JPH07120605A - Surface light source device and manufacture thereof - Google Patents

Surface light source device and manufacture thereof

Info

Publication number
JPH07120605A
JPH07120605A JP5289911A JP28991193A JPH07120605A JP H07120605 A JPH07120605 A JP H07120605A JP 5289911 A JP5289911 A JP 5289911A JP 28991193 A JP28991193 A JP 28991193A JP H07120605 A JPH07120605 A JP H07120605A
Authority
JP
Japan
Prior art keywords
transparent resin
resin substrate
light source
source device
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5289911A
Other languages
Japanese (ja)
Other versions
JP3796663B2 (en
Inventor
Shingo Suzuki
信吾 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP28991193A priority Critical patent/JP3796663B2/en
Publication of JPH07120605A publication Critical patent/JPH07120605A/en
Application granted granted Critical
Publication of JP3796663B2 publication Critical patent/JP3796663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make a so-called side light system surface light source device highly efficient and provide a manufacturing method thereof. CONSTITUTION:In the side light system surface light source device formed by bringing one or plural linear fluorescent tubes into contact with at least one end face of a transparent resin base 1, the transparent resin base 1 is formed by forming a micro prism group layer 20, formed, out of transparent material lower in the refractive index than transparent resin base material 25 to be the transparent resin base 1, integrally in close contact on the surface of the transparent resin base material 25. The number of constituent members is reduced so as to reduce the cost and to improve manageability while being of high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、看板や各種表示装置等
の背面照明に用いる薄型の面状光源装置に関するもので
あり、特に液晶表示装置の背面照明手段として好適に使
用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin planar light source device used for back lighting of signboards, various display devices and the like, and is particularly preferably used as back lighting means for liquid crystal display devices. .

【0002】[0002]

【従来の技術】従来よりこの種の薄型面状光源を実現す
る手段として、サイドライト方式(導光板方式)が知ら
れている。図5はその一例を示すものである。この図に
おいて1は透明樹脂基板であり、アクリル等の透光性の
高い材料による略断面矩形状のものである。この透明樹
脂基板1の裏面2には白色または乳白色のインクを、た
とえば特開昭63-62105号公報に示されるように一端側か
ら他端側にいくにつれてその密度が変化するように印刷
された散乱パターン3が施されている(図6参照)。
2. Description of the Related Art Conventionally, a side light system (light guide plate system) has been known as a means for realizing a thin planar light source of this type. FIG. 5 shows an example thereof. In this figure, reference numeral 1 denotes a transparent resin substrate having a substantially rectangular cross section made of a highly transparent material such as acrylic. A white or milky white ink is printed on the back surface 2 of the transparent resin substrate 1 so that the density thereof changes from one end side to the other end side, as shown in JP-A-63-62105. Scattering pattern 3 is applied (see FIG. 6).

【0003】さらにその後方には、反射板4が配置され
ている。また透明樹脂基板1の表面5(観察側)の上に
は拡散板6が置かれている。一方、透明樹脂基板1の少
なくとも一つ以上の端部7には、1本または複数本の線
状光源である冷陰極または熱陰極の蛍光管8が透明樹脂
基板1の端部7とほぼ当接するように置かれており、そ
の外周は銀等を蒸着した反射フィルム9で覆われてい
る。この反射フィルム9の両端は透明樹脂基板1の表裏
それぞれに接着されている。蛍光管8が置かれていると
ころ以外の少なくとも一つ以上の透明樹脂基板1の端部
には、反射テープ等の反射剤10が付加されている。
Further, a reflecting plate 4 is arranged behind it. A diffusion plate 6 is placed on the surface 5 (observation side) of the transparent resin substrate 1. On the other hand, at least one or more end portions 7 of the transparent resin substrate 1 are provided with one or a plurality of cold light source or cold cathode fluorescent tubes 8 which are linear light sources and substantially contact with the end portions 7 of the transparent resin substrate 1. They are placed so as to be in contact with each other, and the outer circumference thereof is covered with a reflective film 9 vapor-deposited with silver or the like. Both ends of the reflective film 9 are adhered to the front and back of the transparent resin substrate 1, respectively. A reflective agent 10 such as a reflective tape is added to the end portion of at least one or more transparent resin substrates 1 except where the fluorescent tube 8 is placed.

【0004】図6は、このように構成されたサイドライ
ト方式の薄型面状光源における光線の挙動を説明するた
めの模式的な断面図である。これを説明すると、蛍光管
8からの発光光線は、反射フィルム9により閉じ込めら
れ、その多くが透明樹脂基板1の端部7に到達し、透明
樹脂基板1の内部に進入する。この光線の内、透明樹脂
基板1の裏面に印刷されている散乱パターン3に当たっ
た光線11だけが散乱され、そのまま反射して、透明樹脂
基板1の表面に達する光線12及び裏面に抜けて反射板4
に当たって反射し、透明樹脂基板1の表面に向かう光線
13の二つは、符号14で示すように、拡散板6を透過して
透明樹脂基板1の表面に放射される。
FIG. 6 is a schematic cross-sectional view for explaining the behavior of light rays in the sidelight type thin planar light source configured as described above. To explain this, the emitted light from the fluorescent tube 8 is confined by the reflective film 9, and most of it reaches the end portion 7 of the transparent resin substrate 1 and enters the inside of the transparent resin substrate 1. Of these rays, only the ray 11 that hits the scattering pattern 3 printed on the back surface of the transparent resin substrate 1 is scattered and reflected as it is, and passes through the ray 12 reaching the front surface of the transparent resin substrate 1 and the back surface and is reflected. Board 4
Rays that hit the surface and are reflected toward the surface of the transparent resin substrate 1
Two of 13 are transmitted through the diffusion plate 6 and are radiated to the surface of the transparent resin substrate 1, as indicated by reference numeral 14.

【0005】透明樹脂基板1の裏面2の散乱パターン3
に当たらなかった光線15及び表面5側に当たった光線16
は散乱パターンに到達するまで、そのまま透明樹脂基板
1の内部で全反射を繰り返して進む。出射光が全画面上
で均一な発光強度になるよう散乱パターンに密度分布を
与えておくことにより、比較的高輝度でしかも均一な面
状光源が実現可能となる。
The scattering pattern 3 on the back surface 2 of the transparent resin substrate 1
Rays 15 that did not hit and rays 16 that hit the surface 5 side
Will continue to undergo total reflection inside the transparent resin substrate 1 until it reaches the scattering pattern. By giving a density distribution to the scattering pattern so that the emitted light has a uniform emission intensity on the entire screen, it is possible to realize a planar light source having a relatively high brightness and being uniform.

【0006】しかしながら近年、透過率のより低いカラ
ー液晶パネルの出現により、面状光源装置のさらなる高
輝度化が要求されるに至った。これを解決する方法とし
て、図7に示すようにその表面に頂角90度程度の微小プ
リズム群を形成した透明樹脂シート(プリズムシート)
17を図5に示す面状光源の表面に付加することが提案さ
れている。
However, in recent years, with the advent of color liquid crystal panels having a lower transmittance, it has been required to further increase the brightness of the planar light source device. As a method for solving this, as shown in FIG. 7, a transparent resin sheet (prism sheet) having a micro prism group with an apex angle of about 90 degrees formed on the surface thereof.
It has been proposed to add 17 to the surface of the planar light source shown in FIG.

【0007】このプリズムシートは、外側に発散してい
く光線を観察位置であるパネルの略垂直方向へ屈曲させ
ることにより高輝度化を図るものである。なお、透明樹
脂シート17は、図7に示すようにもっとも観察側近くに
置いてもよいが、透明樹脂基板1より手前であれば、拡
散板6の裏面または拡散板6を2枚構成にしてその間に
挿入するようにしてもよい。
This prism sheet is intended to increase the brightness by bending the light rays diverging to the outside in the substantially vertical direction of the panel which is the observation position. The transparent resin sheet 17 may be placed closest to the observation side as shown in FIG. 7, but if it is in front of the transparent resin substrate 1, the back surface of the diffusion plate 6 or the two diffusion plates 6 may be formed. It may be inserted between them.

【0008】このように多種の光学部材を付加していく
ことにより、所望の特性が得られるようになっていく
が、部材の構成枚数が増加することにより、間にある空
気層と部材の界面が増える結果、表面反射率が増大し光
線透過率(効率)が低下する等の問題があり、また部品
点数の増加による高コスト化のみならず、組立時の取扱
い性が悪化することによる不良の増加等の問題もあっ
た。
By adding various kinds of optical members in this way, desired characteristics can be obtained, but as the number of constituent members increases, the interface between the air layer and the member between them is increased. As a result, there is a problem that the surface reflectance increases and the light transmittance (efficiency) decreases, and not only the cost is increased due to the increase in the number of parts, but also the defects due to the deterioration of the handling during assembly are caused. There were also problems such as an increase.

【0009】図8は部材数量を低減させることを意図し
て、微小プリズム群を、基材となる透明樹脂基板1と同
一材料で一体的に構成した板材18を使用した例である。
しかしながらこのような構成にすると、蛍光管8から発
した光線のうち、板材18の表面5側に向かう光線19が図
6のように全反射して板材18の内部に戻ることなく表面
から外側へ抜け出てしまう。このことにより画面上での
明るさのバランスが崩れてしまうため、この方式で画面
全体に渡って均一な面状光源を実現することは極めて困
難である。
FIG. 8 shows an example in which a plate material 18 in which the minute prism group is integrally formed of the same material as the transparent resin substrate 1 as a base material is used for the purpose of reducing the number of members.
However, with such a configuration, among the light rays emitted from the fluorescent tube 8, the light ray 19 traveling toward the surface 5 side of the plate material 18 is totally reflected as shown in FIG. Get out. As a result, the brightness balance on the screen is lost, and it is extremely difficult to realize a uniform planar light source over the entire screen by this method.

【0010】[0010]

【発明が解決しようとする課題】本発明はこれらの点に
鑑みてなされたものであり、高機能を維持したままで、
部材の構成枚数を低減させ、高効率で低コスト及び取扱
い性を改善した面状光源装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of these points.
An object of the present invention is to provide a planar light source device in which the number of constituent members is reduced, the efficiency is high, the cost is low, and the handleability is improved.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題を解決
するための手段として、透明樹脂基板の少なくとも一つ
以上の端面に1本または複数本の線状の蛍光管を当接さ
せて構成するサイドライト方式の面状光源装置におい
て、前記透明樹脂基板となる透明樹脂基材の表面に、少
なくとも該透明樹脂基材よりも屈折率の低い透明材料で
構成された微小プリズム群層を密着形成させ一体化して
透明樹脂基板を形成した構成としたものである。
As a means for solving the above-mentioned problems, the present invention comprises one or a plurality of linear fluorescent tubes in contact with at least one end face of a transparent resin substrate. In the side light type planar light source device, a fine prism group layer made of a transparent material having a refractive index lower than that of the transparent resin substrate is formed on the surface of the transparent resin substrate serving as the transparent resin substrate in close contact. Then, the transparent resin substrate is integrally formed.

【0012】また、微小プリズム群を形成させるための
型内に液状樹脂を注入し、該注入した液状樹脂に板状の
透明樹脂基材を密接させ、該密着させた状態で液状樹脂
を重合硬化させることにより、透明樹脂基材と硬化した
樹脂とを一体的に形成することを特徴とする面状光源装
置の製造方法である。
Further, a liquid resin is injected into a mold for forming a micro prism group, a plate-shaped transparent resin substrate is brought into close contact with the injected liquid resin, and the liquid resin is polymerized and cured in the state of being in close contact. By doing so, the method for manufacturing a planar light source device is characterized in that the transparent resin substrate and the cured resin are integrally formed.

【0013】また、液状樹脂に紫外線を照射することに
より重合硬化させることを特徴とする面状光源装置の製
造方法である。
Further, in the method of manufacturing a planar light source device, the liquid resin is polymerized and cured by irradiating it with ultraviolet rays.

【0014】さらに、透明樹脂基材の表面に、該透明樹
脂基材よりも低屈折率の薄層を形成して透明樹脂基板を
得、該透明樹脂基板に微小プリズム群を形成させるため
の型を押し当てて熱加圧成形することにより、透明樹脂
基板に微小プリズム群層を一体的に形成することを特徴
とする面状光源装置の製造方法である。
Further, a mold for forming a thin layer having a refractive index lower than that of the transparent resin substrate on the surface of the transparent resin substrate to obtain a transparent resin substrate and forming a micro prism group on the transparent resin substrate. By pressing and heat-pressing to integrally form the micro prism group layer on the transparent resin substrate.

【0015】そして、塗装または印刷により前記透明樹
脂基材よりも低屈折率の薄層を形成することを特徴とす
る面状光源装置の製造方法である。
A method for manufacturing a planar light source device is characterized in that a thin layer having a refractive index lower than that of the transparent resin substrate is formed by painting or printing.

【0016】[0016]

【作用】このような構成とした面状光源装置において
は、蛍光管を発した光線のうち、透明樹脂基板の表面に
到達する光線は、そのままプリズム面に到達することな
く、プリズム層側の屈折率が低いことによりこの界面で
全反射し、裏面側に進行する。そして構成要素が少なく
簡単な製造方法により、安定した面状光源装置を得るこ
とができることになる。
In the planar light source device having such a structure, among the light rays emitted from the fluorescent tube, the light rays reaching the surface of the transparent resin substrate do not reach the prism surface as they are, but are refracted on the prism layer side. Due to the low rate, total reflection occurs at this interface and progresses to the back surface side. Then, a stable planar light source device can be obtained by a simple manufacturing method with few constituent elements.

【0017】[0017]

【実施例】次に、本発明に係る面状光源装置を図につい
て説明する。図1は本発明の基本的な構成を示す一例で
ある。この図において1は透明樹脂基板であり、アクリ
ル等の透光性の高い材料による略断面矩形状のものであ
る。この透明樹脂基板1の裏面2には白色または乳白色
のインクを、図5に示すものと同様に、一端側から他端
側にいくにつれてその密度が変化するように印刷された
散乱パターン3が施されている(図6参照)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a planar light source device according to the present invention will be described with reference to the drawings. FIG. 1 is an example showing a basic configuration of the present invention. In this figure, reference numeral 1 denotes a transparent resin substrate having a substantially rectangular cross section made of a highly transparent material such as acrylic. The back surface 2 of the transparent resin substrate 1 is provided with a scattering pattern 3 in which white or milky white ink is printed so that its density changes from one end side to the other end side, as in the case shown in FIG. (See FIG. 6).

【0018】さらにその後方には、反射板4が配置され
ている。また透明樹脂基板1の表面5(観察側)の上に
は拡散板6が置かれている。一方、透明樹脂基板1の少
なくとも1つ以上の端部7には、1本または複数本の線
状光源である冷陰極または熱陰極の蛍光管8が透明樹脂
基板1の端部7とほぼ当接するように置かれており、そ
の外周は銀等を蒸着した反射フィルム9で覆われてい
る。この反射フィルム9の両端は透明樹脂基板1の表裏
それぞれに接着されている。蛍光管8が置かれていると
ころ以外の少なくとも1つ以上の透明樹脂基板1の端部
には、反射テープ等の反射剤10が付加されている。
Further, a reflecting plate 4 is arranged behind it. A diffusion plate 6 is placed on the surface 5 (observation side) of the transparent resin substrate 1. On the other hand, at least one or more end portions 7 of the transparent resin substrate 1 are provided with one or a plurality of linear light sources, which are cold cathode or hot cathode fluorescent tubes 8 and are substantially in contact with the end portions 7 of the transparent resin substrate 1. They are placed so as to be in contact with each other, and the outer circumference thereof is covered with a reflective film 9 vapor-deposited with silver or the like. Both ends of the reflective film 9 are adhered to the front and back of the transparent resin substrate 1, respectively. A reflecting agent 10 such as a reflecting tape is added to the end portion of at least one transparent resin substrate 1 other than where the fluorescent tube 8 is placed.

【0019】透明樹脂基板1の表面5には、少なくとも
透明樹脂基板1よりも屈折率の低い微小プリズム群層20
が密着形成させてある。
On the surface 5 of the transparent resin substrate 1, a micro prism group layer 20 having a refractive index at least lower than that of the transparent resin substrate 1 is formed.
Are closely formed.

【0020】このような構成からなる本発明の面状光源
装置は、次のように作用する。蛍光管8を発した光線の
うち、透明樹脂基板1の表面5に到達する光線21は、図
8に示す光線19のようにそのままプリズム面に到達する
ことなく、微小プリズム群層10側の屈折率が低いことに
よりこの表面5で全反射し、裏面2側に進行する。つま
り、微小プリズム群層20が一体的に構成されているにも
かかわらず、図6における透明樹脂基板1内での光線の
軌跡と同一となる。
The planar light source device of the present invention having such a structure operates as follows. Of the light rays emitted from the fluorescent tube 8, the light rays 21 that reach the surface 5 of the transparent resin substrate 1 do not reach the prism surface as they are, like the light ray 19 shown in FIG. Due to the low rate, the light is totally reflected on the front surface 5 and travels to the back surface 2 side. That is, although the minute prism group layer 20 is integrally configured, the trajectory of the light beam in the transparent resin substrate 1 in FIG. 6 is the same.

【0021】図2は本発明にかかる微小プリズム群層20
と一体化した透明樹脂基板1を示すものであり、図3は
この図2における微小プリズム群層20と一体化した透明
樹脂基板1の製造方法の一例を示すものである。これを
説明すると、微小プリズム群層20を形成させるための型
22内に容器23内の透明液状樹脂24を注入し、透明樹脂基
材25を上からかぶせる(図3a)。そしてこのようにして
透明樹脂基材25を密接させた状態で、この透明液状基材
25を重合硬化させる(図3b)。この後、型22を剥離する
ことにより、図2に示すような、微小プリズム群層20と
透明樹脂基材25とが一体化された透明樹脂基板1が製造
できる。
FIG. 2 shows a micro prism group layer 20 according to the present invention.
FIG. 3 shows an example of a method for manufacturing the transparent resin substrate 1 integrated with the minute prism group layer 20 shown in FIG. 2. To explain this, a mold for forming the micro prism group layer 20
The transparent liquid resin 24 in the container 23 is poured into the container 22, and the transparent resin substrate 25 is covered from above (FIG. 3a). Then, in the state where the transparent resin base material 25 is closely contacted in this manner, the transparent liquid base material
Polymerize and cure 25 (Fig. 3b). After that, by removing the mold 22, the transparent resin substrate 1 in which the minute prism group layer 20 and the transparent resin base material 25 are integrated as shown in FIG. 2 can be manufactured.

【0022】ここで使用する透明液状樹脂24は重合硬化
後に屈折率が透明樹脂基材25よりも低くなるものであれ
ば、硬化条件を限定するものではないが、紫外線を照射
することにより重合硬化する液状樹脂を使用すると、比
較的短時間で硬化が終了するため、生産性の点で有利で
ある。
The transparent liquid resin 24 used here is not limited to the curing conditions as long as it has a refractive index lower than that of the transparent resin substrate 25 after polymerization and curing, but it is polymerized and cured by irradiation with ultraviolet rays. When the liquid resin is used, curing is completed in a relatively short time, which is advantageous in terms of productivity.

【0023】また図4は図2における微小プリズム群層
20を一体化した透明樹脂基板1の製造方法の別の一例を
示すものである。表面に、透明樹脂基材25よりも低屈折
率の薄層26を形成した透明樹脂基材25を微小プリズム群
層20を形成させるための型27を用い、熱加圧成形するこ
とにより図2に示すような、微小プリズム群層20と透明
樹脂基材25とが一体化された透明樹脂基板1が製造でき
る。
FIG. 4 shows the micro prism group layer in FIG.
It shows another example of a method of manufacturing the transparent resin substrate 1 in which 20 are integrated. The transparent resin substrate 25 having a thin layer 26 having a refractive index lower than that of the transparent resin substrate 25 is thermocompression-molded by using a mold 27 for forming the micro prism group layer 20. It is possible to manufacture the transparent resin substrate 1 in which the minute prism group layer 20 and the transparent resin base material 25 are integrated as shown in FIG.

【0024】本発明にかかる低屈折率の薄層26は特に限
定されるものではないが、溶剤に溶解させ塗料化した材
料を用い、形成することができる。また透明樹脂基材25
よりも屈折率が低く、かつ、基材と相溶性のよい透明フ
ィルムを使い、熱加圧成形により、一体化することも可
能である。
Although the low refractive index thin layer 26 according to the present invention is not particularly limited, it can be formed by using a material dissolved in a solvent to form a paint. In addition, the transparent resin substrate 25
It is also possible to use a transparent film having a lower refractive index and a higher compatibility with the base material, and integrate them by hot pressing.

【0025】本発明を実施するに際して用いる透明樹脂
基材25は、その透明性からアクリル樹脂がもっとも適し
ているが、特にこれに限定されるものではなく、ポリカ
ーボネート,ポリスチレン,AS樹脂等の各種熱可塑性
の透明樹脂等が使用可能であり、またCR−39等の熱
硬化性樹脂や各種ガラス材料等の無機材料も透明であれ
ば場合によっては適用可能である。
Acrylic resin is most suitable for the transparent resin substrate 25 used in the practice of the present invention because of its transparency, but it is not particularly limited to this, and various types of heat such as polycarbonate, polystyrene, AS resin and the like can be used. A transparent plastic resin or the like can be used, and a thermosetting resin such as CR-39 or an inorganic material such as various glass materials can be used depending on the case as long as it is transparent.

【0026】また本発明にかかる微小プリズム群層20と
一体化した透明樹脂基板1の製造方法についても、上記
の例に限定されるものではなく、インサート成形,2色
成形等の射出成形法その他の方法によって製造してもよ
い。
Further, the method for manufacturing the transparent resin substrate 1 integrated with the micro prism group layer 20 according to the present invention is not limited to the above example, and injection molding methods such as insert molding, two-color molding, etc. You may manufacture by the method of.

【0027】実測例1:屈折率1.49の紫外線吸収材の混
入されていない透明アクリル樹脂板を基材とし、屈折率
1.42の紫外線硬化型の液状樹脂を用い、図3に示す要領
で図2に示す一体化基板を作成した。プリズム形成用の
型はシリコンゴム製で、アクリル板上面から紫外線を照
射して下部の液状樹脂を重合硬化させた。
Measurement Example 1: A transparent acrylic resin plate having a refractive index of 1.49 and containing no ultraviolet absorber is used as a base material, and the refractive index is
Using the 1.42 ultraviolet curable liquid resin, the integrated substrate shown in FIG. 2 was prepared in the manner shown in FIG. The mold for prism formation was made of silicon rubber, and ultraviolet rays were radiated from the upper surface of the acrylic plate to polymerize and cure the lower liquid resin.

【0028】実測例2:屈折率1.49の通常の透明アクリ
ル樹脂板上にケトン系の溶媒で溶解した屈折率1.41のフ
ッ化ビニリデン樹脂をスプレーにより塗布した。充分溶
剤を乾燥させた後、図4に示す方法で図2に示す一体化
基板を作成した。プリズム形成用の型は黄銅製を使用
し、温度180 ℃,圧力50kg/m2 の条件で熱加圧成形を行
った。これら実験例のいずれの場合も、プリズム断面形
状はいずれもピッチ0.3mm、頂角90°である。
Measurement Example 2: A vinylidene fluoride resin having a refractive index of 1.41 dissolved in a ketone solvent was applied onto a normal transparent acrylic resin plate having a refractive index of 1.49 by spraying. After the solvent was sufficiently dried, the integrated substrate shown in FIG. 2 was prepared by the method shown in FIG. The mold for prism formation was made of brass, and was heat-pressed under the conditions of a temperature of 180 ° C and a pressure of 50 kg / m 2 . In each of these experimental examples, the prism cross-sectional shape is 0.3 mm in pitch and 90 ° in apex angle.

【0029】上記2通りの方法で作成した一体化基板を
図1に示す構成により面状光源装置として評価を行なっ
た結果、発光面上での明るさ及びその均一性共に優れて
いたことが確認された。
The integrated substrate produced by the above two methods was evaluated as a planar light source device with the configuration shown in FIG. 1, and as a result, it was confirmed that both the brightness on the light emitting surface and its uniformity were excellent. Was done.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明により高機能
を維持したままで、部材の構成枚数を低減させ、高効率
で低コスト及び取扱い性を改善した面状光源装置が実現
できる。
As described in detail above, according to the present invention, it is possible to realize a planar light source device in which the number of constituent members is reduced, the efficiency is high, the cost is low, and the handleability is improved while maintaining the high function.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の基本構成を示す断面図であ
る。
FIG. 1 is a sectional view showing a basic configuration of an embodiment of the present invention.

【図2】図1中の一体化樹脂基板を示す断面図である。FIG. 2 is a sectional view showing an integrated resin substrate in FIG.

【図3】(a) , (b) は図2に示す一体化樹脂基板の製造
方法の一例を示す説明図である。
3 (a) and 3 (b) are explanatory views showing an example of a method for manufacturing the integrated resin substrate shown in FIG.

【図4】図2に示す一体化樹脂基板の製造方法の他の例
を示す説明図である。
FIG. 4 is an explanatory view showing another example of the method for manufacturing the integrated resin substrate shown in FIG.

【図5】従来構造の基本構成を示す断面図である。FIG. 5 is a sectional view showing a basic structure of a conventional structure.

【図6】図5のものの作用を説明する説明図である。FIG. 6 is an explanatory view explaining the operation of the one shown in FIG.

【図7】図6のものの改良構造を示す断面図である。FIG. 7 is a sectional view showing an improved structure of that of FIG. 6;

【図8】図6のものの改良構造の他の例を示す断面図で
ある。
8 is a cross-sectional view showing another example of the improved structure of that of FIG.

【符号の説明】[Explanation of symbols]

1 透明樹脂基板 4 反射板 5 表面 6 拡散板 7 端部 8 蛍光管 9 反射フィルム 10 反射剤 20 微小プリズム群層 21 光線 22 型 24 透明液状樹脂 25 透明樹脂基材 26 薄層 27 型 1 Transparent Resin Substrate 4 Reflector 5 Surface 6 Diffuser 7 Edge 8 Fluorescent Tube 9 Reflective Film 10 Reflector 20 Micro Prism Group Layer 21 Ray 22 Type 24 Transparent Liquid Resin 25 Transparent Resin Substrate 26 Thin Layer 27 Type

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透明樹脂基板の少なくとも一つ以上の端
面に1本または複数本の線状の蛍光管を当接させて構成
するサイドライト方式の面状光源装置において、前記透
明樹脂基板となる透明樹脂基材の表面に、少なくとも該
透明樹脂基材よりも屈折率の低い透明材料で構成された
微小プリズム群層を密着形成させ一体化して透明樹脂基
板を形成したことを特徴とする面状光源装置。
1. A side light type planar light source device comprising one or a plurality of linear fluorescent tubes in contact with at least one end face of a transparent resin substrate, wherein the transparent resin substrate is used. A surface state characterized in that a transparent resin substrate is formed by closely adhering and integrating a fine prism group layer composed of a transparent material having a refractive index lower than that of the transparent resin substrate on the surface of the transparent resin substrate. Light source device.
【請求項2】 微小プリズム群を形成させるための型内
に液状樹脂を注入し、該注入した液状樹脂に板状の透明
樹脂基材を密接させ、該密着させた状態で液状樹脂を重
合硬化させることにより、透明樹脂基材と硬化した樹脂
とを一体的に形成することを特徴とする面状光源装置の
製造方法。
2. A liquid resin is injected into a mold for forming a micro prism group, a plate-shaped transparent resin substrate is brought into close contact with the injected liquid resin, and the liquid resin is polymerized and cured in the state of being in close contact. A method for manufacturing a planar light source device, characterized in that the transparent resin base material and the cured resin are integrally formed by doing so.
【請求項3】 液状樹脂に紫外線を照射することにより
重合硬化させることを特徴とする請求項2記載の面状光
源装置の製造方法。
3. The method for manufacturing a planar light source device according to claim 2, wherein the liquid resin is polymerized and cured by irradiating the liquid resin with ultraviolet rays.
【請求項4】 透明樹脂基材の表面に、該透明樹脂基材
よりも低屈折率の薄層を形成して透明樹脂基板を得、該
透明樹脂基板に微小プリズム群を形成させるための型を
押し当てて熱加圧成形することにより、透明樹脂基板に
微小プリズム群層を一体的に形成することを特徴とする
面状光源装置の製造方法。
4. A mold for forming a transparent resin substrate by forming a thin layer having a refractive index lower than that of the transparent resin substrate on the surface of the transparent resin substrate, and forming a micro prism group on the transparent resin substrate. A method of manufacturing a planar light source device, characterized in that a micro prism group layer is integrally formed on a transparent resin substrate by pressing and pressing.
【請求項5】 塗装または印刷により前記透明樹脂基材
よりも低屈折率の薄層を形成することを特徴とする請求
項4記載の面状光源装置の製造方法。
5. The method for manufacturing a planar light source device according to claim 4, wherein a thin layer having a refractive index lower than that of the transparent resin substrate is formed by painting or printing.
JP28991193A 1993-10-26 1993-10-26 Planar light source device and manufacturing method thereof Expired - Fee Related JP3796663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28991193A JP3796663B2 (en) 1993-10-26 1993-10-26 Planar light source device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28991193A JP3796663B2 (en) 1993-10-26 1993-10-26 Planar light source device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07120605A true JPH07120605A (en) 1995-05-12
JP3796663B2 JP3796663B2 (en) 2006-07-12

Family

ID=17749367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28991193A Expired - Fee Related JP3796663B2 (en) 1993-10-26 1993-10-26 Planar light source device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3796663B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235746A (en) * 2000-02-22 2001-08-31 Alps Electric Co Ltd Light transmission plate, its manufacturing method and liquid crystal display device
US6376085B1 (en) 1998-02-25 2002-04-23 Ngk Insulators, Ltd. Joining material for electronic components electronic components and a method for manufacturing the same
WO2007129415A1 (en) * 2006-05-08 2007-11-15 Sony Corporation Optical film, process for producing the same and display apparatus
JP2007324144A (en) * 1995-06-27 2007-12-13 Solid State Opto Ltd Light-emitting panel assembly
JP2008171796A (en) * 2006-03-28 2008-07-24 Samsung Electronics Co Ltd Integrated light guide plate, backlight device equipped with it, and method for manufacturing integrated light guide plate
US7537370B2 (en) 1995-06-27 2009-05-26 Solid State Opto Limited Light emitting panel assemblies
WO2011013733A1 (en) * 2009-07-31 2011-02-03 大日本印刷株式会社 Light-guiding plate, light-guiding plate manufacturing method, surface light-source device, and liquid crystal display device
KR20170012069A (en) 2015-07-21 2017-02-02 티디케이가부시기가이샤 Composite electric device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537370B2 (en) 1995-06-27 2009-05-26 Solid State Opto Limited Light emitting panel assemblies
JP2007324144A (en) * 1995-06-27 2007-12-13 Solid State Opto Ltd Light-emitting panel assembly
US6376085B1 (en) 1998-02-25 2002-04-23 Ngk Insulators, Ltd. Joining material for electronic components electronic components and a method for manufacturing the same
JP2001235746A (en) * 2000-02-22 2001-08-31 Alps Electric Co Ltd Light transmission plate, its manufacturing method and liquid crystal display device
JP2008171796A (en) * 2006-03-28 2008-07-24 Samsung Electronics Co Ltd Integrated light guide plate, backlight device equipped with it, and method for manufacturing integrated light guide plate
US7467886B2 (en) 2006-05-08 2008-12-23 Sony Corporation Optical sheet, method for producing the same and display apparatus
WO2007129415A1 (en) * 2006-05-08 2007-11-15 Sony Corporation Optical film, process for producing the same and display apparatus
TWI465777B (en) * 2006-05-08 2014-12-21 Sony Corp Optical film, manufacturing method thereof and display device
WO2011013733A1 (en) * 2009-07-31 2011-02-03 大日本印刷株式会社 Light-guiding plate, light-guiding plate manufacturing method, surface light-source device, and liquid crystal display device
KR101385796B1 (en) * 2009-07-31 2014-04-16 다이니폰 인사츠 가부시키가이샤 Light-guiding plate, light-guiding plate manufacturing method, surface light-source device, and liquid crystal display device
CN102472454A (en) * 2009-07-31 2012-05-23 大日本印刷株式会社 Light-guiding plate, light-guiding plate manufacturing method, surface light-source device, and liquid crystal display device
JP2011034801A (en) * 2009-07-31 2011-02-17 Dainippon Printing Co Ltd Light guide plate, light guide plate manufacturing method, surface light source device, and liquid crystal display device
US9551824B2 (en) 2009-07-31 2017-01-24 Dai Nippon Printing Co., Ltd. Light guide plate, method for producing light guide plate, surface light source device, and liquid crystal display device
KR20170012069A (en) 2015-07-21 2017-02-02 티디케이가부시기가이샤 Composite electric device

Also Published As

Publication number Publication date
JP3796663B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US6424786B1 (en) Illumination assembly
KR100398751B1 (en) Light diffusion film and method using the same
US5481385A (en) Direct view display device with array of tapered waveguide on viewer side
KR100806093B1 (en) Planar light source and display device using the same
TWI374315B (en)
US20070020792A1 (en) Optical sheet, backlight unit, electro-optic device, electronic device, method for manufacturing optical sheet, and method for cutting optical sheet
KR20010003887A (en) Light guide panel of flat panel display and method for fabricating the same
CN101956950B (en) Optical thin plate and manufacture method thereof as well as backlight module
JPH09101521A (en) Light transmission body for surface light source and its production
JP3796663B2 (en) Planar light source device and manufacturing method thereof
JPH08278413A (en) Surface light source device and its production
JPH1039118A (en) Ray-directional sheet, and directional surface light source formed by using the same
JPH0667004A (en) Triangular prism sheet for liquid crystal display device and its manufacture
JP3376508B2 (en) Method for manufacturing substrate used in planar light source device
JP2002216530A (en) Surface light source device, light guide for surface light source device and method for manufacturing the same
JPH0667178A (en) Liquid crystal display device
JPH06118247A (en) Manufacture of edge light guide boy
JP3579849B2 (en) Manufacturing method of planar light source device
KR100776714B1 (en) Light guide plate for back-light with prism interface and the manufacturing method thereof
JP2001133605A (en) Lens sheet, backlight utilizing the same and liquid crystal display device
JPH08192432A (en) Production of mold for molding light guide element
JPH07152031A (en) Liquid crystal display device and its production
JP2002098815A (en) Optical sheet
JP2004133167A (en) Reflective display device
JP3673928B2 (en) Manufacturing method of substrate used in planar light source device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040126

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees