JPH07120580B2 - Manufacturing method of superconducting coil by explosive compression method - Google Patents

Manufacturing method of superconducting coil by explosive compression method

Info

Publication number
JPH07120580B2
JPH07120580B2 JP63174166A JP17416688A JPH07120580B2 JP H07120580 B2 JPH07120580 B2 JP H07120580B2 JP 63174166 A JP63174166 A JP 63174166A JP 17416688 A JP17416688 A JP 17416688A JP H07120580 B2 JPH07120580 B2 JP H07120580B2
Authority
JP
Japan
Prior art keywords
coil
powder
superconducting
filled
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63174166A
Other languages
Japanese (ja)
Other versions
JPH0225004A (en
Inventor
貞明 萩野
元一 鈴木
拓夫 武下
英機 頓田
和希 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP63174166A priority Critical patent/JPH07120580B2/en
Publication of JPH0225004A publication Critical patent/JPH0225004A/en
Publication of JPH07120580B2 publication Critical patent/JPH07120580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、爆発圧縮法を用いた高臨界電流密度を有す
る超電導コイルの製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a superconducting coil having a high critical current density using an explosive compression method.

〔従来の技術〕[Conventional technology]

一般に、Yを含む希土類元素(以下、この元素をRで示
す)、アルカリ土類金属、Cuおよび酸素からなるペロブ
スカイト構造を有する化合物(以下、この化合物をR系
酸化物という)は、液体窒素で冷却可能な77゜Kにおい
て超電導現象を示すことが知られている。
Generally, a compound having a perovskite structure composed of a rare earth element containing Y (hereinafter, this element is represented by R), an alkaline earth metal, Cu and oxygen (hereinafter, this compound is referred to as an R-based oxide) is a liquid nitrogen. It is known to exhibit superconductivity at 77 ° K, where it can be cooled.

上記R系酸化物の粉末を用いて超電導コイルを製造する
方法としては、まず原料粉末として、いずれも平均粒
径:10μm以下のR2O3粉末、アルカリ土類金属の炭酸塩
粉末、およびCuO粉末を用意し、これら原料粉末を所定
の配合組成に配合し、混合し、大気中または酸素雰囲気
中で、温度:850〜950℃にて焼成し、ペロブスカイト構
造を有するR系酸化物を製造し、このR系酸化物を平均
粒径:10μm以下に粉砕してR系酸化物粉末とし、この
R系酸化物粉末をAgチューブに充填し、このR系酸化物
粉末充填Agチューブの両端を封じたのち、スエージング
加工、溝ロール加工、またはダイス加工等の伸線加工を
施して、直径:5mm以下のR系酸化物粉末充填Ag複合ワイ
ヤとし、上記R系酸化物粉末充填Ag複合ワイヤを巻いて
R系酸化物粉末充填Ag複合ワイヤのコイル(以下、R系
酸化物充填コイルという)とし、上記R系酸化物充填コ
イルを大気中または酸素雰囲気中、温度:900〜950℃で
熱処理してR系酸化物超電導コイルを製造していた。
As a method for producing a superconducting coil using the above R-based oxide powder, first, as raw material powder, R 2 O 3 powder having an average particle diameter of 10 μm or less, carbonate powder of alkaline earth metal, and CuO A powder is prepared, these raw material powders are mixed in a predetermined composition, mixed, and fired at a temperature of 850 to 950 ° C. in the air or an oxygen atmosphere to produce an R-based oxide having a perovskite structure. The R-based oxide is crushed to have an average particle size of 10 μm or less to form R-based oxide powder, and the R-based oxide powder is filled in an Ag tube, and both ends of the R-based oxide powder-filled Ag tube are sealed. After that, wire drawing such as swaging, groove roll processing, or die processing is performed to obtain an R-based oxide powder-filled Ag composite wire having a diameter of 5 mm or less. Wrap R type oxide powder filled Ag composite wire (Hereinafter referred to as “R-based oxide-filled coil”), the R-based oxide-filled coil was heat-treated at a temperature of 900 to 950 ° C. in the air or an oxygen atmosphere to produce an R-based oxide superconducting coil. .

さらに近年、Bi−Ca−Sr−Cu−O系酸化物(以下、Bi系
酸化物という)およびTl−Ca−Ba−Cu−O系酸化物(以
下、Tl系酸化物という)が液体窒素で冷却可能な77゜K
以上の温度において超電導現象を示すことが発見され
た。
Furthermore, in recent years, Bi-Ca-Sr-Cu-O-based oxides (hereinafter referred to as Bi-based oxides) and Tl-Ca-Ba-Cu-O-based oxides (hereinafter referred to as Tl-based oxides) are liquid nitrogen. Coolable 77 ° K
It was discovered that it exhibits superconductivity at the above temperatures.

上記Bi系酸化物は、まず原料粉末としてBi2O3粉末、CaC
O3粉末、SrCO3粉末およびCuO粉末を用意し、これら原料
粉末を所定の割合に配合し、混合し、この混合粉末を温
度:700〜800℃の範囲内で大気中4〜12時間保持の条件
にて焼成処理することにより作成される。さらに上記Tl
系酸化物は、原料粉末としてTl2O3粉末、CaCO3粉末、Ba
CO3粉末およびCuO粉末を用意し、これら原料粉末を所定
の割合に配合し、混合し、この混合粉末を温度:600〜70
0℃の範囲内の温度で大気中4〜12時間保持の焼成処理
をすることにより作成される。
First, the Bi-based oxides are Bi 2 O 3 powder and CaC as raw material powders.
O 3 powder, SrCO 3 powder and CuO powder are prepared, these raw material powders are mixed in a predetermined ratio and mixed, and the mixed powder is kept in the atmosphere at a temperature of 700 to 800 ° C. for 4 to 12 hours. It is created by firing under the conditions. Further above Tl
The system oxides are Tl 2 O 3 powder, CaCO 3 powder, Ba as raw material powder.
CO 3 powder and CuO powder are prepared, these raw material powders are mixed in a predetermined ratio and mixed, and this mixed powder is heated at a temperature of 600 to 70.
It is prepared by carrying out a firing treatment in which the temperature is kept in the range of 0 ° C. for 4 to 12 hours in the atmosphere.

このようにして作成されたBi系酸化物またはTl系酸化物
は、粉砕されて平均粒径:5μm以下のBi系酸化物粉末ま
たはTl系酸化物粉末とし、これらBi系酸化物粉末または
Tl系酸化物粉末をそれぞれAgチューブに充填し、これら
Bi系酸化物粉末充填AgチューブまたはTl系酸化物粉末充
填Agチューブの両端を封じたのち、これらを伸線加工し
て直径:5mm以下のBi系酸化物粉末充填Ag複合ワイヤまた
はTl系酸化物粉末充填Ag複合ワイヤとし、これらAg複合
ワイヤを巻いてBi系酸化物粉末充填Ag複合ワイヤのコイ
ル(以下、Bi系酸化物充填コイルという)またはTl系酸
化物充填Ag複合ワイヤのコイル(以下、Tl系酸化物充填
コイルという)とし、上記Bi系酸化物充填コイルまたは
Tl系酸化物充填コイルを大気中または酸素雰囲気中で熱
処理することによりBi系酸化物超電導コイルまたはTl系
酸化物超電導コイルを製造していた。上記Bi系酸化物超
電導コイルの熱処理温度は830〜870℃であり、Tl系酸化
物超電導コイルの熱処理温度は880〜920℃である。
The Bi-based oxide or Tl-based oxide thus prepared is crushed to obtain a Bi-based oxide powder or Tl-based oxide powder having an average particle size of 5 μm or less.
Fill each of the Tl-based oxide powders into Ag tubes and
After sealing both ends of a Bi-based oxide powder-filled Ag tube or Tl-based oxide powder-filled Ag tube, these are wire-drawn to have a diameter of 5 mm or less and Bi-based oxide powder-filled Ag composite wire or Tl-based oxide. As a powder-filled Ag composite wire, these Ag composite wires are wound, and a Bi-based oxide powder-filled Ag composite wire coil (hereinafter referred to as Bi-based oxide-filled coil) or a Tl-based oxide-filled Ag composite wire coil (hereinafter, referred to as Tl-based oxide-filled coil) and the above Bi-based oxide-filled coil or
A Bi-based oxide superconducting coil or a Tl-based oxide superconducting coil was manufactured by heat-treating a Tl-based oxide-filled coil in the air or an oxygen atmosphere. The heat treatment temperature of the Bi-based oxide superconducting coil is 830 to 870 ° C, and the heat treatment temperature of the Tl-based oxide superconducting coil is 880 to 920 ° C.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上記従来の製造法により得られたR系酸
化物超電導コイルの臨界電流密度は、高いもので700A/c
m2程度であり、従来の製造法により製造されたBi系酸化
物電導コイルの臨界電流密度は、せいぜい100A/cm2しか
示さず、さらに、従来の製造法により得られたTl系酸化
物超電導コイルは、最高180A/cm2程度の臨界電流密度し
か有しない。
However, the critical current density of the R-based oxide superconducting coil obtained by the above conventional manufacturing method is 700 A / c at a high value.
m 2 and about, the critical current density of the Bi-based oxide resistive coils produced by conventional manufacturing methods, at most 100A / cm 2 only shown additionally, Tl-based oxide superconductor obtained by the conventional production methods The coil has a critical current density of up to about 180 A / cm 2 .

この程度の臨界電流密度では、超電導コイルとして実用
に供することができないため、R系酸化物充填コイル、
Bi系酸化物充填コイルまたはTl系酸化物充填コイルに爆
発圧縮を施して超電導酸化物粉末の充填密度を高め、そ
れによって臨界電流密度を向上させようとする試みもな
されているが、上記コイルを直接爆発圧縮すると、上記
コイルは変形してコイルの形状をなさなくなり、各所で
切断が生じ、各種産業用電気機器に組込むためのコイル
としては実用に供することはできないという問題点があ
った。
With this level of critical current density, it cannot be put to practical use as a superconducting coil.
Attempts have also been made to increase the packing density of superconducting oxide powder by subjecting a Bi-based oxide-filled coil or a Tl-based oxide-filled coil to explosive compression, thereby improving the critical current density. When it is directly explosively compressed, the coil is deformed so that the coil does not have the shape of the coil, cutting occurs at various places, and there is a problem that it cannot be put to practical use as a coil to be incorporated into various industrial electric devices.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで、本発明者等は、実用に供することのできる一層
すぐれた高臨界電流密度を有する超電導コイルを得るべ
く研究を行なった結果、 上記R系酸化物充填コイル、Bi系酸化物充填コイルまた
はTl系酸化物充填コイルなどの超電導酸化物充填コイル
を、圧力媒体とともにパイプと円筒支持型とで構成され
たリング状間隙に装入し、上記パイプに充填した爆薬に
よって爆発圧縮したコイルは、変形および切断されるこ
となくコイル内の超電導酸化物粉末を高密度化すること
ができ、きわめて優れた高臨界電流密度を有する超電導
コイルを得ることができるという知見を得たのである。
Therefore, the inventors of the present invention have conducted research to obtain a superconducting coil having a higher critical current density that can be put to practical use, and as a result, the above R-based oxide-filled coil, Bi-based oxide-filled coil or Tl A superconducting oxide-filled coil such as a system oxide-filled coil is charged into a ring-shaped gap composed of a pipe and a cylindrical support type together with a pressure medium, and the coil explosively compressed by the explosive filled in the pipe is deformed and The inventors have found that the superconducting oxide powder in the coil can be densified without being cut, and a superconducting coil having an extremely high critical current density can be obtained.

この発明は、かかる知見にもとづいてなされたものであ
って、以下、この発明の爆発圧縮法による超電導コイル
の製造法を図面にもとづいて具体的に説明する。
The present invention has been made on the basis of such knowledge, and hereinafter, a method for manufacturing a superconducting coil by the explosion compression method of the present invention will be specifically described with reference to the drawings.

第1図は、爆発圧縮法により超電導酸化物充填コイルを
爆発圧縮するために、上記超電導酸化物充填コイルをセ
ットした状態を示す断面立面図であり、第2図のI−I
断面図である。
FIG. 1 is a sectional elevational view showing a state in which the superconducting oxide-filled coil is set in order to explode-compress the superconducting oxide-filled coil by the explosive compression method.
FIG.

第2図は、超電導酸化物充填コイルを爆発圧縮するため
にセットした状態の第1図におけるII−II断面平面図、 である。
FIG. 2 is a plan view of II-II cross section in FIG. 1 in a state in which the superconducting oxide-filled coil is set for explosive compression.

上記第1図および第2図において、1は円筒支持型、2
は圧力媒体、3は超電導酸化物充填コイル、4は基板、
5はパイプ、6は蓋、7は爆薬、8は起爆装置である。
1 and 2, 1 is a cylindrical support type, 2
Is a pressure medium, 3 is a superconducting oxide-filled coil, 4 is a substrate,
5 is a pipe, 6 is a lid, 7 is explosive, and 8 is a detonator.

上記円筒支持型1は、厚みのある円筒金型または円筒鉄
筋コンクリート型を用いることが好ましいが、有底の円
筒状金型またはコンクリート型であってもさしつかえな
い。有底の場合は、基板4を用いる必要はない。さら
に、上記円筒支持型は、岩盤に穴を設けたものであって
もよい。
As the cylindrical support mold 1, it is preferable to use a thick cylindrical mold or a cylindrical reinforced concrete mold, but a bottomed cylindrical mold or concrete mold may be used. In the case of bottoming, it is not necessary to use the substrate 4. Further, the cylindrical support type may be one in which a hole is formed in the bedrock.

圧力媒体2は、流体であってもよいが平均粒径:1〜1,00
0μmの爆発圧縮により固化しにくい粉末が好ましい。
これらの粉末としては、例えばAl2O3、SiO2、MgO、ZrO2
等の酸化物粉末およびそれら酸化物の複合酸化物粉末、
AlN、TiN、Si3N4等の窒化物粉末、TiB2、ZrB2、MoB等の
ホウ化物粉末、SiC、TiC、ZrC、WC等の炭化物粉末、MoS
i2、TiSi、ZrSi等のケイ化物粉末、 その他、炭窒化物粉末などの固溶体粉末が用いられる。
The pressure medium 2 may be a fluid, but the average particle size: 1 to 1,00
A powder that is hard to solidify by explosive compression of 0 μm is preferable.
Examples of these powders include Al 2 O 3 , SiO 2 , MgO, and ZrO 2.
Oxide powders such as and complex oxide powders of those oxides,
Nitride powder such as AlN, TiN, Si 3 N 4 , boride powder such as TiB 2 , ZrB 2 , MoB, carbide powder such as SiC, TiC, ZrC, WC, MoS
Silicide powders such as i 2 , TiSi and ZrSi, and solid solution powders such as carbonitride powders are used.

上記パイプ5は、鋼管が好ましいが、鋼管に限定される
ものではなく、その他の金属まは合金、プラスチック、
強化ガラス、セラミックス、厚紙等で作製することも可
能である。
The pipe 5 is preferably a steel pipe, but is not limited to a steel pipe, and other metals or alloys, plastics,
It is also possible to make it with tempered glass, ceramics, cardboard, or the like.

上記第1図および第2図に示されるように、超電導酸化
物充填コイルをセットするためには、次のような工程で
行なわれる。
As shown in FIGS. 1 and 2, the superconducting oxide-filled coil is set in the following steps.

まず、基板4を載置し、上記基板4の上に円筒金型から
なる円筒支持型1を設置し、上記円筒支持型1の内側に
パイプ5を立置する。上記円筒支持型1とパイプ5の間
の間隙に超電導酸化物充填コイル3および圧力媒体2を
装入する。上記超電導酸化物充填コイル3の外径は円筒
支持型1の内径より小さく、パイプ5の外径より大きな
ものであることが必要である。上記超電導酸化物充填コ
イル3および圧力媒体2を装入終了後、振動等を与えて
圧力媒体2を一層密に充填する方が好ましい。上記超電
導酸化物充填コイル3および圧力媒体2を装入後、蓋6
をし、ついで、パイプ5の内側に爆薬7を充填する。上
記爆薬7は、一部分、円筒支持型1の上に盛り上るよう
に充填するとよい。上記充填された爆薬7は、起爆装置
8により爆発せしめる。上記パイプ5の爆薬7を爆発せ
しめると、圧力媒体2の中に埋設されている超電導酸化
物充填コイル3は切断および変形することなく均一に爆
発圧縮され、上記コイルに充填されている超電導酸化物
粉末は一層高密度に圧縮させるのである。
First, the substrate 4 is placed, the cylindrical support mold 1 made of a cylindrical mold is placed on the substrate 4, and the pipe 5 is erected inside the cylindrical support mold 1. The superconducting oxide-filled coil 3 and the pressure medium 2 are placed in the gap between the cylindrical support mold 1 and the pipe 5. The outer diameter of the superconducting oxide-filled coil 3 must be smaller than the inner diameter of the cylindrical support mold 1 and larger than the outer diameter of the pipe 5. After the charging of the superconducting oxide-filled coil 3 and the pressure medium 2 is completed, it is preferable to apply vibration or the like to more densely fill the pressure medium 2. After charging the superconducting oxide-filled coil 3 and the pressure medium 2, the lid 6
Then, the explosive 7 is filled inside the pipe 5. The explosive 7 may be partially filled so as to rise above the cylindrical support die 1. The charged explosive 7 is detonated by the detonator 8. When the explosive 7 in the pipe 5 is detonated, the superconducting oxide-filled coil 3 embedded in the pressure medium 2 is uniformly exploded and compressed without cutting and deformation, and the superconducting oxide filling the coil is filled. The powder is compressed more densely.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて一層具体的に説
明する。
Next, the present invention will be described more specifically based on examples.

実施例 1 原料粉末として、 平均粒径:6μmの酸化イットリウム(Y2O3)粉末、 平均粒径:6μmの炭酸バリウム(BaCO3)粉末、および 平均粒径:6μmの酸化銅(CuO)粉末を用意し、 これらの粉末を、モル比で Y2O3:BaCO3:CuO=1/2:2:3となるように配合して混合
し、この混合粉末を、大気中にて、温度:900℃、12時間
保持の条件で仮焼し、YBa2Cu3O7の組成を有し、ペロブ
スカイト構造を有する化合物(以下、Y系酸化物とい
う)を作製し、さらに、これら化合物を粉砕して、平均
粒径:1.3μmのY系酸化物粉末を作製した。
Example 1 As raw material powders, yttrium oxide (Y 2 O 3 ) powder having an average particle size: 6 μm, barium carbonate (BaCO 3 ) powder having an average particle size: 6 μm, and copper oxide (CuO) powder having an average particle size: 6 μm , And mix these powders in a molar ratio of Y 2 O 3 : BaCO 3 : CuO = 1/2: 2: 3, and mix them. : Calcination at 900 ° C for 12 hours is carried out to produce a compound having a composition of YBa 2 Cu 3 O 7 and having a perovskite structure (hereinafter referred to as Y-based oxide), and further crushing these compounds. Then, a Y-based oxide powder having an average particle diameter of 1.3 μm was produced.

上記Y系酸化物粉末を、内径:20mm×肉厚:1.5mm×長さ:
200mmのAg製チューブに充填し、この充填Agチューブを
スエージング加工したのち溝ロール加工し、直径:2mmの
Y系酸化物充填Ag複合ワイヤを作製した。
The above Y-based oxide powder, inner diameter: 20mm × wall thickness: 1.5mm × length:
A 200 mm Ag tube was filled, and the filled Ag tube was swaged and then groove-rolled to produce a Y-based oxide-filled Ag composite wire having a diameter of 2 mm.

上記Y系酸化物充填Ag複合ワイヤを巻いて内径:90mmの
Y系酸化物充填コイルを2個作製し、そのうちの一方を
次のようにして爆発圧縮を施した。
The Y-type oxide-filled Ag composite wire was wound to produce two Y-type oxide-filled coils having an inner diameter of 90 mm, and one of them was subjected to explosive compression as follows.

まず、円筒支持型1として、外径:180mm×内径:100mm×
高さ:130mmの鋼製円筒金型および鋼板製基板4を用意
し、第1図に示されるように上記鋼板製基板4の上に上
記鋼製円筒金型を立置し、ついで上記鋼製円筒金型内側
に、上記鋼製円筒金型の高さよりも少し低い高さを有す
る外径:69mm×内径:65mm×高さ:110mmの鋼製パイプ5を
立置した。上記鋼製円筒金型と上記鋼製パイプとは正確
に同心円状に置く必要はなく、上記鋼製パイプは上記鋼
製円筒金型内側のほぼ中心部に置けばよい。
First, as the cylindrical support type 1, outer diameter: 180 mm × inner diameter: 100 mm ×
A steel cylinder mold having a height of 130 mm and a steel plate base plate 4 are prepared, and the steel cylinder mold is erected on the steel plate base plate 4 as shown in FIG. Inside the cylindrical mold, a steel pipe 5 having an outer diameter of 69 mm, an inner diameter of 65 mm, and a height of 110 mm and having a height slightly lower than the height of the steel cylindrical mold was placed upright. The steel cylindrical mold and the steel pipe do not have to be placed exactly concentrically, and the steel pipe may be placed substantially in the center of the inside of the steel cylindrical die.

上記鋼製円筒金型と上記鋼製パイプとの間に平均粒径:2
μmのSiC粉末および上記Y系酸化物充填コイルを装入
し、さらに振動を与えてSiC粉末が十分に密になるよう
に装入したのち蓋6をした。上記蓋は、装入されたSiC
粉末と後で充填する爆薬とが混合しないようにする目的
でなされるもので、条件によっては蓋なしでも実施可能
である。
Average particle size between the steel cylinder mold and the steel pipe: 2
After the SiC powder having a thickness of μm and the above Y-based oxide-filled coil were charged and further vibrated so that the SiC powder became sufficiently dense, the lid 6 was put on. The lid is made of SiC
This is done for the purpose of preventing the powder and the explosive to be filled later from mixing, and can be carried out without a lid depending on the conditions.

上記SiC粉末を装入し蓋6をしたのち、爆薬(爆速:2,30
0m/秒)7を上記鋼製パイプ5内に充填し、さらに鋼製
円筒金型の上端に盛り上るように充填し、起爆装置8に
より爆発せしめ、上記Y系酸化物充填コイル3を爆発圧
縮した。
After charging the above-mentioned SiC powder and closing the lid 6, explosives (explosion speed: 2,30
(0 m / sec) 7 is filled in the steel pipe 5 and further so as to rise on the upper end of the steel cylindrical mold, and is exploded by the detonator 8 to explosively compress the Y-based oxide-filled coil 3. did.

上記爆発圧縮したY系酸化物充填コイル3を取出し、上
記爆発圧縮しないもう一方のY系酸化物充填コイルとと
もに酸素雰囲気中、温度:920℃、24時間保持の条件で熱
処理し、爆発圧縮を施したY系酸化物超電導コイル(実
施例1)および爆発圧縮を施さないY系酸化物超電導コ
イル(比較例1)を作製し、これら2種類の超電導コイ
ルの超電導特性を測定し、その結果を第1表に示した。
The explosive-compressed Y-based oxide-filled coil 3 is taken out and heat-treated together with the other non-explosive-compressed Y-based oxide-filled coil in an oxygen atmosphere at a temperature of 920 ° C. for 24 hours to perform explosive compression. A Y-based oxide superconducting coil (Example 1) and a Y-based oxide superconducting coil not subjected to explosive compression (Comparative Example 1) were prepared, and the superconducting characteristics of these two types of superconducting coils were measured. The results are shown in Table 1.

実施例 2 原料粉末として、いずれも平均粒径:10μm以下のBi2O3
粉末、CaCO3粉末、SrCO3粉末およびCuO粉末を用意し、
これら粉末を、Bi2O3粉末:53.4%、CaCO3粉末:11.5%、
SrCO3粉末:16.9%およびCuO粉末:18.2%(以上重量%)
の配合組成となるように配合し、混合し、この混合粉末
を大気中、温度:800℃、12時間保持の条件で焼成処理
し、Bi系酸化物を作成し、ついでこの焼成処理して得ら
れたBi系酸化物を粉砕して、平均粒径:5μmのBi系酸化
物粉末を製造した。
Example 2 As a raw material powder, Bi 2 O 3 having an average particle size of 10 μm or less was used.
Prepare powder, CaCO 3 powder, SrCO 3 powder and CuO powder,
These powders are Bi 2 O 3 powder: 53.4%, CaCO 3 powder: 11.5%,
SrCO 3 powder: 16.9% and CuO powder: 18.2% (above weight%)
To obtain a Bi-based oxide, which is then subjected to a firing treatment in the atmosphere at a temperature of 800 ° C. for 12 hours to prepare a Bi-based oxide, which is then obtained by the firing treatment. The obtained Bi-based oxide was pulverized to produce a Bi-based oxide powder having an average particle diameter of 5 μm.

上記Bi系酸化物粉末を、内径:20mm×肉厚:1.5mm×長さ:
200mmのAg製チューブに充填し、この充填Agチューブを
スエージング加工したのち溝ロール加工し、直径:2mmの
Bi系酸化物充填Ag複合ワイヤを作製した。
The above Bi-based oxide powder, inner diameter: 20 mm × wall thickness: 1.5 mm × length:
Fill a 200 mm Ag tube, swage this Ag tube, and then groove roll it.
A Bi-based oxide-filled Ag composite wire was prepared.

上記Bi系酸化物充填Ag複合ワイヤを巻いて内径:90mmのB
i系酸化物充填コイルを2個作製し、そのうちの一方を
第1図の装置に装入し、実施例1と全く同一条件で爆発
圧縮を施したのち取り出して、上記爆発圧縮を施さない
Bi系酸化物充填コイルとともに、酸素雰囲気中、温度:8
50℃、15時間保持の条件で熱処理し、爆発圧縮を施した
Bi系酸化物超電導コイル(実施例2)および爆発圧縮を
施さないBi系酸化物超電導コイル(比較例2)を作製
し、これら超電導コイルの超電導特性を測定して、その
結果を第1表に示した。
Wrap the above Bi-based oxide-filled Ag composite wire and have an inner diameter of 90 mm B
Two i-based oxide-filled coils were produced, one of which was placed in the apparatus shown in FIG. 1, subjected to explosive compression under exactly the same conditions as in Example 1, and then taken out, and the above explosive compression was not applied.
With Bi-based oxide-filled coil, temperature: 8 in oxygen atmosphere
Heat-treated under conditions of holding at 50 ℃ for 15 hours and subjected to explosive compression
Bi-based oxide superconducting coils (Example 2) and Bi-based oxide superconducting coils not subjected to explosive compression (Comparative Example 2) were prepared, and the superconducting characteristics of these superconducting coils were measured. The results are shown in Table 1. Indicated.

実施例 3 原料粉末として、いずれも平均粒径:10μm以下のTl2O3
粉末、CaCO3粉末、BaCO3粉末およびCuO粉末を用意し、
これら粉末を、Tl2O3粉末:35.4%、CaCO3粉末:15.5%、
BaCO3粉末:30.6%およびCuO粉末:18.5%(以上重量%)
の配合組成となるように配合し、混合し、この混合粉末
を酸素雰囲気中、温度:800℃、10時間保持の条件で焼成
処理し、Tl系酸化物粉末を作成し、この焼成処理して得
られたTl系酸化物を粉砕して、平均粒径:5μmのTl系酸
化物粉末を製造した。
Example 3 As a raw material powder, Tl 2 O 3 having an average particle size of 10 μm or less was used.
Prepare powder, CaCO 3 powder, BaCO 3 powder and CuO powder,
These powders, Tl 2 O 3 powder: 35.4%, CaCO 3 powder: 15.5%,
BaCO 3 powder: 30.6% and CuO powder: 18.5% (above wt%)
The mixed powder is mixed and mixed, and the mixed powder is fired in an oxygen atmosphere at a temperature of 800 ° C. for 10 hours to prepare a Tl-based oxide powder, which is then fired. The resulting Tl-based oxide was pulverized to produce a Tl-based oxide powder having an average particle size of 5 μm.

上記Tl系酸化物粉末を、内径:20mm×肉厚:1.5mm×長さ:
200mmのAg製チューブに充填し、 この充填Agチューブをスエージング加工したのち溝ロー
ル加工し、直径:2mmのTl系酸化物充填Ag複合ワイヤを作
製した。
The above Tl-based oxide powder, inner diameter: 20 mm × wall thickness: 1.5 mm × length:
Fill a 200 mm Ag tube, The filled Ag tube was swaged and then groove-rolled to produce a Tl-based oxide-filled Ag composite wire having a diameter of 2 mm.

上記Tl系酸化物充填Ag複合ワイヤを巻いて内径:90mmのT
l系酸化物充填コイルを2個作製し、そのうちの一方を
第1図の装置に装入し、実施例1と全く同一条件で爆発
圧縮を施したのち取り出して、上記爆発圧縮を施さない
Tl系酸化物充填コイルとともに、酸素雰囲気中、温度:9
00℃、3時間保持の条件で熱処理し、爆発圧縮を施した
Tl系酸化物超電導コイル(実施例3)および爆発圧縮を
施さないTl系酸化物超電導コイル(比較例3)を作製
し、これら超電導コイルの超電導特性を測定して、その
結果を第1表に示した。
Wrap the above Tl-based oxide-filled Ag composite wire and the inner diameter: 90 mm of T
Two l-type oxide-filled coils were prepared, one of which was placed in the apparatus shown in FIG. 1, subjected to explosive compression under the exact same conditions as in Example 1, and then taken out, and the above explosive compression was not applied.
Temperature: 9 in oxygen atmosphere with Tl-based oxide-filled coil
Heat-treated under conditions of holding at 00 ℃ for 3 hours and subjected to explosive compression
A Tl-based oxide superconducting coil (Example 3) and a Tl-based oxide superconducting coil not subjected to explosive compression (Comparative Example 3) were produced, and the superconducting characteristics of these superconducting coils were measured. The results are shown in Table 1. Indicated.

〔発明の効果〕〔The invention's effect〕

超電導酸化物充填コイルを圧力媒体とともにパイプと円
筒支持型の間に装入し、パイプの内側に充填した爆薬を
爆発せしめると、コイルを変形および切断することなく
爆発圧縮して高密度化することができ、さらに上記円筒
支持型の内径を大きくすることにより大径のコイルを爆
発圧縮することができ、この爆発圧縮した大径のコイル
を大気中または酸素雰囲気中で熱処理して得られた本発
明の実施例1〜3の超電導コイルは、爆発圧縮を施さな
い比較例1〜3の超電導コイルと比べて、特に臨界電流
密度が格段にすぐれ、実用に供する程度の高臨界電流密
度を有するので、この発明の製造法により得られた超電
導コイルは、産業の発達に大いに貢献するものである。
When a superconducting oxide-filled coil is charged with a pressure medium between a pipe and a cylindrical support type, and the explosive charged inside the pipe is exploded, the coil is exploded, compressed and densified without deformation and cutting. By further increasing the inner diameter of the cylindrical support type, a large-diameter coil can be explosively compressed, and a book obtained by heat-treating the explosively-compressed large-diameter coil in the air or an oxygen atmosphere The superconducting coils of Examples 1 to 3 of the invention have remarkably excellent critical current densities as compared with the superconducting coils of Comparative Examples 1 to 3 which are not subjected to explosive compression, and have high critical current densities for practical use. The superconducting coil obtained by the manufacturing method of the present invention greatly contributes to industrial development.

【図面の簡単な説明】[Brief description of drawings]

第1図は、超電導酸化物充填コイルを爆発圧縮するため
に支持型内にセットした状態を示す断面立面図、 第2図は、第1図のII−II断面図、 1:円筒支持型、2:圧力媒体 3:超電導酸化物充填コイル 4:基板、5:パイプ 6:蓋、7:爆薬 8:起爆装置
Fig. 1 is a sectional elevation view showing a state in which a superconducting oxide-filled coil is set in a supporting mold for explosive compression, and Fig. 2 is a II-II sectional view of Fig. 1, 1: cylindrical supporting type , 2: Pressure medium 3: Superconducting oxide filled coil 4: Substrate, 5: Pipe 6: Lid, 7: Explosive 8: Detonator

フロントページの続き (72)発明者 頓田 英機 熊本県熊本市東町4―2 東町南住宅6― 201 (72)発明者 高島 和希 熊本県熊本市保田窪本町1000―10 ひらい ハイツ401 (56)参考文献 特開 平1−112709(JP,A) 特開 昭63−287010(JP,A) 特開 昭64−9861(JP,A) 特開 昭63−222063(JP,A)Front page continuation (72) Inventor Hideki Tonda 4-2 Higashimachi, Kumamoto-shi, Kumamoto 6-201 Higashimachi Minami House (201) (72) Kazuki Takashima 1000-10 Yasukubomoto-cho, Kumamoto-shi, Kumamoto 401 (56) References JP-A 1-1112709 (JP, A) JP-A 63-287010 (JP, A) JP-A 64-9861 (JP, A) JP-A 63-222063 (JP, A)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】パイプと、上記パイプの外径よりも大きな
内径を有する円筒支持型を用意し、 上記パイプを上記円筒支持型内に同心円状に装入して上
記パイプと上記円筒支持型とで構成されるリング状間隙
を形成し、 上記リング状間隙に、超電導酸化物粉末充填Ag複合ワイ
ヤを巻いて得られたコイル(以下、コイルという)およ
び圧力媒体を、上記コイルが上記圧力媒体中に埋設され
るように装入し、さらに、上記パイプの内側に爆薬を充
填し、 上記爆薬を爆発せしめることにより上記コイルを爆発圧
縮して高密度化し、 ついで、上記爆発圧縮して高密度化したコイルを大気中
または酸素雰囲気中で熱処理することを特徴とする爆発
圧縮法による超電導コイルの製造法。
1. A pipe and a cylindrical support die having an inner diameter larger than the outer diameter of the pipe are prepared, and the pipe is concentrically loaded into the cylindrical support die to form the pipe and the cylindrical support die. And a coil (hereinafter referred to as a coil) and a pressure medium obtained by winding a superconducting oxide powder-filled Ag composite wire in the ring-shaped gap in the pressure medium. It is charged so that it is buried in the pipe, the inside of the pipe is filled with explosive, and the explosive is exploded to explode and compress the coil to increase the density, and then the explosive compression to increase the density. A method for manufacturing a superconducting coil by the explosive compression method, which comprises heat-treating the formed coil in the air or an oxygen atmosphere.
【請求項2】上記円筒支持型は、円筒金型であることを
特徴とする請求項1記載の爆発圧縮法による超電導コイ
ルの製造法。
2. The method for producing a superconducting coil by the explosion compression method according to claim 1, wherein the cylindrical support die is a cylindrical die.
【請求項3】上記円筒支持型は、円筒鉄筋コンクリート
型であることを特徴とする請求項1記載の爆発圧縮法に
よる超電導コイルの製造法。
3. The method for producing a superconducting coil according to claim 1, wherein the cylindrical support type is a cylindrical reinforced concrete type.
【請求項4】上記圧力媒体は、平均粒径:1〜1,000μm
の爆発圧縮により固化しにくい粉末であることを特徴と
する請求項1記載の爆発圧縮法による超電導コイルの製
造法。
4. The pressure medium has an average particle size of 1 to 1,000 μm.
2. The method for producing a superconducting coil by the explosion compression method according to claim 1, wherein the powder is a powder which is hard to be solidified by the explosion compression.
【請求項5】上記超電導酸化物粉末は、Yを含む希土類
元素、アルカリ土類金属、Cuおよび酸素からなるペロブ
スカイト構造を有する化合物粉末であることを特徴とす
る請求項1記載の爆発圧縮法による超電導コイルの製造
法。
5. The explosive compression method according to claim 1, wherein the superconducting oxide powder is a compound powder having a perovskite structure composed of a rare earth element containing Y, an alkaline earth metal, Cu and oxygen. Superconducting coil manufacturing method.
【請求項6】上記超電導酸化物粉末は、Bi−Ca−Sr−Cu
−O系酸化物粉末であることを特徴とする請求項1記載
の爆発圧縮法による超電導コイルの製造法。
6. The superconducting oxide powder is Bi-Ca-Sr-Cu.
The superconducting coil manufacturing method according to claim 1, wherein the superconducting coil is an -O-based oxide powder.
【請求項7】上記超電導酸化物粉末は、Tl−Ca−Ba−Cu
−O系酸化物粉末であることを特徴とする請求項1記載
の爆発圧縮法による超電導コイルの製造法。
7. The superconducting oxide powder is Tl-Ca-Ba-Cu.
The superconducting coil manufacturing method according to claim 1, wherein the superconducting coil is an -O-based oxide powder.
【請求項8】上記圧力媒体は、流体であることを特徴と
する請求項1記載の爆発圧縮法による超電導コイルの製
造法。
8. The method for producing a superconducting coil according to claim 1, wherein the pressure medium is a fluid.
JP63174166A 1988-07-13 1988-07-13 Manufacturing method of superconducting coil by explosive compression method Expired - Lifetime JPH07120580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174166A JPH07120580B2 (en) 1988-07-13 1988-07-13 Manufacturing method of superconducting coil by explosive compression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174166A JPH07120580B2 (en) 1988-07-13 1988-07-13 Manufacturing method of superconducting coil by explosive compression method

Publications (2)

Publication Number Publication Date
JPH0225004A JPH0225004A (en) 1990-01-26
JPH07120580B2 true JPH07120580B2 (en) 1995-12-20

Family

ID=15973858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174166A Expired - Lifetime JPH07120580B2 (en) 1988-07-13 1988-07-13 Manufacturing method of superconducting coil by explosive compression method

Country Status (1)

Country Link
JP (1) JPH07120580B2 (en)

Also Published As

Publication number Publication date
JPH0225004A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
US5223478A (en) Hot isostatic processing of high current density high temperature conductors
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
WO1993000712A1 (en) Method of forming a tape of the high temperature oxide superconductors
US5319843A (en) Method of manufacturing a superconductive cable
JPH07120580B2 (en) Manufacturing method of superconducting coil by explosive compression method
JP2545939B2 (en) Manufacturing method of superconducting wire by explosive compression method
JP2545937B2 (en) Manufacturing method of superconducting wire by explosive compression method
US5147847A (en) Method for manufacturing a pipe utilizing a superconducting ceramic material
JPH07120582B2 (en) Manufacturing method of superconducting coil by explosive compression method
JP2545938B2 (en) Manufacturing method of superconducting wire by explosive compression method
EP0349917B1 (en) Method of manufacturing superconductive coil by explosive compaction
JPH07120581B2 (en) Manufacturing method of superconducting coil by explosive compression method
JP2536080B2 (en) Manufacturing method of superconducting wire by explosive compression method
JPH07118414B2 (en) Manufacturing method of superconducting coil by explosive compression method
JP2617306B2 (en) Manufacturing method of superconducting device
JPH07118413B2 (en) Manufacturing method of superconducting coil by explosive compression method
JP2584989B2 (en) Pipe made of superconducting ceramic material
JPH01276516A (en) Manufacture of superconductive wire rod having high critical current density
JP2550672B2 (en) Manufacturing method of superconducting ceramic wire with high critical current density
JPS63310766A (en) Production of superconducting material
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH01304609A (en) Superconductive wire rod with high critical current density
JPH0740501B2 (en) Superconducting cable connection method and device
JPH0230011A (en) Manufacture of superconductive ceramics wire material having high critical current density