JPH07120498A - Characteristic adjusting method for capacitance type acceleration sensor - Google Patents

Characteristic adjusting method for capacitance type acceleration sensor

Info

Publication number
JPH07120498A
JPH07120498A JP5266040A JP26604093A JPH07120498A JP H07120498 A JPH07120498 A JP H07120498A JP 5266040 A JP5266040 A JP 5266040A JP 26604093 A JP26604093 A JP 26604093A JP H07120498 A JPH07120498 A JP H07120498A
Authority
JP
Japan
Prior art keywords
linearity
acceleration
respect
characteristic
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5266040A
Other languages
Japanese (ja)
Inventor
Masanori Kubota
正則 久保田
Terumi Nakazawa
照美 仲沢
Tetsuo Matsukura
哲夫 松倉
Yasuhiro Asano
保弘 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP5266040A priority Critical patent/JPH07120498A/en
Publication of JPH07120498A publication Critical patent/JPH07120498A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To regulate dispersion of linearity within a prescribed range, and improve yield of a sensor by correcting the linearity when linearity of an output voltage characteristic to a prescribed acceleration exceeds a prescribed value. CONSTITUTION:An acceleration signal 30 generated from a centrifugal machine or the like and output voltage Vo corresponding to acceleration generated by a semiconductor capacity type acceleration sensor 1, are inputted to a control part 29. The control part 29 performs operation on linearity from the relationship between the acceleration and the output voltage, and compares a maximum value of the linearity with a prescribed value, and connects a terminal T1 to the ground when the maximum value is larger than the prescribed value. Then, a switch of the sensor 1 is turned on, and linearity of the prescribed voltage Vo can be improved by operating a linearity compensating circuit 14. Since the terminal T1 is not connected to the ground when the maximum value of the linearity is not more than the prescribed value, the switch 13 is turned off, and the compensating circuit 14 is separated, and improving the linearity is not performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の衝突を検出
し、エアバッグを開いて搭乗者の身体を保護するエアバ
ッグシステムに係り、特に、自動車の衝突を検出する静
電容量式加速度センサに好適な特性調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an airbag system for detecting a collision of an automobile and opening an airbag to protect a passenger's body, and more particularly to a capacitance type acceleration sensor for detecting the collision of the automobile. The present invention relates to a suitable characteristic adjustment method.

【0002】[0002]

【従来の技術】従来より、エアバッグシステムのキーセ
ンサである種々の加速度センサが知られている。
2. Description of the Related Art Conventionally, various acceleration sensors which are key sensors for airbag systems have been known.

【0003】例えば、センサの構造や特性に関しては、
特開平1−152369 号公報等がある。このセンサは、加速
度に対する出力特性の関係において、あるレベルの直線
性を有する。また、出力段に非線形補償回路(直線性補
償回路)を有する。
For example, regarding the structure and characteristics of the sensor,
There is JP-A-1-152369. This sensor has a certain level of linearity in the relationship of output characteristics to acceleration. Further, the output stage has a non-linear compensation circuit (linearity compensation circuit).

【0004】[0004]

【発明が解決しようとする課題】従来のエアバッグシス
テムのキーセンサである加速度センサは、一般的に、加
速度に対する出力特性の直線性の関係を改善するため
に、直線性補償回路を有する。また、加速度センサは製
造上において、特に検出部構造にばらつきを有し、加速
度に対する出力特性の直線性の大きさもばらつく(直線
性の大きいものもあれば、小さいものもある)。しか
し、直線性補償回路にて一律に直線性を改善するため、
元々直線性の小さいものは、逆に悪くなり(大きくな
り)、センサの歩留りを悪くすると言う課題があった。
The acceleration sensor, which is the key sensor of the conventional airbag system, generally has a linearity compensation circuit in order to improve the linearity relationship of the output characteristic with respect to the acceleration. In addition, the acceleration sensor has variations in manufacturing, especially in the structure of the detection unit, and the linearity of the output characteristics with respect to acceleration also varies (some linearity is large, and some linearity is small). However, in order to improve linearity uniformly with the linearity compensation circuit,
On the contrary, the one having a small linearity has a problem that the yield of the sensor is deteriorated (increased) on the contrary and the yield of the sensor is deteriorated.

【0005】本発明の目的は、加速度に対する出力特性
の直線性の大きさがばらついても、このばらつきを所定
内に納め、センサの歩留りを向上することにある。
An object of the present invention is to improve the yield of the sensor by keeping the variation within a predetermined range even if the linearity of the output characteristic with respect to the acceleration varies.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、所定の加速度に対する出力電圧特性の直線性の関係
で、所定の加速度に対する出力電圧特性の直線性と、第
一の直線性の所定値とを比較し、前記所定の加速度に対
する出力電圧特性の直線性が、第一の直線性の所定値以
下の時は、所定の加速度に対する出力電圧特性の直線性
の補正を行わず、前記所定の加速度に対する出力電圧特
性の直線性が、第一の直線性の所定値を越えたときは、
所定の加速度に対する出力電圧特性の直線性の補正を行
うようにしたものである。
In order to achieve the above-mentioned object, the linearity of the output voltage characteristic with respect to a predetermined acceleration and the predetermined linearity of the first linearity with respect to the linearity of the output voltage characteristic with respect to a predetermined acceleration. When the linearity of the output voltage characteristic with respect to the predetermined acceleration is less than or equal to the predetermined value of the first linearity, the linearity of the output voltage characteristic with respect to the predetermined acceleration is not corrected and When the linearity of the output voltage characteristic with respect to the acceleration of exceeds the predetermined value of the first linearity,
The linearity of the output voltage characteristic with respect to a predetermined acceleration is corrected.

【0007】また、所定の加速度に対する静電容量特性
の直線性の関係で、所定の加速度に対する静電容量特性
の直線性と、第二の直線性の所定値とを比較し、前記所
定の加速度に対する静電容量特性の直線性が、第二の直
線性の所定値以下の時は、所定の加速度に対する出力電
圧特性の直線性の補正を行わず、前記所定の加速度に対
する静電容量特性の直線性が、第二の直線性の所定値を
越えたときは、所定の加速度に対する出力電圧特性の直
線性の補正を行うようにしたものである。
Further, in relation to the linearity of the capacitance characteristic with respect to a predetermined acceleration, the linearity of the capacitance characteristic with respect to a predetermined acceleration is compared with a predetermined value of the second linearity, and the predetermined acceleration is obtained. When the linearity of the capacitance characteristic with respect to the second linearity is equal to or less than the predetermined value of the second linearity, the linearity of the output voltage characteristic with respect to the predetermined acceleration is not corrected, and the straight line of the capacitance characteristic with respect to the predetermined acceleration is not corrected. When the linearity exceeds a predetermined value of the second linearity, the linearity of the output voltage characteristic with respect to a predetermined acceleration is corrected.

【0008】[0008]

【作用】所定の加速度に対する出力電圧特性の直線性の
関係で、所定の加速度に対する出力電圧特性の直線性
と、第一の直線性の所定値とを比較し、前記所定の加速
度に対する出力電圧特性の直線性が、第一の直線性の所
定値以下の時は、所定の加速度に対する出力電圧特性の
直線性の補正を行わず、前記所定の加速度に対する出力
電圧特性の直線性が、第一の直線性の所定値を越えたと
きは、所定の加速度に対する出力電圧特性の直線性の補
正を行うようにした。
In the relationship of the linearity of the output voltage characteristic with respect to the predetermined acceleration, the linearity of the output voltage characteristic with respect to the predetermined acceleration is compared with the predetermined value of the first linearity, and the output voltage characteristic with respect to the predetermined acceleration is compared. Of the first linearity is equal to or less than the predetermined value of the first linearity, the linearity of the output voltage characteristic with respect to the predetermined acceleration is not corrected, and the linearity of the output voltage characteristic with respect to the predetermined acceleration is the first linearity. When the linearity exceeds the predetermined value, the linearity of the output voltage characteristic with respect to the predetermined acceleration is corrected.

【0009】また、所定の加速度に対する静電容量特性
の直線性の関係で、所定の加速度に対する静電容量特性
の直線性と、第二の直線性の所定値とを比較し、前記所
定の加速度に対する静電容量特性の直線性が、第二の直
線性の所定値以下の時は、所定の加速度に対する出力電
圧特性の直線性の補正を行わず、前記所定の加速度に対
する静電容量特性の直線性が、第二の直線性の所定値を
越えたときは、所定の加速度に対する出力電圧特性の直
線性の補正を行うようにしたそれによって、たとえ加速
度センサの、特に検出部の構造が製造上ばらついて、加
速度に対する出力特性の直線性の大きさがばらついて
も、ばらつきが小さいものは、直線性の補正を行わず、
ばらつきが大きいものは、直線性の補正を行うようにし
て、最終的な直線性のばらつきを所定内に納めることが
でき、加速度センサの歩留りを向上することが可能であ
る。
Further, in relation to the linearity of the capacitance characteristic with respect to a predetermined acceleration, the linearity of the capacitance characteristic with respect to a predetermined acceleration is compared with a predetermined value of the second linearity to obtain the predetermined acceleration. When the linearity of the capacitance characteristic with respect to the second linearity is equal to or less than the predetermined value of the second linearity, the linearity of the output voltage characteristic with respect to the predetermined acceleration is not corrected, and the straight line of the capacitance characteristic with respect to the predetermined acceleration is not corrected. If the linearity exceeds the second linearity predetermined value, the linearity of the output voltage characteristic with respect to the predetermined acceleration is corrected. Even if there is a variation in the linearity of the output characteristic with respect to the acceleration, if the variation is small, the linearity is not corrected,
If the variation is large, the linearity is corrected so that the final variation in the linearity can be kept within a predetermined range, and the yield of the acceleration sensor can be improved.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明に係る加速度センサを含む全体
構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram including an acceleration sensor according to the present invention.

【0011】半導体容量式加速度センサ1は加速度検出
部2,容量検出部3,増幅部4,制御部5より構成され
る。
The semiconductor capacitive acceleration sensor 1 comprises an acceleration detector 2, a capacitance detector 3, an amplifier 4, and a controller 5.

【0012】加速度検出部2は、ガラス,シリコン,ガ
ラスの三層サンドイッチ構造よりなる。中央のシリコン
層6には重錘の機能を有する可動電極7と、これを支持
するシリコンカンチレバー8が、シリコンを両面からエ
ッチングして一体形成される。このシリコンカンチレバ
ー8は単数、または、複数で構成される。
The acceleration detecting section 2 has a three-layer sandwich structure of glass, silicon and glass. In the central silicon layer 6, a movable electrode 7 having a function of a weight and a silicon cantilever 8 supporting the movable electrode 7 are integrally formed by etching silicon from both sides. The silicon cantilever 8 is composed of a single piece or plural pieces.

【0013】一方、両側のガラス層9,10には、可動
電極7に対向して上下に一対の固定電極11,12を配
置している。固定電極11,12は、アルミニウム等の
金属材よりなり、それぞれ、ガラス層9,10に蒸着そ
の他適宜の方法により形成される。
On the other hand, on the glass layers 9 and 10 on both sides, a pair of fixed electrodes 11 and 12 are arranged vertically so as to face the movable electrode 7. The fixed electrodes 11 and 12 are made of a metal material such as aluminum, and are formed on the glass layers 9 and 10 by vapor deposition or another appropriate method.

【0014】そして、このような加速度検出部2を構成
する場合には、ガラス層9,10に設けた固定電極1
1,12と可動電極7とを位置合わせして、ガラス層
9,10にシリコン層6を介して平行配置し、ガラス層
9,10の各々とシリコン層6を陽極接合する。このよ
うにして、可動電極7を介在させた状態で、固定電極1
1,12が対向配置されるが、可動電極7と各固定電極
11,12間には初期ギャップdoが確保される。
When the acceleration detecting section 2 is constructed as described above, the fixed electrode 1 provided on the glass layers 9 and 10 is used.
1, 12 and the movable electrode 7 are aligned and arranged in parallel with the glass layers 9 and 10 with the silicon layer 6 interposed therebetween, and each of the glass layers 9 and 10 and the silicon layer 6 are anodically bonded. Thus, with the movable electrode 7 interposed, the fixed electrode 1
1 and 12 are arranged to face each other, but an initial gap do is secured between the movable electrode 7 and each of the fixed electrodes 11 and 12.

【0015】この可動電極7、及び固定電極11,12
は、容量検出部3と電気的に接続されている。図示しな
い車両に加わる加速度の大きさと方向に応じて、図示の
例では上下方向に加速度が加わると、可動電極7は慣性
力によって加速度と逆方向に移動する。例えば、可動電
極7が下側に移動したとすると、可動電極7と固定電極
11間の静電容量C1は小さくなり、反対の可動電極7
と固定電極12間の静電容量C2は大きくなる。
The movable electrode 7 and the fixed electrodes 11 and 12
Are electrically connected to the capacitance detection unit 3. According to the magnitude and direction of the acceleration applied to the vehicle (not shown), when acceleration is applied in the vertical direction in the illustrated example, the movable electrode 7 moves in the direction opposite to the acceleration due to inertial force. For example, if the movable electrode 7 moves downward, the electrostatic capacitance C1 between the movable electrode 7 and the fixed electrode 11 becomes small, and the opposite movable electrode 7
The capacitance C2 between the fixed electrode 12 and the fixed electrode 12 increases.

【0016】図2は可動電極7の変位に対する静電容量
C1,C2及びC1とC2の差分ΔCの関係を示す特性
図である。横軸に可動電極7の変位Xを示し、初期ギャ
ップdoを保持する中立点を零とし、正方向の変位は可
動電極7が固定電極11側に移動した状態を、負方向の
変位は可動電極7が固定電極12側に移動した状態を表
す。
FIG. 2 is a characteristic diagram showing the relationship of the capacitances C1, C2 and the difference ΔC between C1 and C2 with respect to the displacement of the movable electrode 7. The horizontal axis represents the displacement X of the movable electrode 7, the neutral point holding the initial gap do is set to zero, the positive displacement is the state in which the movable electrode 7 has moved to the fixed electrode 11 side, and the negative displacement is the movable electrode. 7 shows a state in which 7 has moved to the fixed electrode 12 side.

【0017】この図2からも明らかなように可動電極7
が固定電極11側に移動する程、静電容量C1が大きく
なり、逆に固定電極12側に移動する程、静電容量C2
が大きくなる。また、静電容量C1,C2の差分ΔCも
これに対して、中立点を零とし、それぞれ正方向,負方
向に大きくなる。つまり、C1,C2,ΔCのいずれか
一つを検出することにより可動電極7の変位、言い替え
れば、加速度を知ることができる。但し、このC1,C
2,ΔCのいずれも非線形特性(非直線性)を有する。
As is clear from FIG. 2, the movable electrode 7
Becomes larger toward the fixed electrode 11 side, the capacitance C1 becomes larger, and conversely, becomes closer to the fixed electrode 12 side, the capacitance C2 becomes larger.
Grows larger. Further, the difference ΔC between the electrostatic capacitances C1 and C2 is also increased in the positive and negative directions with the neutral point set to zero. That is, the displacement of the movable electrode 7, that is, the acceleration can be known by detecting any one of C1, C2, and ΔC. However, this C1, C
Both 2 and ΔC have non-linear characteristics (non-linearity).

【0018】加速度検出部2の構造、特に可動電極7と
各固定電極11,12間の初期ギャップdo、可動電極
7の質量,可動電極7の面積のばらつきにより、この非
線形特性の大きさ(直線性の大きさ)は、ばらつく。こ
の初期ギャップdo,可動電極7の質量,可動電極7の
面積は製造上ばらつきを有する。
Due to the structure of the acceleration detecting portion 2, particularly the initial gap do between the movable electrode 7 and each of the fixed electrodes 11 and 12, the mass of the movable electrode 7, and the variation of the area of the movable electrode 7, the magnitude of this non-linear characteristic (linear The size of sex varies. The initial gap do, the mass of the movable electrode 7, and the area of the movable electrode 7 have manufacturing variations.

【0019】次に、容量検出部3の動作について図3,
図4に基づき説明する。図3は容量検出部3の詳細回
路、図4は容量検出部3の動作を示すタイムチャートで
ある。図4中、(イ)〜(ホ)はそれぞれの動作を示す
動作波形である。これらの波形は制御部5で制御され
る。
Next, the operation of the capacitance detector 3 will be described with reference to FIG.
It will be described with reference to FIG. 3 is a detailed circuit of the capacitance detection unit 3, and FIG. 4 is a time chart showing the operation of the capacitance detection unit 3. In FIG. 4, (a) to (e) are operation waveforms showing the respective operations. These waveforms are controlled by the controller 5.

【0020】スイッチ15は通常オン状態(φR)にあ
り、容量Cfであるコンデンサ16を放電させ、演算増
幅器17の出力VcをVR1にする。固定電極11に印
加する第一の矩形波V1の立ち上がり、固定電極12に
印加する第二の矩形波V2の立ち下がりにほぼ同期して
スイッチ15がオフ状態になる。すると、C1は充電さ
れC2は放電される。この時、C1からCfに移動する
電荷Q1(充放電時に流れる電流により電荷が移動する
ように見える)、及びC2からCfに移動する電荷Q2
は次式のようになる。
The switch 15 is normally on (φR), discharges the capacitor 16 having the capacitance Cf, and sets the output Vc of the operational amplifier 17 to VR1. The switch 15 is turned off almost in synchronization with the rising of the first rectangular wave V1 applied to the fixed electrode 11 and the falling of the second rectangular wave V2 applied to the fixed electrode 12. Then, C1 is charged and C2 is discharged. At this time, the charge Q1 moving from C1 to Cf (the charge seems to move due to the current flowing during charging / discharging) and the charge Q2 moving from C2 to Cf.
Is as follows.

【0021】[0021]

【数1】 Q1=C1*VR1 …(数1)## EQU1 ## Q1 = C1 * VR1 (Equation 1)

【0022】[0022]

【数2】 Q2=−C2*VR1 …(数2) ここで、VR1は第一の矩形波V1,第二の矩形波V2
の振幅値である。また、容量Cfに蓄えられる電荷Qf
は、Q1,Q2の和になるから次式となる。
## EQU00002 ## Q2 = -C2 * VR1 (Expression 2) Here, VR1 is the first rectangular wave V1 and the second rectangular wave V2.
Is the amplitude value of. In addition, the electric charge Qf stored in the capacitor Cf
Becomes the sum of Q1 and Q2, so

【0023】[0023]

【数3】 Qf=Q1+Q2 …(数3) さらに、容量Cfの両端の電圧Vf、演算増幅器17の
出力Vcは次式となる。
## EQU00003 ## Qf = Q1 + Q2 (Equation 3) Further, the voltage Vf across the capacitance Cf and the output Vc of the operational amplifier 17 are given by the following equation.

【0024】[0024]

【数4】 [Equation 4]

【0025】[0025]

【数5】 [Equation 5]

【0026】この電圧Vcを、サンプルホールド回路1
8のスイッチ19を一定時間オン(φS)にし、コンデ
ンサ20に充電し、演算増幅器17の出力Vcをサンプ
リングすることにより、静電容量C1,C2の差分ΔC
を電圧Vsとして検出する。このことにより、加速度検
出部2に作用する加速度を電気的に検出することができ
る。さらに、電圧Vsを増幅部4に入力し所定の電圧値
Voに調整する。
This voltage Vc is applied to the sample hold circuit 1
The switch 19 of No. 8 is turned on (φS) for a certain time, the capacitor 20 is charged, and the output Vc of the operational amplifier 17 is sampled to obtain the difference ΔC between the electrostatic capacitances C1 and C2.
Is detected as a voltage Vs. As a result, the acceleration acting on the acceleration detector 2 can be electrically detected. Further, the voltage Vs is input to the amplification unit 4 and adjusted to a predetermined voltage value Vo.

【0027】この時、スイッチ13をオンすれば直線性
補償回路14が働き、所定の電圧値Voの直線性を改善
できる。また、スイッチ13をオフすれば直線性補償回
路14が切り離され、直線性の改善を行わない。ここ
で、スイッチ13はセンサの外部へ取り出された端子T
1を制御することでオン,オフする。本実施例の場合、
端子T1がオープン状態(何も接続しない状態)で、ス
イッチ13はオン、端子T1をグランド(アース)レベ
ルへ接続すれば、スイッチ13はオフする。
At this time, if the switch 13 is turned on, the linearity compensating circuit 14 operates to improve the linearity of the predetermined voltage value Vo. Further, when the switch 13 is turned off, the linearity compensation circuit 14 is disconnected, and the linearity is not improved. Here, the switch 13 is a terminal T taken out of the sensor.
It is turned on and off by controlling 1. In the case of this embodiment,
When the terminal T1 is in an open state (nothing is connected), the switch 13 is on, and when the terminal T1 is connected to the ground (earth) level, the switch 13 is off.

【0028】なお、このような構成にすることにより、
加速度検出部2は、高加速度(例えば、±50G:1G
=9.8m/s2)を、高周波(例えば、2kHz)まで
検出できる。また、静電容量C1,C2の差分を検出す
ることから、加速度に比例し、温度特性に優れた出力電
圧Voを得ることができる。
By adopting such a structure,
The acceleration detection unit 2 has a high acceleration (for example, ± 50 G: 1 G
= 9.8 m / s2) can be detected up to a high frequency (for example, 2 kHz). Further, since the difference between the electrostatic capacitances C1 and C2 is detected, it is possible to obtain the output voltage Vo that is proportional to the acceleration and has excellent temperature characteristics.

【0029】つまり、自動車の衝突によって生じる急激
な衝突加速度を検出することで自動車の衝突を検出でき
る。
That is, the collision of the automobile can be detected by detecting the sudden collision acceleration caused by the collision of the automobile.

【0030】次に、半導体容量式加速度センサ1の自己
診断動作について図1,図5,図6を基に説明する。図
5は自己診断電圧Vdを加速度検出部2へ印加した状態
を示す。図6は加速度Gと自己診断電圧Vdの関係を示
す特性図である。
Next, the self-diagnosis operation of the semiconductor capacitive acceleration sensor 1 will be described with reference to FIGS. 1, 5 and 6. FIG. 5 shows a state in which the self-diagnosis voltage Vd is applied to the acceleration detector 2. FIG. 6 is a characteristic diagram showing the relationship between the acceleration G and the self-diagnosis voltage Vd.

【0031】加速度検出部2の可動電極7と固定電極1
2間へある自己診断電圧Vd1を印加すると、静電気力
により可動電極7は移動する。これは、加速度検出部2
へ加速度G1が加わった状態に等しくなる。また、自己
診断電圧Vd1を可動電極7と固定電極11間へ印加す
れば、前述の加速度G1をプラスの加速度とすれば、マ
イナスの加速度−G1が加わった状態に等しくなること
は言うまでもない。
The movable electrode 7 and the fixed electrode 1 of the acceleration detector 2
When a certain self-diagnosis voltage Vd1 is applied between the two electrodes, the movable electrode 7 moves due to electrostatic force. This is the acceleration detection unit 2
It becomes equal to the state in which the acceleration G1 is applied. Needless to say, if the self-diagnosis voltage Vd1 is applied between the movable electrode 7 and the fixed electrode 11, if the above-mentioned acceleration G1 is a positive acceleration, it becomes equal to the state in which the negative acceleration −G1 is applied.

【0032】つまり、可動電極7と固定電極12間と可
動電極7と固定電極11間へ交互に自己診断電圧Vdを
印加し、半導体容量式加速度センサ1の出力電圧Voを
モニターすることにより正負の加速度に対し自己診断を
することが可能となる。
That is, the self-diagnosis voltage Vd is alternately applied between the movable electrode 7 and the fixed electrode 12 and between the movable electrode 7 and the fixed electrode 11, and the output voltage Vo of the semiconductor capacitive acceleration sensor 1 is monitored to determine whether it is positive or negative. It is possible to perform self-diagnosis for acceleration.

【0033】一方、半導体容量式加速度センサ1の、通
常の加速度検出を検出するモードと自己診断モードの切
り替えは、図1に示すように、制御信号S1で与えられ
る。例えば、制御信号S1がローレベルの時は、スイッ
チSW1をオンし、可動電極7と固定電極11,12間
へ交互に自己診断電圧Vdを印加(自己診断電圧Vd
は、可動電極7が十分応答する低周波の矩形波信号の振
幅値)し、自己診断モードにする。制御信号S1がハイ
レベルの時は、スイッチSW1をオフし、比較的高周波
の矩形波信号を固定電極11,12に印加し、通常の加
速度検出を検出するモードにする。
On the other hand, the semiconductor capacitive acceleration sensor 1 is switched between the normal acceleration detection detection mode and the self-diagnosis mode by a control signal S1 as shown in FIG. For example, when the control signal S1 is at a low level, the switch SW1 is turned on and the self-diagnosis voltage Vd is alternately applied between the movable electrode 7 and the fixed electrodes 11 and 12 (self-diagnosis voltage Vd
Is the amplitude value of the low-frequency rectangular wave signal to which the movable electrode 7 responds sufficiently, and the self-diagnosis mode is set. When the control signal S1 is at a high level, the switch SW1 is turned off and a relatively high frequency rectangular wave signal is applied to the fixed electrodes 11 and 12 to set a mode for detecting normal acceleration detection.

【0034】これらの動作から、加速度検出部2に直接
加速度を加えなくても、静電気力により強制的に可動電
極に変位を与え、等価的な加速度印加状態を得ることが
できる。よって、等価的な加速度とセンサの出力特性の
関係がもとまる。
From these operations, it is possible to obtain the equivalent acceleration application state by forcibly displacing the movable electrode by the electrostatic force without directly applying the acceleration to the acceleration detecting section 2. Therefore, the relationship between the equivalent acceleration and the output characteristic of the sensor is obtained.

【0035】さらに、半導体容量式加速度センサ1は、
電源供給用の電源Vcc,出力電圧Vo,回路のグラン
ドGND,制御信号S1用のそれぞれの端子を備える。
Further, the semiconductor capacitive acceleration sensor 1 is
It is provided with a power supply Vcc, an output voltage Vo, a circuit ground GND, and a control signal S1.

【0036】次に、図1により、本発明のコントロール
部29について説明する。
Next, the control unit 29 of the present invention will be described with reference to FIG.

【0037】コントロール部29はコンピュータ(以下
CPUと略す)21,プログラムが記憶されているRO
M(Read Only Memoly)22,データ等を記憶するRA
M(Randam Access Memoly)23,デジタル入出力回路
24,A/D変換回路25とアドレス・データバスライ
ン26その他適宜な回路(図示せず)よりなる。
The control unit 29 is a computer (hereinafter abbreviated as CPU) 21, an RO in which a program is stored.
M (Read Only Memoly) 22, RA for storing data etc.
An M (Randam Access Memoly) 23, a digital input / output circuit 24, an A / D conversion circuit 25, an address / data bus line 26 and other appropriate circuits (not shown).

【0038】CPU21,ROM22,RAM23,デ
ジタル入出力回路24,A/D変換回路25,アドレス
・データバスライン26は、一般的に、シングルチップ
マイクロコンピュータMCU(Microcomputer Unit)に
集積される。また、これらの代わりに、パーソナルコン
ピュータを用いてもかまわない。
The CPU 21, ROM 22, RAM 23, digital input / output circuit 24, A / D conversion circuit 25, and address / data bus line 26 are generally integrated in a single-chip microcomputer MCU (Microcomputer Unit). A personal computer may be used instead of these.

【0039】遠心機や加心機など(図示せず)より発生
する加速度信号30と出力電圧VoはA/D変換回路2
5に入力される。半導体容量式加速度センサ1は遠心機
や加心機などに装着し、加速度に対応した出力電圧Vo
を発生する。そして、コントロール部29により直線性
等の演算を行う。
The acceleration signal 30 and the output voltage Vo generated by a centrifuge, an adder, etc. (not shown) are A / D conversion circuit 2
Input to 5. The semiconductor capacitive acceleration sensor 1 is mounted on a centrifuge, a centering machine, or the like, and an output voltage Vo corresponding to acceleration is applied.
To occur. Then, the control unit 29 calculates the linearity and the like.

【0040】次に、本発明の一実施例である演算処理等
のフローチャートについて説明する。加速度Gと半導体
容量式加速度センサ1の出力電圧Voを入力しRAMへ
格納する31。加速度と出力電圧の関係から直線性を演
算し、直線性の最大値Erを算出する32。直線性の最
大値Erと所定値を比較する33。直線性の最大値Er
が所定値より大きければ、端子T1をグランドへ接続し
直線性の補正を行う34。
Next, a flow chart of arithmetic processing and the like which is an embodiment of the present invention will be described. The acceleration G and the output voltage Vo of the semiconductor capacitive acceleration sensor 1 are input and stored in the RAM 31. The linearity is calculated from the relationship between the acceleration and the output voltage, and the maximum linearity value Er is calculated 32. The maximum linearity value Er is compared 33 with a predetermined value. Maximum linearity Er
If is larger than a predetermined value, the terminal T1 is connected to the ground to correct the linearity 34.

【0041】さらに、静電容量C1,C2の差分ΔCに
対応した電圧Vsと加速度の関係を利用しても同様な結
果が得られる。
Further, a similar result can be obtained by utilizing the relationship between the voltage Vs corresponding to the difference ΔC between the electrostatic capacitances C1 and C2 and the acceleration.

【0042】[0042]

【発明の効果】本発明によれば、たとえ加速度センサ
の、特に検出部の構造が製造上ばらついて、加速度に対
する出力特性の直線性の大きさがばらついても、ばらつ
きが小さいものは、直線性の補正を行わず、ばらつきが
大きいものは、直線性の補正を行うようにして、最終的
な直線性のばらつきを所定内に納めることができ、加速
度センサの歩留りを向上できる効果が可能である。
According to the present invention, even if the structure of the acceleration sensor, especially the structure of the detecting portion is varied in manufacturing, and the linearity of the output characteristic with respect to the acceleration is varied, the linearity is small if the variation is small. If the variation is large without performing the correction, the linearity is corrected so that the final variation in the linearity can be kept within a predetermined range, and the yield of the acceleration sensor can be improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加速度センサを含む全体構成図であ
る。
FIG. 1 is an overall configuration diagram including an acceleration sensor of the present invention.

【図2】可動電極7の変位に対する静電容量C1,C2
及びC1とC2の差分ΔCの関係を示す特性図である。
FIG. 2 shows electrostatic capacitances C1 and C2 with respect to displacement of a movable electrode 7.
FIG. 6 is a characteristic diagram showing the relationship between the difference ΔC between C1 and C2.

【図3】容量検出部3の詳細回路である。FIG. 3 is a detailed circuit of a capacitance detection unit 3.

【図4】容量検出部3の動作を示すタイムチャートであ
る。
FIG. 4 is a time chart showing the operation of the capacitance detection unit 3.

【図5】自己診断電圧Vdを加速度検出部2へ印加した
状態を示す図である。
FIG. 5 is a diagram showing a state in which a self-diagnosis voltage Vd is applied to the acceleration detection unit 2.

【図6】加速度Gと自己診断電圧Vdの関係を示す特性
図である。
FIG. 6 is a characteristic diagram showing a relationship between acceleration G and self-diagnosis voltage Vd.

【符号の説明】[Explanation of symbols]

1…半導体容量式加速度センサ、2…加速度検出部、3
…容量検出部、4…増幅部、5…制御部、7…可動電
極、8…シリコンカンチレバー、11,12…固定電
極、13…スイッチ、14…直線性補償回路、21…C
PU、22…ROM、23…RAM、24…デジタル入
出力回路、25…A/D変換回路、29…コントロール
部、T1…端子、Vcc…電源、Vo…出力電圧、Vd
…自己診断電圧、S1…制御信号、31,32,33,
34…フローチャート。
1 ... Semiconductor capacitance type acceleration sensor, 2 ... Acceleration detecting section, 3
... Capacitance detection section, 4 ... Amplification section, 5 ... Control section, 7 ... Movable electrode, 8 ... Silicon cantilever, 11, 12 ... Fixed electrode, 13 ... Switch, 14 ... Linearity compensation circuit, 21 ... C
PU, 22 ... ROM, 23 ... RAM, 24 ... Digital input / output circuit, 25 ... A / D conversion circuit, 29 ... Control unit, T1 ... Terminal, Vcc ... Power supply, Vo ... Output voltage, Vd
... Self-diagnosis voltage, S1 ... Control signal, 31, 32, 33,
34 ... Flow chart.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲沢 照美 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 松倉 哲夫 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 浅野 保弘 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Terumi Nakazawa Inventor Terumi Nakazawa 2520 Takaba, Takata, Ibaraki Prefecture Hitachi Automotive Systems Division (72) Inventor Tetsuo Matsukura 2520 Takata, Katsuta, Ibaraki Hitachi, Ltd. Mfg. Co., Ltd. Automotive Equipment Division (72) Inventor Yasuhiro Asano 2477 Kashima Yatsu Kashima, Katsuta City, Ibaraki Pref. 3 Hitachi Automotive Engineering Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】加速度に応答して位置が変位する可動電
極、及びこの可動電極に対向して配置される一個以上の
固定電極を有し、前記位置の変位を静電容量の変化とし
てとらえ、この静電容量の変化から加速度を検出する静
電容量式加速度センサの特性調整方法において、所定の
加速度に対する出力電圧特性の直線性の関係で、所定の
加速度に対する出力電圧特性の直線性と、第一の直線性
の所定値とを比較し、前記所定の加速度に対する出力電
圧特性の直線性が、第一の直線性の所定値以下の時は、
所定の加速度に対する出力電圧特性の直線性の補正を行
わず、前記所定の加速度に対する出力電圧特性の直線性
が、第一の直線性の所定値を越えたときは、所定の加速
度に対する出力電圧特性の直線性の補正を行うようにし
たことを特徴とする静電容量式加速度センサの特性調整
方法。
1. A movable electrode, the position of which is displaced in response to an acceleration, and one or more fixed electrodes which are arranged so as to face the movable electrode. The displacement of the position is regarded as a change in electrostatic capacitance, In the characteristic adjustment method of the capacitance type acceleration sensor that detects the acceleration from the change of the electrostatic capacitance, the linearity of the output voltage characteristic with respect to the predetermined acceleration is compared with the linearity of the output voltage characteristic with respect to the predetermined acceleration. If the linearity of the output voltage characteristic with respect to the predetermined acceleration is less than or equal to the predetermined value of the first linearity,
When the linearity of the output voltage characteristic with respect to the predetermined acceleration exceeds the predetermined value of the first linearity without correcting the linearity of the output voltage characteristic with respect to the predetermined acceleration, the output voltage characteristic with respect to the predetermined acceleration is obtained. The method for adjusting the characteristics of the electrostatic capacitance type acceleration sensor is characterized in that the linearity correction is performed.
【請求項2】加速度に応答して位置が変位する可動電
極、及びこの可動電極に対向して配置される一個以上の
固定電極を有し、前記位置の変位を静電容量の変化とし
てとらえ、この静電容量の変化から加速度を検出する静
電容量式加速度センサの特性調整方法において、所定の
加速度に対する静電容量特性の直線性の関係で、所定の
加速度に対する静電容量特性の直線性と、第二の直線性
の所定値とを比較し、前記所定の加速度に対する静電容
量特性の直線性が、第二の直線性の所定値以下の時は、
所定の加速度に対する出力電圧特性の直線性の補正を行
わず、前記所定の加速度に対する静電容量特性の直線性
が、第二の直線性の所定値を越えたときは、所定の加速
度に対する出力電圧特性の直線性の補正を行うようにし
たことを特徴とする静電容量式加速度センサの特性調整
方法。
2. A movable electrode, the position of which is displaced in response to acceleration, and one or more fixed electrodes arranged facing the movable electrode, wherein the displacement of the position is regarded as a change in electrostatic capacitance, In the characteristic adjustment method of the capacitance type acceleration sensor that detects the acceleration from the change of the capacitance, the linearity of the capacitance characteristic with respect to the predetermined acceleration is defined as the linearity of the capacitance characteristic with respect to the predetermined acceleration. , A second linearity predetermined value is compared, and the linearity of the capacitance characteristic with respect to the predetermined acceleration is equal to or less than the second linearity predetermined value,
When the linearity of the capacitance characteristic with respect to the predetermined acceleration exceeds the predetermined value of the second linearity without correcting the linearity of the output voltage characteristic with respect to the predetermined acceleration, the output voltage with respect to the predetermined acceleration is A characteristic adjustment method for a capacitance type acceleration sensor, characterized in that the linearity of the characteristic is corrected.
【請求項3】請求項1又は2に記載の所定の加速度の
内、加速度とは単位時間に速度の増加、または、減少す
る割合であることを特徴とする静電容量式加速度センサ
の特性調整方法。
3. The characteristic adjustment of a capacitance type acceleration sensor, wherein, of the predetermined accelerations according to claim 1 or 2, the acceleration is a rate of increase or decrease of speed per unit time. Method.
【請求項4】請求項1又は2に記載の所定の加速度の
内、加速度とは強制的に可動電極に変位を与え、等価的
な加速度であることを特徴とする静電容量式加速度セン
サの特性調整方法。
4. The capacitance acceleration sensor according to claim 1 or 2, wherein the acceleration is an equivalent acceleration by forcibly displacing the movable electrode. Characteristic adjustment method.
JP5266040A 1993-10-25 1993-10-25 Characteristic adjusting method for capacitance type acceleration sensor Pending JPH07120498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5266040A JPH07120498A (en) 1993-10-25 1993-10-25 Characteristic adjusting method for capacitance type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5266040A JPH07120498A (en) 1993-10-25 1993-10-25 Characteristic adjusting method for capacitance type acceleration sensor

Publications (1)

Publication Number Publication Date
JPH07120498A true JPH07120498A (en) 1995-05-12

Family

ID=17425562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5266040A Pending JPH07120498A (en) 1993-10-25 1993-10-25 Characteristic adjusting method for capacitance type acceleration sensor

Country Status (1)

Country Link
JP (1) JPH07120498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163076A1 (en) 2013-04-02 2014-10-09 富士電機株式会社 Capacitance type sensor, and method for correcting non-linear output
US11079403B2 (en) 2018-04-20 2021-08-03 Seiko Epson Corporation Physical quantity sensor module, clinometer, and structure monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163076A1 (en) 2013-04-02 2014-10-09 富士電機株式会社 Capacitance type sensor, and method for correcting non-linear output
US11079403B2 (en) 2018-04-20 2021-08-03 Seiko Epson Corporation Physical quantity sensor module, clinometer, and structure monitoring device
US11733262B2 (en) 2018-04-20 2023-08-22 Seiko Epson Corporation Physical quantity sensor module, clinometer, and structure monitoring device

Similar Documents

Publication Publication Date Title
US5541437A (en) Acceleration sensor using MIS-like transistors
JP3216955B2 (en) Capacitive sensor device
US5707077A (en) Airbag system using three-dimensional acceleration sensor
US5441300A (en) Three-dimensional acceleration sensor and airbag using the same
US20020056587A1 (en) Control device for electric power steering apparatus
US6761070B2 (en) Microfabricated linear accelerometer
JP4473516B2 (en) Mechanical quantity sensor
JPH07120498A (en) Characteristic adjusting method for capacitance type acceleration sensor
JPH11183519A (en) Output adjusting method for capacitive acceleration sensor
JP2002048813A (en) Capacitance-type acceleration sensor
JPH10104267A (en) Self-diagnostic method of acceleration sensor
JPH0526902A (en) Acceleration sensor, and antilock brake system, active suspension system and air bag system using the sensor
JPH03293565A (en) Pwm electrostatic servo type accelerometer
JPH07243863A (en) Capacity-type sensor
JPH06180325A (en) Acceleration sensor
JP3250085B2 (en) Acceleration sensor
JPH07120497A (en) Self-diagnosing device for acceleration sensor
JP3254257B2 (en) Vibrating gyro sensor
JP3136888B2 (en) Accelerometer sensitivity adjustment device
JP2009162485A (en) Mechanical quantity sensor module
JP2760200B2 (en) How to adjust the output gain of the acceleration sensor
JP3148945B2 (en) Acceleration sensor
JP3139282B2 (en) Acceleration sensor
JP2769379B2 (en) Body control device
JP2956055B2 (en) Shock absorber damping force control device