JPH07120962B2 - Quantization method and apparatus - Google Patents

Quantization method and apparatus

Info

Publication number
JPH07120962B2
JPH07120962B2 JP62185831A JP18583187A JPH07120962B2 JP H07120962 B2 JPH07120962 B2 JP H07120962B2 JP 62185831 A JP62185831 A JP 62185831A JP 18583187 A JP18583187 A JP 18583187A JP H07120962 B2 JPH07120962 B2 JP H07120962B2
Authority
JP
Japan
Prior art keywords
quantization
average error
signal
error power
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62185831A
Other languages
Japanese (ja)
Other versions
JPS6429121A (en
Inventor
啓次 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62185831A priority Critical patent/JPH07120962B2/en
Publication of JPS6429121A publication Critical patent/JPS6429121A/en
Publication of JPH07120962B2 publication Critical patent/JPH07120962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、画像信号あるいは音声信号の伝送時間を短縮
する、あるいは蓄積記憶容量を削減するための符号化装
置に用いる量子化方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a quantization method used in an encoding device for shortening the transmission time of an image signal or an audio signal, or for reducing the storage capacity, and the device thereof. Regarding

(従来の技術) 画像あるいは音声信号に対するデータ圧縮方式には、情
報保存型の符号化と情報非保存型の符号化がある。情報
保存型の符号化とは、符号化の過程に量子化を含まない
ものを指し、符号化、復号化の処理によって原信号と全
く同一の信号を再生することが可能であるが、高い圧縮
率は得られない。
(Prior Art) Data compression methods for image or audio signals include information-preserving encoding and information-non-preserving encoding. Information-preserving coding refers to coding that does not include quantization in the coding process, and it is possible to reproduce exactly the same signal as the original signal by the processing of coding and decoding, but with high compression. You can't get a rate.

一方情報非保存型の符号化とは、符号化の過程でなんら
かの量子化処理を含むものを指し、符号化、復号化の処
理によって再生信号の量子化雑音を含み品質の劣化に伴
うが高い圧縮率が得られる。
On the other hand, the non-information-preserving type encoding refers to the type that includes some kind of quantization processing in the encoding process, and includes the quantization noise of the reproduced signal due to the processing of encoding and decoding, but it is highly compressed due to the deterioration of quality. The rate is obtained.

量子化を含む情報非保存型の符号化においては、再生信
号の品質として低品質のものから高品質のものまで多種
多様な品質が要求される場合や、伝送路の容量や伝送時
間の制限によって多種多様な圧縮率での伝送が要求され
る場合がある。例えば、画像信号に対して大まかな画像
で良いから速く伝送したい場合もあれば、時間がかかっ
ても良いから高画質で伝送した場合もある。
In information non-conservation type encoding including quantization, there are cases where a variety of qualities of reproduced signals from low quality to high quality are required, and due to the limitation of transmission path capacity and transmission time. Transmission at a wide variety of compression rates may be required. For example, there are cases where a rough image is required for the image signal and therefore high-speed transmission is desired, and there is a case where high-quality transmission is required because it may take time.

このような場合に対処するために、従来は画像信号の統
計量を測定し、この統計量に基づいて量子化器の量子化
ビット数(量子化後のビット数であり、量子化における
出力代表点の数に対応する)を変えていた。
In order to deal with such a case, conventionally, the statistic amount of the image signal is measured, and the quantization bit number of the quantizer based on the statistic amount (the number of bits after quantization, which is an output representative in the quantization). (Corresponding to the number of points) was changed.

(発明が解決しようとする問題点) 従来のように入力信号の統計量に基づいて量子化器の量
子化のビット数を変える場合、この統計量としては入力
信号の分散値などが用いられる。すなわち、量子化ビッ
ト数で量子化した場合の再生画像の品質を、入力信号の
統計量に基づいて推定して、必要な品質が得られる量子
化ビット数を決定する。しかし、このように画像の統計
量を用いて再生画像の品質を推定するので、実際に得ら
れる再生画像の品質を正確に制御できないという問題点
がある。
(Problems to be Solved by the Invention) When the number of quantization bits of the quantizer is changed based on the statistical amount of the input signal as in the conventional case, the variance value of the input signal is used as the statistical amount. That is, the quality of the reproduced image when quantized with the number of quantization bits is estimated based on the statistical amount of the input signal, and the number of quantization bits that achieves the required quality is determined. However, since the quality of the reproduced image is estimated by using the statistical amount of the image as described above, there is a problem that the quality of the reproduced image actually obtained cannot be accurately controlled.

このような問題点を解決するために、入力信号を量子化
する単位毎(スカラー量子化の場合は各信号毎、ベクト
ル量子化の場合はベクトルに含まれる複数の信号毎)に
量子化ビット数を決定する方法もある。しかしこのよう
な方法を取った場合には、決定した量子化ビット数を示
す情報が入力信号を量子化する単位毎に必要となり、こ
の情報が膨大となるので高い圧縮率が得られないという
問題点がある。
In order to solve such problems, the number of quantization bits for each unit that quantizes the input signal (each signal in the case of scalar quantization, each signal included in a vector in the case of vector quantization) There is also a way to determine. However, when such a method is adopted, information indicating the determined number of quantization bits is required for each unit of quantizing the input signal, and this information becomes huge, so a high compression rate cannot be obtained. There is a point.

本発明は、全入力信号に対する誤差信号の平均電力を求
め、この平均誤差電力があらかじめ設定した閾値よりも
大きい場合には量子化ビット数を増加させて再度量子化
を行うことにより、再生画像の品質を正確に制御でき
る。
The present invention obtains the average power of error signals with respect to all input signals, and when this average error power is larger than a preset threshold value, the number of quantization bits is increased and the quantization is performed again to reproduce the reproduced image. The quality can be controlled accurately.

(問題点を解決するための手段) 本発明の量子化方法は、量子化ビット数可変の量子化処
理において、あらかじめ設定した量子化ビット数で入力
信号を量子化した量子化出力と入力信号との誤差である
量子化誤差の電力を加算して全入力信号に対する平均誤
差電力を求め、この平均誤差電力とあらかじめ設定した
閾値とを比較して、上記平均誤差電力が上記閾値より大
きい場合に上記設定した量子化ビット数を増加させて、
上記入力信号を再度量子化することを特徴とする。
(Means for Solving Problems) A quantization method according to the present invention is a quantization output in which a quantization bit number is variable, and a quantization output and an input signal obtained by quantizing an input signal with a preset quantization bit number. The average error power for all the input signals is calculated by adding the power of the quantization error, which is the error of, and the average error power is compared with a preset threshold value, and when the average error power is larger than the threshold value, Increase the set number of quantization bits,
It is characterized in that the input signal is requantized.

また本発明の量子化装置は、量子化ビット数可変の量子
化手段を用いた量子化装置において、入力信号を記憶す
る入力記憶手段と、上記量子化手段における量子化ビッ
ト数を記憶するビット数記憶手段と、上記量子化手段が
出力する量子化インデックスを受けて量子化出力を出力
する逆量子化手段と、上記記憶手段の出力と上記逆量子
化手段の出力との誤差信号を求める手段と、上記誤差信
号の電力を加算して全入力信号に対する平均誤差電力を
求める平均誤差電力計算手段と、上記平均誤差電力とあ
らかじめ設定した閾値とを比較する比較手段と、この比
較結果を参照して上記平均誤差電力が上記閾値より大き
い場合に上記平均誤差電力が上記閾値より小さくなるま
で上記ビット数記憶手段に記憶された上記量子化ビット
数を増加させて量子化処理を繰り返す制御を行う制御手
段とを有することを特徴とする。
Further, the quantizing device of the present invention is, in a quantizing device using a quantizing means having a variable quantizing bit number, an input storing means for storing an input signal, and a bit number for storing the quantizing bit number in the quantizing means. Storage means, dequantization means for receiving a quantization index output from the quantization means and outputting a quantized output, and means for obtaining an error signal between the output of the storage means and the output of the dequantization means , An average error power calculating means for adding the powers of the error signals to obtain an average error power for all input signals, a comparing means for comparing the average error power with a preset threshold value, and referring to the comparison result When the average error power is larger than the threshold value, the quantization bit number stored in the bit number storage means is increased until the average error power becomes smaller than the threshold value. And having a control means for controlling repeat the process.

(作用) 本発明の量子化方法について説明する。(Operation) The quantization method of the present invention will be described.

量子化ビット数可変の量子化方法において、まずあらか
じめ設定した量子化ビット数で、入力信号を量子化す
る。そして、その量子化出力と入力信号との誤差である
量子化誤差の電力を、全入力信号に対して加算する。
In the quantization method with variable number of quantization bits, the input signal is first quantized with a preset number of quantization bits. Then, the power of the quantization error, which is the error between the quantized output and the input signal, is added to all the input signals.

この加算結果から、全入力信号に対する平均誤差電力を
求め、あらかじめ設定した閾値との比較を行う。もし平
均誤差電力が閾値よりも小さい場合には、必要とする品
質の再生画像が得られるもので量子化処理を終了する。
From this addition result, the average error power for all input signals is obtained and compared with a preset threshold value. If the average error power is smaller than the threshold value, the quantization process is terminated when the reproduced image of the required quality is obtained.

また、もし平均誤差電力が閾値よりも大きい場合には、
必要とする品質の再生画像が得られないので量子化ビッ
ト数を増加させて再度量子化処理を行う。そして、平均
誤差電力が閾値よりも小さくなるまで量子化ビット数を
増加させて量子化処理を繰り返すことにより、必要な品
質の再生画像を得ることができる。
Also, if the average error power is greater than the threshold,
Since the reproduced image of the required quality cannot be obtained, the number of quantization bits is increased and the quantization process is performed again. Then, by increasing the number of quantization bits and repeating the quantization process until the average error power becomes smaller than the threshold value, it is possible to obtain a reproduced image of required quality.

この閾値の値を変更することにより、再生画像の品質を
自由かつ正確に制御することができる。
By changing the value of this threshold value, the quality of the reproduced image can be controlled freely and accurately.

(実施例) 以下、図面により本発明の一実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例を示すブロック図である。入力
信号としては画像信号あるいは音声信号(例えば1サン
プル当たり8ビットの信号)そのままでも良いし、なん
らかの予測処理を行った後の予測誤差信号でも良い。ま
た、DCT(ディスクリート・コサイン変換)等の直交変
換を行った後の直行変換係数でも良い(例えば、8×8
を1ブロックとしたDCTを行った後の1係数8ビットの
信号)。
FIG. 1 is a block diagram showing an embodiment of the present invention. The input signal may be an image signal or an audio signal (for example, a signal of 8 bits per sample) as it is, or a prediction error signal after performing some prediction processing. Orthogonal transform coefficients after orthogonal transform such as DCT (discrete cosine transform) may be used (for example, 8 × 8).
8 bit signal with 1 coefficient after performing DCT with 1 as a block).

この入力信号は、入力記憶部1に記憶された後に信号10
1として読み出され、量子化部2で量子化が行われる。
この量子化部2における量子化ビット数(量子化後のビ
ット数であり、量子化における出力代表点の数に対応す
る)B(0)は、ビット数記憶部3にあらかじめ記憶さ
せておく。
This input signal is stored in the input storage unit 1 and then the signal 10
It is read as 1, and is quantized by the quantizer 2.
The number of quantization bits (the number of bits after quantization and corresponding to the number of output representative points in quantization) B (0) in the quantization unit 2 is stored in the number-of-bits storage unit 3 in advance.

第2図は量子化部2における量子化処理を示す説明図で
ある。第2図に示すように、入力信号のダイナミックレ
ンジaに対して2ビットの線形量子化を行う場合、量子
化部2の出力である量子化インデックス102は、0から
3のいずれかとなる。次に、この量子化インデックスは
逆量子化部4で逆量子化され、第2図に示したレベルの
量子化出力103が出力される。そして、減算部5におい
てこの量子化出力103と入力記憶部1に記憶された信号1
01との差分を求めて、差分信号104を出力する。
FIG. 2 is an explanatory diagram showing the quantization processing in the quantization unit 2. As shown in FIG. 2, when 2-bit linear quantization is performed on the dynamic range a of the input signal, the quantization index 102, which is the output of the quantization unit 2, is any one of 0 to 3. Next, this quantization index is inversely quantized by the inverse quantization unit 4, and the quantized output 103 of the level shown in FIG. 2 is output. Then, in the subtraction unit 5, the quantized output 103 and the signal 1 stored in the input storage unit 1
The difference with 01 is obtained and the difference signal 104 is output.

この差分信号104を受けて、平均誤差電力計算部6は差
分信号104の電力を計算して加算し、その合計を求め
る。この差分信号104の電力は、量子化誤差の電力に相
当する。同時に平均誤差電力計算部6からは、差分信号
104の電力の合計を入力信号のサンプル数で除算した結
果が、平均誤差電力105として出力される。
Upon receiving the difference signal 104, the average error power calculator 6 calculates the power of the difference signal 104, adds the powers, and obtains the sum. The power of the difference signal 104 corresponds to the power of the quantization error. At the same time, the average error power calculator 6
The result of dividing the total power of 104 by the number of samples of the input signal is output as the average error power 105.

そして、比較部7はこの平均誤差電力105とあらかじめ
設定した閾値THとの比較を行う。全入力信号の量子化処
理が終了した時点で、制御部8は比較部7の比較結果10
6を参照して、平均誤差電力105が閾値THよりも大きい場
合にはビット数記憶部3に設定された量子化ビット数B
(0)を読み出して、この値にあらかじめ設定した増分
dを加算して新たな量子化ビット数B(1)を書き込
む。それから、制御部8は平均誤差電力計算部6に制御
信号を出力して、電力の合計を0にする。その後に、制
御部8は量子化部2に制御信号を出力して、新たな量子
化ビット数B(1)による量子化処理を開始させる。
Then, the comparison unit 7 compares the average error power 105 with a preset threshold TH. At the time when the quantization processing of all input signals is completed, the control unit 8 causes the comparison result 10
6, when the average error power 105 is larger than the threshold value TH, the quantization bit number B set in the bit number storage unit 3 is set.
(0) is read out, a preset increment d is added to this value, and a new quantization bit number B (1) is written. Then, the control unit 8 outputs a control signal to the average error power calculation unit 6 to set the total power to 0. After that, the control unit 8 outputs a control signal to the quantization unit 2 to start the quantization processing with the new quantization bit number B (1).

このような処理を繰り返して、平均誤差電力105が閾値T
Hよりも小さくなった時点で量子化処理を終了する。す
なわち、平均誤差電力105があらかじめ設定した閾値TH
よりも小さくなっているので、再生画像の品質は保証さ
れる。
By repeating such processing, the average error power 105 becomes the threshold T
When it becomes smaller than H, the quantization process ends. That is, the average error power 105 is the threshold value TH set in advance.
The quality of the reproduced image is guaranteed because it is smaller than

以上の説明では、量子化部3として信号をひとつずつ量
子化するスカラー量子化器の場合を説明したが、複数の
信号をまとめて量子化するベクトル量子化においても同
様の処理を行うことができる。例えば、画像信号の符号
化においてDCT変換後の変換係数を2進木探査によるベ
クトル量子化を行う場合には、入力ベクトルと量子化出
力ベクトルとの距離の2乗を誤差電力として、平均誤差
電力を求める。そして、この平均誤差電力と閾値との比
較により、2進木探査の深さ(量子化ビット数に相当す
る)を制御すれば良い。
In the above description, the case where the quantizer 3 is a scalar quantizer that quantizes signals one by one has been described, but the same processing can be performed in vector quantization in which a plurality of signals are collectively quantized. . For example, in the case of performing vector quantization by the binary tree search on the transform coefficient after DCT transformation in the encoding of the image signal, the square of the distance between the input vector and the quantized output vector is taken as the error power, and the average error power Ask for. Then, the depth (corresponding to the number of quantization bits) of the binary tree search may be controlled by comparing the average error power and the threshold value.

また、全探査のベクトル量子化を行う場合でも、量子化
ビット数に対応して代表ベクトルの記憶されているコー
ドブックを切り替えることによって、同様の制御を行う
ことができる。
Also, when performing vector quantization for all searches, similar control can be performed by switching the codebook in which representative vectors are stored in correspondence with the number of quantization bits.

(発明の効果) 以上述べたように、本発明の量子化方法およびその装置
を用いることによって、入力信号の統計量を用いて量子
化ビット数を決定する場合に比べてはるかに正確に再生
画像の品質を制御できる。
(Effects of the Invention) As described above, by using the quantization method and the apparatus thereof according to the present invention, the reproduced image is much more accurately compared to the case where the number of quantization bits is determined by using the statistical amount of the input signal. You can control the quality of.

また、入力信号を量子化する毎に量子化ビット数を決定
する場合に比べて、伝送または蓄積する情報が少なくな
るので高い圧縮率が得られる。
Further, as compared with the case where the number of quantization bits is determined every time the input signal is quantized, the amount of information to be transmitted or stored is small, so that a high compression rate can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示すブロック図、第2図は量
子化部2における量子化処理を示す説明図である。 1……入力記憶部、2……量子化部、3……ビット数記
憶部、4……逆量子化部、5……減算部、6……平均誤
差電力計算部、7……比較部、8……制御部、101……
信号、102……量子化インデックス、103……量子化出
力、104……差分信号、105……平均誤差電力、106……
比較結果。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the quantization processing in the quantization unit 2. 1 ... Input storage unit, 2 ... Quantization unit, 3 ... Bit number storage unit, 4 ... Inverse quantization unit, 5 ... Subtraction unit, 6 ... Average error power calculation unit, 7 ... Comparison unit , 8 …… control unit, 101 ……
Signal, 102 ... Quantization index, 103 ... Quantization output, 104 ... Difference signal, 105 ... Average error power, 106 ...
Comparison result.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H03M 1/12 C (56)参考文献 特開 昭56−66929(JP,A) 特開 昭58−168344(JP,A) 特開 昭58−179897(JP,A) 特開 昭62−51828(JP,A) 特開 昭59−72244(JP,A) 特開 昭55−135421(JP,A) 特開 昭62−3535(JP,A) 特開 昭58−78200(JP,A) 特開 昭62−169530(JP,A) 特開 昭63−220300(JP,A) 特開 昭59−127440(JP,A) 特開 昭60−131(JP,A) 特公 昭61−34697(JP,B2) 特公 平5−31331(JP,B2) 特公 平4−14360(JP,B2) 特公 平3−8136(JP,B2) 特公 平4−45014(JP,B2) 特表 昭59−500077(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // H03M 1/12 C (56) Reference JP-A-56-66929 (JP, A) JP-A JP-A-58-168344 (JP, A) JP-A-58-179897 (JP, A) JP-A-62-51828 (JP, A) JP-A-59-72244 (JP, A) JP-A-55-135421 (JP , A) JP 62-3535 (JP, A) JP 58-78200 (JP, A) JP 62-169530 (JP, A) JP 63-220300 (JP, A) JP 59-127440 (JP, A) JP 60-131 (JP, A) JP 61-34697 (JP, B2) JP 5-31331 (JP, B2) JP 4-14360 (JP, A) B2) Japanese Patent Publication 3-8136 (JP, B2) Japanese Patent Publication 4-45014 (JP, B2) Special Table Sho 59-500077 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】量子化ビット数可変の量子化方法におい
て、あらかじめ設定した量子化ビット数で入力信号を量
子化した量子化出力と入力信号との誤差である量子化誤
差の電力を加算して全入力信号に対する平均誤差電力を
求め、この平均誤差電力とあらかじめ設定した閾値とを
比較して、上記平均誤差電力が上記閾値より大きい場合
に上記設定した量子化ビット数を増加させて、上記入力
信号を再度量子化することを特徴とする量子化方法。
1. A quantization method in which the number of quantization bits is variable, the power of a quantization error, which is an error between a quantized output obtained by quantizing an input signal with a preset number of quantized bits, and an input signal is added. The average error power for all input signals is calculated, and this average error power is compared with a preset threshold value. If the average error power is larger than the threshold value, the set number of quantization bits is increased to A quantizing method characterized in that a signal is quantized again.
【請求項2】量子化ビット数可変の量子化手段を用いた
量子化装置において、入力信号を記憶する入力記憶手段
と、上記量子化手段における量子化ビット数を記憶する
ビット数記憶手段と、上記量子化手段が出力する量子化
インデックスを受けて量子化出力を出力する逆量子化手
段と、上記記憶手段の出力と上記逆量子化手段の出力と
の誤差信号を求める手段と、上記誤差信号の電力を加算
して全入力信号に対する平均誤差電力を求める平均誤差
電力計算手段と、上記平均誤差電力とあらかじめ設定し
た閾値とを比較する比較手段と、この比較結果を参照し
て上記平均誤差電力が上記閾値より大きい場合に上記平
均誤差電力が上記閾値より小さくなるまで上記ビット数
記憶手段に記憶された上記量子化ビット数を増加させて
量子化処理を繰り返す制御を行う制御手段とを有するこ
とを特徴とする量子化装置。
2. A quantizer using a quantizer having a variable quantizer bit number, an input storage unit for storing an input signal, and a bit number storage unit for storing the quantization bit number in the quantizer. Dequantizing means for receiving a quantization index output by the quantizing means and outputting a quantized output; means for obtaining an error signal between the output of the storage means and the output of the dequantizing means; and the error signal Of the average error power for all input signals by adding the powers of the above, an average error power calculating means, a comparing means for comparing the average error power with a preset threshold value, and the average error power referring to the comparison result. Is greater than the threshold value, the quantization process is repeated by increasing the quantization bit number stored in the bit number storage means until the average error power becomes smaller than the threshold value. Quantization apparatus characterized by a control unit for performing controls.
JP62185831A 1987-07-24 1987-07-24 Quantization method and apparatus Expired - Lifetime JPH07120962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62185831A JPH07120962B2 (en) 1987-07-24 1987-07-24 Quantization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62185831A JPH07120962B2 (en) 1987-07-24 1987-07-24 Quantization method and apparatus

Publications (2)

Publication Number Publication Date
JPS6429121A JPS6429121A (en) 1989-01-31
JPH07120962B2 true JPH07120962B2 (en) 1995-12-20

Family

ID=16177641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185831A Expired - Lifetime JPH07120962B2 (en) 1987-07-24 1987-07-24 Quantization method and apparatus

Country Status (1)

Country Link
JP (1) JPH07120962B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092859A1 (en) * 2005-03-02 2006-09-08 National Institute Of Information And Communications Technology, Incorporated Administrative Agency Receiver, receiving method, program, and information recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972244A (en) * 1982-10-18 1984-04-24 Nippon Telegr & Teleph Corp <Ntt> Adaptive forecasting encoding system
JPH07123227B2 (en) * 1985-08-30 1995-12-25 日本電気株式会社 Speech coder

Also Published As

Publication number Publication date
JPS6429121A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
US4797944A (en) Image signal encoding method by orthogonal transformation
CN101107862B (en) Encoding device and dynamic image recording system having the encoding device
US4807042A (en) Method of image signal encoding by orthogonal transformation
US20020159521A1 (en) Distortion quantizer model for video encoding
CN1099767C (en) Method and device for compressing digital data
US7505631B2 (en) Image coding and decoding methods, image coding and decoding apparatuses, and recording media for image coding and decoding programs
EP0360502B1 (en) Efficient image signal coding system
JPH0677843A (en) Method and apparatus for variable-length encoding/decoding of image data
EP0555061B1 (en) Method and apparatus for compressing and extending an image
CN107666472B (en) Method and apparatus for hybrid digital-analog coding
JP2968666B2 (en) Image coding method and apparatus
KR100682915B1 (en) Method and apparatus for encoding and decoding multi-channel signals
Sitaram et al. Efficient codebooks for vector quantization image compression with an adaptive tree search algorithm
JPH0969781A (en) Audio data encoding device
JP2885433B2 (en) Image processing method and apparatus
JPH07120962B2 (en) Quantization method and apparatus
JPH033479A (en) Coding system for picture signal
JP3670554B2 (en) Image signal encoding device / decoding device, image signal encoding method / decoding method, and image signal encoding / decoding program recording medium
JPH0815261B2 (en) Adaptive transform vector quantization coding method
JPH03140074A (en) Moving picture coding device
JPH02141088A (en) Moving image encoding system
JP2621109B2 (en) Image coding device
KR0153997B1 (en) Apparatus for transmitting bitplane compressed by means of data codebook
JP2527352B2 (en) Image data compression device by vector quantization
JPH0714210B2 (en) Orthogonal transform coding method for image data