プロピレン、ポリアミド、ポリエステル、セルロース誘
導体であり、200℃以下の被膜溶融温度または軟化温
度を有する液状物は、ワックスエマルジョン、ラテック
ス、C18以下の脂肪酸またはその金属塩であり、沸点
が200℃以上の可塑剤またはセルロース疎水化剤は、
芳香族・脂肪族のエステルまたはアルキルケテンダイマ
ー(AKD)、アルケニル琥珀酸無水物(ASA)、無
水ステアリン酸、アルキル・酸クロライド、イソシアネ
ート、Zr錯化合物、Cr錯化合物あることを特徴とす
る請求項記載のプラスチック改質材の製造法。
5. Fine particles with a particle size of 830 μm or less are calcium carbonate, aluminum hydroxide, alumina, kaolin, silica, mica, zinc white, zinc white, titanium oxide, carbon black, rouge, and iron for metals as inorganic non-metals. Powder, nickel powder, copper powder, aluminum powder, organic resin is polyethylene, polypropylene, polystyrene, acrylic styrene, polyamide, polyester, epoxy, cellulose derivative, and the fine fibers having a fiber diameter of 50 μm or less are
Liquid substances that are glass, carbon, rock wool, polyethylene, polypropylene, polyamide, polyester, and cellulose derivatives, and have a film melting temperature or softening temperature of 200 ° C. or less are wax emulsion, latex, C 18 or less fatty acid or metal salt thereof. And the plasticizer or cellulose hydrophobizing agent having a boiling point of 200 ° C. or higher is
Aromatic / aliphatic ester or alkyl ketene dimer (AKD), alkenyl succinic anhydride (ASA), stearic anhydride, alkyl / acid chloride, isocyanate, Zr complex compound, Cr complex compound. 4. The method for producing a plastic modifier according to 4 .
JP4248886A 1992-08-26 1992-08-26 Plastic modifier and manufacturing method thereof Expired - Lifetime JPH07122004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248886A JPH07122004B2 (en) 1992-08-26 1992-08-26 Plastic modifier and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248886A JPH07122004B2 (en) 1992-08-26 1992-08-26 Plastic modifier and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0673231A JPH0673231A (en) 1994-03-15
JPH07122004B2 true JPH07122004B2 (en) 1995-12-25

Family

ID=17184910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248886A Expired - Lifetime JPH07122004B2 (en) 1992-08-26 1992-08-26 Plastic modifier and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07122004B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001893A1 (en) * 2007-06-27 2008-12-31 Kankyokeieisogokenkyusho Co., Inc. Method for production of chopstick containing paper component
JP5297702B2 (en) * 2007-06-27 2013-09-25 株式会社環境経営総合研究所 Chopsticks containing paper powder
JP5297703B2 (en) * 2007-06-27 2013-09-25 株式会社環境経営総合研究所 Paper component-containing chopsticks manufacturing method
WO2009001892A1 (en) * 2007-06-27 2008-12-31 Kankyokeieisogokenkyusho Co., Inc. Chopstick containing paper powder
JP5179266B2 (en) * 2008-04-03 2013-04-10 ダイセルポリマー株式会社 Fiber-containing additive
JP4906941B2 (en) * 2010-03-24 2012-03-28 三菱電機株式会社 Method for producing hydrophilic resin and molded article of pulp fiber composite resin
JP4906940B2 (en) * 2010-03-24 2012-03-28 三菱電機株式会社 Method for producing hydrophilic resin and molded article of pulp fiber composite resin
JP4906942B2 (en) * 2010-03-24 2012-03-28 三菱電機株式会社 Method for producing pulp fiber reinforced resin and pulp fiber reinforced resin
JP4906939B2 (en) * 2010-03-24 2012-03-28 三菱電機株式会社 Method for producing hydrophilic resin and molded article of pulp fiber composite resin
JP4799682B1 (en) * 2010-11-05 2011-10-26 三菱電機株式会社 Method for producing pulp fiber reinforced resin
JP4832593B1 (en) * 2010-11-05 2011-12-07 三菱電機株式会社 Pulp fiber reinforced resin raw material
JP4799683B1 (en) * 2010-11-05 2011-10-26 三菱電機株式会社 Method for producing pulp fiber reinforced resin
JP4799685B1 (en) * 2010-11-05 2011-10-26 三菱電機株式会社 Pulp fiber composite raw material
US20130309493A1 (en) * 2010-11-25 2013-11-21 Oji Holdings Corporation Method for producing plant fiber composite material to be kneaded with matrix
JP5757765B2 (en) * 2011-03-31 2015-07-29 国立大学法人京都大学 Resin composition containing modified microfibrillated plant fiber
EP3441425B9 (en) 2016-12-05 2021-07-21 Furukawa Electric Co., Ltd. Cellulose aluminum dispersed polyethylene resin composite, pellet and molded body using same, and method for manufacturing same
KR20200044003A (en) 2017-08-23 2020-04-28 후루카와 덴키 고교 가부시키가이샤 Cellulose fiber-dispersed polyolefin resin composite, pellets and molded articles using the same, and method for manufacturing cellulose fiber-dispersed polyolefin resin composite
WO2019039571A1 (en) * 2017-08-23 2019-02-28 古河電気工業株式会社 Polyolefin resin composite containing dispersed cellulose fibers
WO2019038869A1 (en) 2017-08-23 2019-02-28 古河電気工業株式会社 Cellulose fiber dispersion polyethylene resin composite, molded body and pellets using same, manufacturing method for these, and recycling method for polyethylene thin film fragments with adhered cellulose fibers
US11667763B2 (en) 2017-08-23 2023-06-06 Furukawa Electric Co., Ltd. Cellulose-fiber dispersion polyethylene resin composite material, formed body and pellet using same, production method therefor, and recycling method for cellulose-fiber adhesion polyethylene thin film piece

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039098B2 (en) * 1971-12-30 1975-12-15
JPS5654335B2 (en) * 1972-07-11 1981-12-24
JPS6053104A (en) * 1983-09-02 1985-03-26 常盤産業株式会社 Pencil type cosmetic synthetic shaft and its production

Also Published As

Publication number Publication date
JPH0673231A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JPH07122004B2 (en) Plastic modifier and manufacturing method thereof
JP4598303B2 (en) Granular inorganic filler, process for producing the same, and resin composition comprising the granular inorganic filler
Kılınc et al. Manufacturing and characterization of vine stem reinforced high density polyethylene composites
AU652053B2 (en) Water-absorbent polymer aggregates
JP6787136B2 (en) Fine cellulose fiber-containing resin composition and its manufacturing method
JP2012214563A (en) Resin composition containing modified microfibrillated plant fiber
JP2514875B2 (en) Pellet for molding plastic and its manufacturing method
Simonsen Utilizing straw as a filler in thermoplastic building materials
WO2020262344A1 (en) Cellulose fiber composite recycled resin and production method therefor
JP2019001938A (en) Manufacturing method of fibrillated cellulose fiber, and manufacturing method of resin composition
KR102082916B1 (en) Method for preparing polymer composite having hydrophobized cellulose powder and polymer composite prapared therefrom
JP3345760B2 (en) Method for producing molded articles composed of biodegradable composite materials
JP5708657B2 (en) Method for producing vegetable fiber composite material for matrix kneading
JPWO2020138496A1 (en) Manufacturing method of lignocellulosic fiber, lignocellulosic fiber and composite material
US3334070A (en) Production of finely divided particles of synthetic polymers
JP7354203B2 (en) Microfiber cellulose solids, method for producing microfiber cellulose solids
US3931082A (en) Microcrystalline polyesters and dispersions thereof
JP4745303B2 (en) Filler and manufacturing method thereof
WO2024128275A1 (en) Particle-containing fiber bundle production method and particle-containing fiber bundle
CA2050600A1 (en) Cellulosic product, process for the production thereof and uses thereof
JP5179266B2 (en) Fiber-containing additive
WO2023181538A1 (en) Fibrous cellulose composite resin
DE102007007168A1 (en) Smooth, hydrophobized shaped articles, especially useful as animal litters, are obtained by hydrophobically sizing cellulosic material then shaping without addition of binders
JP2004075964A (en) Synthetic resin composition containing scallop shell
JP2003073927A (en) Basic magnesium sulphate fiber and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960903