JPH07121931A - Optical head and optical disk apparatus - Google Patents

Optical head and optical disk apparatus

Info

Publication number
JPH07121931A
JPH07121931A JP5268594A JP26859493A JPH07121931A JP H07121931 A JPH07121931 A JP H07121931A JP 5268594 A JP5268594 A JP 5268594A JP 26859493 A JP26859493 A JP 26859493A JP H07121931 A JPH07121931 A JP H07121931A
Authority
JP
Japan
Prior art keywords
polarized light
optical
circularly polarized
light
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5268594A
Other languages
Japanese (ja)
Inventor
Takeshi Shimano
健 島野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5268594A priority Critical patent/JPH07121931A/en
Publication of JPH07121931A publication Critical patent/JPH07121931A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To optically detect the edge position of a magneto-optical domain without arranging a detector on a condensing part and without being affected by fine uneven parts on a disk. CONSTITUTION:Linearly polarized light from a semiconductor laser 1 is condensed on an optical disk 5 via a lens 2, a beam splitter 3 and a lens 4. Reflected light is reflected by the beam splitter 3, and the clockwise circularly polarized light component and the counterclockwise circularly polarized light component of the linearly polarized light are converted into orthogonal linearly polarized light through a quarter-wave plate 11. The polarized light is separated by a polarization beam splitter 6, and optical outputs in regions divided so as to be arranged in the signal recording direction of the optical disk 5 are detected by two-split detectors 8, 9. A difference signal is found by differential amplifiers 10a, 10b, a difference between a clockwise component and a counterclockwise component is found further by a differential amplifier 10c, and the edge signal of a magneto-optical domain in which the influence of uneven parts on the disk has been offset is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気ディスク装置また
はその他の光ディスク装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical disk device or other optical disk device.

【0002】[0002]

【従来の技術】従来、光磁気ディスク装置においては、
上または下の一方向に磁化された強磁性体を付加した光
磁気ディスクにレーザ光を照射し、その熱でスポット照
射場所の強磁性体の温度がキュリー温度以上となり、そ
こに磁場を印加してスポット照射部の磁化を反転させる
ことにより形成されるドメインに情報を記録している。
この情報を再生するにあたっては直線偏光をドメインに
集光し、磁気カー効果により磁化の向きに応じて偏光方
向が回転することを利用して、この偏光回転を光学的に
検出している。しかしこの方法ではカー回転角が小さい
ため信号レベルが小さいという問題点があった。このた
め近年光磁気ディスクの記録密度向上のために用いられ
ているマークエッジ再生を行うため読みだし信号に対し
て微分処理を行うと、ノイズが増大し、光学系の収差
や、装置の調整精度などの許容値を厳しくしてしまう原
因となっていた。
2. Description of the Related Art Conventionally, in a magneto-optical disk device,
A magneto-optical disk with a ferromagnetic material magnetized in one direction above or below is irradiated with laser light, and the heat causes the temperature of the ferromagnetic material at the spot irradiation location to rise above the Curie temperature, and a magnetic field is applied to it. Information is recorded in the domain formed by reversing the magnetization of the spot irradiation portion.
In reproducing this information, linearly polarized light is focused on the domain, and the polarization rotation is optically detected by utilizing the fact that the polarization direction rotates due to the direction of magnetization by the magnetic Kerr effect. However, this method has a problem that the signal level is low because the car rotation angle is small. For this reason, when differential processing is performed on the read signal in order to perform mark edge reproduction, which has been used for improving the recording density of magneto-optical disks in recent years, noise increases, and aberration of the optical system and adjustment accuracy of the device are increased. It was a cause of tightening the allowable value such as.

【0003】これに対して、読みだし電気信号に対して
微分処理を行うのでなく、最初から光学的に微分処理を
行う方法が例えば平成4年秋季応用物理学会学術講演会
予稿集950頁、18a−T−8、9、10に提案され
ている。この光学系を図1に示す。ディスク5からの反
射光を偏光ビームスプリッタ6を通してほぼ等光量の直
交する直線偏光に分離し、それぞれ別々の光検出器8、
9に集光する。光検出器は各々媒体上の情報記録方向に
分離されており(8a、b、9a、b)、光スポットが
記録媒体上で記録ドメインの境界上にあるとき、検出器
8、9のa、bに入射する光は各々反転する磁化によっ
て逆方向のカー回転を受け、出力は図2における8及び
9の軸方向の投影成分となる。したがってこれらの出力
を図1に示すように演算処理することによってドメイン
のエッジ信号が検出できる。
On the other hand, a method of optically differentiating the read electric signal instead of differentiating the electric signal from the beginning is disclosed in, for example, the 1994 Autumn Applied Physics Society Academic Lecture Proceedings 950, 18a. -Proposed in T-8, 9, 10. This optical system is shown in FIG. The reflected light from the disk 5 is split into orthogonal linearly polarized lights of approximately equal light quantity through a polarization beam splitter 6, and separate photodetectors 8 and
Focus on 9. The photodetectors are separated from each other in the information recording direction on the medium (8a, b, 9a, b), and when the light spot is on the boundary of the recording domain on the recording medium, the detectors 8, 9a, a, The light incident on b is subjected to Kerr rotation in the opposite direction due to the magnetizations that are reversed, and the output becomes the axial projection components of 8 and 9 in FIG. Therefore, the edge signal of the domain can be detected by arithmetically processing these outputs as shown in FIG.

【0004】また第2の従来例として図3の光学系がオ
プティカルデータストレージ(Optical Data Strage)
に示されている。ここでは半導体レーザ1からビームス
プリッタを経た光がλ/4板11を通過し、円偏光とし
て光ディスク5に集光されている。先に述べた磁気カー
効果は通常磁場中で直線偏光の偏光方向が回転する効果
として知られているが、直線偏光を右回り円偏光と左回
り円偏光に分離して考えるならば、磁場中で右回り円偏
光と左回り円偏光との間に互いに逆向きの位相差が生じ
る効果としてとらえることもできる。したがって光磁気
ディスクに図4のように右回りまたは左回り円偏光を入
射すると、ドメインの磁化の向きによって反射光の位相
が互いに逆方向にずれることとなる。したがって光磁気
ドメインに入射した光はドメインによって位相ずれを生
じるため、あたかもドメインの領域が凸状、または凹状
の形状を有しているように観察され、光の干渉効果によ
って光強度が変化する。しかしながら実際には光磁気ド
メインによる位相ずれは非常にわずかであり、全体的な
強度ずれを高精度に検出することは難しい。そこで図5
のようにドメインの境界部において上記位相ずれの効果
により、光の進行方向が傾き、反射光の強度分布がレン
ズ面上においてずれることを利用して、このずれを2分
割光検出器の差動出力から検知する。
As a second conventional example, the optical system shown in FIG. 3 is an optical data storage.
Is shown in. Here, the light that has passed through the beam splitter from the semiconductor laser 1 passes through the λ / 4 plate 11 and is condensed on the optical disc 5 as circularly polarized light. The magnetic Kerr effect described above is generally known as the effect of rotating the polarization direction of linearly polarized light in a magnetic field, but if the linearly polarized light is separated into right-handed circularly polarized light and left-handed circularly polarized light, Can also be regarded as an effect that a phase difference in the opposite direction is generated between the clockwise circularly polarized light and the counterclockwise circularly polarized light. Therefore, when right-handed or left-handed circularly polarized light is incident on the magneto-optical disk as shown in FIG. 4, the phases of the reflected lights are shifted in opposite directions depending on the magnetization direction of the domain. Therefore, the light incident on the magneto-optical domain causes a phase shift depending on the domain, and it is observed as if the domain region has a convex shape or a concave shape, and the light intensity changes due to the light interference effect. However, in reality, the phase shift due to the magneto-optical domain is very small, and it is difficult to detect the overall intensity shift with high accuracy. Therefore, FIG.
As described above, due to the effect of the phase shift at the boundary of the domain, the traveling direction of light is tilted, and the intensity distribution of reflected light is shifted on the lens surface. Detect from output.

【0005】[0005]

【発明が解決しようとする課題】上記第1の従来例にお
いては光検出器をレンズ7a、bの焦点に置く必要があ
り、調整精度が厳しく、調整ずれが生じた場合にはこれ
により検出信号の劣化が大きくなるという問題点があ
る。
In the first conventional example described above, the photodetector needs to be placed at the focal point of the lenses 7a and 7b, and the adjustment accuracy is strict. However, there is a problem that the deterioration becomes large.

【0006】上記第2の従来例においては光磁気ドメイ
ンが微少な凹凸として観察される効果を利用しているた
め、ディスクにドメインが存在せず、実際に微少な凹凸
が存在した場合にも同様の信号が検出されてしまうとい
う問題点がある。
Since the second conventional example utilizes the effect that the magneto-optical domain is observed as minute unevenness, the same applies when the disk has no domain and actually has minute unevenness. There is a problem that the signal of is detected.

【0007】しかしながら第1の従来例においては、デ
ィスクの凹凸による信号は検出器8、9で対称に発生す
るため、差動増幅器10cにおいて相殺される。したが
って第2の従来例の問題点は生じない。また第2の従来
例においては検出器8を集光点に配置しないため、第1
の従来例における問題点は生じない。
However, in the first conventional example, since the signals due to the unevenness of the disk are generated symmetrically in the detectors 8 and 9, they are canceled by the differential amplifier 10c. Therefore, the problem of the second conventional example does not occur. Further, in the second conventional example, the detector 8 is not arranged at the converging point.
No problem occurs in the conventional example.

【0008】以上の問題点を鑑み、本発明の目的は検出
器を集光点上に配置することなく、ディスクの凹凸の影
響を受けない光磁気ドメインのエッジ位置を光学的に検
出することである。
In view of the above problems, it is an object of the present invention to optically detect the edge position of a magneto-optical domain which is not affected by the unevenness of the disk without disposing the detector on the focal point. is there.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
め、直線偏光を放射する半導体レーザと、レンズと、該
レンズによって該半導体レーザからの直線偏光を集光せ
しめる光記録媒体と、該光記録媒体によって反射した光
を分岐せしめるビームスプリッタと、該ビームスプリッ
タで分岐させられた光の右回り円偏光成分と左回り円偏
光成分を分岐せしめる分岐手段と、該右及び左回り円偏
光のうち少なくとも上記光記録媒体の信号記録方向に2
分割した領域の光強度を各々検出する光検出器とから少
なくとも光ヘッドを構成する。またこの光ヘッドを用い
て光記録媒体の記録信号を再生する光ディスク装置を構
成する。
In order to solve the above problems, a semiconductor laser emitting linearly polarized light, a lens, an optical recording medium for concentrating the linearly polarized light from the semiconductor laser by the lens, and the optical recording medium A beam splitter that splits the light reflected by the recording medium, a splitting unit that splits the right-handed circularly polarized light component and the left-handed circularly polarized light component of the light split by the beam splitter, and the right and left-handed circularly polarized light At least 2 in the signal recording direction of the optical recording medium.
At least an optical head is composed of a photodetector that detects the light intensity of each of the divided regions. Further, an optical disk device for reproducing a recording signal of an optical recording medium is constructed by using this optical head.

【0010】[0010]

【作用】光記録媒体によって反射した直線偏光の右回り
円偏光成分と左回り円偏光成分は図5に示すとおり、強
度分布がレンズ面上で互いに逆方向にずれている。した
がってこれらの光強度のずれを光記録媒体の信号記録方
向に2分割した光検出器によって、右回り円偏光、左回
り円偏光各々について検出したのち、この差を求めるこ
とで、ディスクの微少な凹凸による信号を相殺して、光
磁気ドメインのエッジ位置を検出することができる。
As shown in FIG. 5, the intensity distributions of the right-handed circularly polarized light component and the left-handed circularly polarized light component of the linearly polarized light reflected by the optical recording medium are shifted in opposite directions on the lens surface. Therefore, after detecting the deviation of these light intensities for each of the right-handed circularly polarized light and the left-handed circularly polarized light by a photodetector which is divided into two in the signal recording direction of the optical recording medium, the difference is obtained, and thereby the minuteness of the disc is reduced. The edge position of the magneto-optical domain can be detected by canceling the signal due to the unevenness.

【0011】[0011]

【実施例】図6に本発明の実施例を示す。半導体レーザ
1からの直線偏光がレンズ2によりコリメートされ、ビ
ームスプリッタ3を透過し、レンズ4で光ディスク5上
に集光されている。反射光は再びレンズ4を通過し、ビ
ームスプリッタ3で反射され、λ/4板11を通って円
偏光となる。さらにこれが偏光ビームスプリッタ6に入
射し、直交する直線偏光成分を分離する。ここで偏光ビ
ームスプリッタ6の軸方向はλ/4板11の進相軸、遅
相軸と45゜をなす方向にそろえておく。
EXAMPLE FIG. 6 shows an example of the present invention. The linearly polarized light from the semiconductor laser 1 is collimated by the lens 2, transmitted through the beam splitter 3, and focused on the optical disc 5 by the lens 4. The reflected light passes through the lens 4 again, is reflected by the beam splitter 3, and passes through the λ / 4 plate 11 to be circularly polarized light. Further, this enters the polarization beam splitter 6 and separates orthogonal linearly polarized light components. Here, the axis direction of the polarization beam splitter 6 is aligned with the fast axis and the slow axis of the λ / 4 plate 11 at 45 °.

【0012】このような方法で直線偏光の右回り円偏光
成分と左回り円偏光成分が分離される様子を図7に示
す。ディスク5を反射した光は直線偏光であるが、直線
偏光は右回り円偏光と左回り円偏光が等振幅で重なった
ものと考えることができる。一方λ/4板11は直交す
る進相軸と遅相軸に45゜をなして入射する直線偏光を
円偏光に変換する性質があるから、逆に円偏光を入射す
ると、進相軸と遅相軸に対して45゜をなす方向の直線
偏光となる。ただし右回り円偏光と左回り円偏光では、
互いに直交する直線偏光となる。これを図のように偏光
ビームスプリッタ6に入射すれば、もともとの直線偏光
の右回り円偏光成分と左回り円偏光成分を分離すること
が可能となる。
FIG. 7 shows how the right-handed circularly polarized light component and the left-handed circularly polarized light component of linearly polarized light are separated by such a method. Although the light reflected by the disk 5 is linearly polarized light, it can be considered that the linearly polarized light is a combination of right-handed circularly polarized light and left-handed circularly polarized light with equal amplitude. On the other hand, the λ / 4 plate 11 has a property of converting linearly polarized light that is incident at an angle of 45 ° to the orthogonal fast axis and slow axis into circularly polarized light. It becomes linearly polarized light in a direction forming 45 ° with respect to the phase axis. However, with right-handed circularly polarized light and left-handed circularly polarized light,
It becomes linearly polarized light which is orthogonal to each other. When this is incident on the polarization beam splitter 6 as shown in the figure, the right-handed circularly polarized light component and the left-handed circularly polarized light component of the original linearly polarized light can be separated.

【0013】このように右回り円偏光と左回り円偏光を
分離したのち、図6において2分割検出器8、9によっ
て光ディスク5の信号記録方向に並ぶように分割された
領域ごとの光出力を検知すれば、図5においてすでに説
明したように、光磁気ドメインのエッジにおいて発生す
る強度ずれを検出することができる。このとき光磁気ド
メインにおいては右回り円偏光と左回り円偏光とでは、
ずれる方向が逆となり、ディスクの凹凸の境界では同方
向となるので、差動増幅器10a,bで差信号をとった
のち、さらに差動増幅器10cで右回り成分と左回り成
分との差をとることによってディスクの凹凸の影響を相
殺した光磁気ドメインのエッジ信号を検出することがで
きる。
After separating the right-handed circularly polarized light and the left-handed circularly polarized light in this way, the optical output for each area divided by the two-division detectors 8 and 9 in FIG. If detected, the intensity shift occurring at the edge of the magneto-optical domain can be detected as already described in FIG. At this time, in the magneto-optical domain, with right-handed circularly polarized light and left-handed circularly polarized light,
Since the shift directions are opposite and the same direction is obtained at the boundary of the unevenness of the disk, after the differential signals are obtained by the differential amplifiers 10a and 10b, the difference between the clockwise component and the counterclockwise component is further obtained by the differential amplifier 10c. As a result, it is possible to detect the edge signal of the magneto-optical domain that cancels the influence of the unevenness of the disk.

【0014】この様子を図8において説明する。図中左
側が光磁気ドメインの境界、右側が凹凸の境界とする。
これらの境界を光スポットが横切ったときの図7の2分
割光検出器の各出力、及び最終的な差動出力を示す。光
磁気ドメインのエッジでは右回り側と左回り側で互いに
逆方向に強度分布がずれるため、最終出力が現れるのに
対して、凹凸では右回り、左回りともディスク上の位相
ずれ方向が同じとなるため、強度ずれ方向も等しく、最
終出力では差動検出により相殺される。
This state will be described with reference to FIG. The left side of the figure is the boundary of the magneto-optical domain, and the right side is the boundary of the irregularities.
The respective outputs of the two-divided photodetector of FIG. 7 and the final differential output when the light spot crosses these boundaries are shown. At the edge of the magneto-optical domain, the intensity distribution shifts in the opposite directions on the right-hand side and the left-hand side, so the final output appears, while on the uneven surface, the phase shift direction on the disk is the same for both clockwise and counterclockwise rotation. Therefore, the intensity deviation directions are the same, and the final output is canceled by the differential detection.

【0015】上記実施例では、円偏光の分離にλ/4板
11と偏光ビームスプリッタ6を用いたが、分離手段と
しては例えば旋光性媒質を使うことも考えられる。旋光
性とは通常、直線偏光の偏光方向を直線偏光のままで徐
々に回転させる性質であるが、これは見方をかえれば右
回り円偏光と左回り円偏光の屈折率が異なる媒質と考え
ることもできる。このような媒質を用いて左右円偏光分
離プリズムを構成することも原理的には可能である。
In the above embodiment, the λ / 4 plate 11 and the polarization beam splitter 6 are used for separating the circularly polarized light, but it is also conceivable to use an optical rotatory medium as the separating means. Optical rotation is usually the property that the polarization direction of linearly polarized light is gradually rotated while it remains linearly polarized. In other words, it should be considered as a medium in which the right-handed circularly polarized light and the left-handed circularly polarized light have different refractive indices. You can also In principle, it is also possible to construct a left / right circularly polarized light separating prism using such a medium.

【0016】トラッキングずれ検出信号は、従来のプッ
シュプル信号を検出するのであれば、上記2分割検出器
をさらに情報記録方向と直交する方向にも分割した4分
割光検出器とすればよい。情報記録方向と直交方向の強
度のバランスのずれを上記と同様にして差動検出すれば
よいことになる。またはサンプルサーボ方式であれば、
ディスクにあらかじめ周期的にウォブルピットを設けて
おけばその、出力差からトラキング信号が検出できる。
If a conventional push-pull signal is to be detected as the tracking deviation detection signal, the two-division detector may be a four-division photodetector which is also divided in the direction orthogonal to the information recording direction. The difference in intensity balance between the information recording direction and the orthogonal direction may be differentially detected in the same manner as described above. Or if it is a sample servo system,
If wobble pits are periodically provided on the disc beforehand, the tracking signal can be detected from the output difference.

【0017】焦点ずれ検出信号は、例えば非点収差検出
方式を用いることができる。また上記2分割光検出器を
用いても、焦点ずれが生じた場合に通常の位相ピットに
よるスポットのけられ焦点ずれ方向によって逆方向とな
る効果を用いれば、焦点ずれ信号の検出が可能である。
For the defocus detection signal, for example, an astigmatism detection method can be used. Further, even if the two-division photodetector is used, it is possible to detect the defocus signal by using the effect of defocusing the spot due to the normal phase pit and the opposite direction depending on the defocus direction when defocus occurs. .

【0018】また本方法によれば光磁気信号の検出のみ
であるが、本発明を用いて位相ピットのエッジ検出を行
う場合には、図6において例えば差動増幅器10aの出
力のみを使用すれば信号検出が可能である。このときデ
ィスクの微少な凹凸の影響はキャンセルできないが、位
相ピットの深さは通常ここで問題とする微少な凹凸に比
べ十分深いので信号対雑音比は十分高い。また光磁気信
号はこの場合、信号振幅が非常に微弱となるため検出不
可能であるが、ディスク装着時に光磁気信号を検出する
か、位相ピットの信号を検出するかを読み取らせるよう
にすれば回路的なスイッチングによって十分対応可能で
ある。
Further, according to the present method, only the magneto-optical signal is detected, but when the edge of the phase pit is detected using the present invention, only the output of the differential amplifier 10a is used in FIG. 6, for example. Signal detection is possible. At this time, the influence of the minute unevenness of the disk cannot be canceled, but since the depth of the phase pit is usually deeper than the minute unevenness of concern here, the signal-to-noise ratio is sufficiently high. Further, in this case, the magneto-optical signal cannot be detected because the signal amplitude becomes very weak, but it is possible to read whether to detect the magneto-optical signal or the phase pit signal when the disc is mounted. Sufficient support is possible by circuit-like switching.

【0019】[0019]

【発明の効果】本発明によれば検出器を集光点上に配置
することなく、ディスクの凹凸の影響を受けない光磁気
ドメインのエッジ位置を光学的に検出することが可能と
なり、光学系の調整の容易な高精度の光磁気信号検出を
実現できる。
According to the present invention, it is possible to optically detect the edge position of the magneto-optical domain which is not affected by the unevenness of the disk without disposing the detector on the converging point. It is possible to realize a highly accurate magneto-optical signal detection that is easy to adjust.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の検出系のブロック図。FIG. 1 is a block diagram of a conventional detection system.

【図2】従来の光学系における検出信号出力の原理図。FIG. 2 is a principle diagram of detection signal output in a conventional optical system.

【図3】第2の従来例を示すブロック図。FIG. 3 is a block diagram showing a second conventional example.

【図4】円偏光の向きと磁化の方向による位相ずれの原
理図。
FIG. 4 is a principle diagram of phase shift depending on the direction of circularly polarized light and the direction of magnetization.

【図5】光磁気ドメインのエッジによる円偏光の回折方
向の原理図。
FIG. 5 is a principle diagram of a diffraction direction of circularly polarized light by an edge of a magneto-optical domain.

【図6】本発明の実施例を示すブロック図。FIG. 6 is a block diagram showing an embodiment of the present invention.

【図7】本発明における左右回り円偏光分離方法の斜視
図。
FIG. 7 is a perspective view of a left-right circularly polarized light separating method according to the present invention.

【図8】本発明におけるディスク凹凸の影響の相殺効果
の説明波形図。
FIG. 8 is an explanatory waveform diagram of a canceling effect of the influence of the disk unevenness in the present invention.

【符号の説明】[Explanation of symbols]

1‥‥半導体レーザ、2‥‥コリメートレンズ、3‥‥
ビームスプリッタ、4‥‥対物レンズ、5‥‥光ディス
ク、6‥‥偏光ビームスプリッタ、7‥‥集光レンズ、
8、9‥‥光検出器、10‥‥差動増幅器、11‥‥λ
/4板。
1 ... Semiconductor laser, 2 ... Collimating lens, 3 ...
Beam splitter, 4 objective lens, 5 optical disc, 6 polarization beam splitter, 7 focusing lens,
8, 9 Photo detector, 10 Differential amplifier, 11 λ
/ 4 plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】直線偏光を放射する半導体レーザと、該半
導体レーザを集光するレンズと、該レンズにからの光が
照射される光記録媒体と、該光記録媒体によって反射し
た光を分岐せしめるビームスプリッタと、該ビームスプ
リッタで分岐させられた光の右回り円偏光成分と左回り
円偏光成分を分岐せしめる分岐手段と、該右及び左回り
円偏光のうち少なくとも上記光記録媒体の信号記録方向
に2分割した領域の光強度を各々検出する光検出器とを
有することを特徴とする光ヘッド。
1. A semiconductor laser that emits linearly polarized light, a lens that condenses the semiconductor laser, an optical recording medium on which the light from the lens is irradiated, and a light reflected by the optical recording medium are branched. A beam splitter, a branching unit for branching the right-handed circularly polarized light component and the left-handed circularly polarized light component of the light split by the beam splitter, and at least the right and left-handed circularly polarized light signal recording direction of the optical recording medium. And a photodetector for detecting the light intensity of each of the two divided regions.
【請求項2】直線偏光を放射する半導体レーザと、該半
導体レーザを集光するレンズと、該レンズにからの光が
照射される光記録媒体と、該光記録媒体によって反射し
た光を分岐せしめるビームスプリッタと、該ビームスプ
リッタで分岐させられた光の右回り円偏光成分と左回り
円偏光成分を分岐せしめる分岐手段と、該右及び左回り
円偏光のうち少なくとも上記光記録媒体の信号記録方向
に2分割した領域の光強度を各々検出する光検出器と、
該光検出器の出力信号に基づいて上記光記録媒体の記録
信号を再生することを特徴とする光ディスク装置。
2. A semiconductor laser that emits linearly polarized light, a lens that condenses the semiconductor laser, an optical recording medium on which the light from the lens is irradiated, and a light reflected by the optical recording medium are branched. A beam splitter, a branching unit for branching the right-handed circularly polarized light component and the left-handed circularly polarized light component of the light split by the beam splitter, and at least the right and left-handed circularly polarized light signal recording direction of the optical recording medium. A photodetector for detecting the light intensity of each of the two divided areas,
An optical disk device, which reproduces a recording signal of the optical recording medium based on an output signal of the photodetector.
JP5268594A 1993-10-27 1993-10-27 Optical head and optical disk apparatus Pending JPH07121931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5268594A JPH07121931A (en) 1993-10-27 1993-10-27 Optical head and optical disk apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5268594A JPH07121931A (en) 1993-10-27 1993-10-27 Optical head and optical disk apparatus

Publications (1)

Publication Number Publication Date
JPH07121931A true JPH07121931A (en) 1995-05-12

Family

ID=17460706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5268594A Pending JPH07121931A (en) 1993-10-27 1993-10-27 Optical head and optical disk apparatus

Country Status (1)

Country Link
JP (1) JPH07121931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078200A (en) * 2010-10-01 2012-04-19 Nippon Telegr & Teleph Corp <Ntt> Spectroscopic measurement apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078200A (en) * 2010-10-01 2012-04-19 Nippon Telegr & Teleph Corp <Ntt> Spectroscopic measurement apparatus

Similar Documents

Publication Publication Date Title
JP3594594B2 (en) Optical scanning device
JP3626003B2 (en) Optical information storage device
JP3276132B2 (en) Light head
US5777974A (en) Optical head and magneto-optical reproducing apparatus using the same
JPH07121931A (en) Optical head and optical disk apparatus
JP2551129B2 (en) Magneto-optical disk device
JP3443839B2 (en) Magneto-optical disk device and dielectric optical path member
JPS60234235A (en) Optical recording and reproducing device
JP3288083B2 (en) Optical information reproducing device
JP2544639B2 (en) Optical pickup
JP2935554B2 (en) Light head
JPS63247938A (en) Magneto-optical recording and reproducing head
JP2795238B2 (en) Disk recording and playback device
EP0555037B1 (en) Magneto-optical information recording/reproducing apparatus
JPH05225573A (en) Disk recording and reproducing device
JP3413496B2 (en) Magneto-optical information reproducing device
JPH0696489A (en) Device for reproducing magneto-optical information
JPH029024A (en) Optical information recording and reproducing device
JP3202073B2 (en) Optical information recording / reproducing device
JPH07296446A (en) Disk drive device
JPH02192053A (en) Magneto-optical disk device
JPH1069678A (en) Magneto-optical recording medium, and its reproducing device and its reproducing method
JPH04106734A (en) Optical information recording and reproducing device
JPH08221838A (en) Magneto-optical recording and reproducing device
JPH02192042A (en) Optical disk device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 17

EXPY Cancellation because of completion of term