JPH07120447A - Glycohemoglobin analyzer - Google Patents

Glycohemoglobin analyzer

Info

Publication number
JPH07120447A
JPH07120447A JP26604793A JP26604793A JPH07120447A JP H07120447 A JPH07120447 A JP H07120447A JP 26604793 A JP26604793 A JP 26604793A JP 26604793 A JP26604793 A JP 26604793A JP H07120447 A JPH07120447 A JP H07120447A
Authority
JP
Japan
Prior art keywords
analysis
eluent
separation
constant temperature
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26604793A
Other languages
Japanese (ja)
Other versions
JP3271394B2 (en
Inventor
Junkichi Miura
順吉 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26604793A priority Critical patent/JP3271394B2/en
Publication of JPH07120447A publication Critical patent/JPH07120447A/en
Application granted granted Critical
Publication of JP3271394B2 publication Critical patent/JP3271394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To carry out an analysis at every blood collection by leading a pipe line between eluent and a pump through a constant temperature unit, heating the pipe line and arresting bubbles generated in the pipe line with a bubble trap. CONSTITUTION:A constant temperature unit 18 is provided for maintaining the temperature of a separation column 19 forming a separation and detection mechanism at a level higher than room temperature by 5 deg.C or more. Furthermore, constitution is so made that a pipe line 20 where eluent 14 (14a and 14b) flows, passes the unit 18 on the way to a gradient unit 16. Bubbles, when generated in the eluent 14 at a process of flowing through the unit 18, are caught by an air trap 21 (21a and 21b). As a result, the eluent 14 in transition from a low flowrate at a standby process to a steady flowrate at an analysis process can quickly give a stable flowrate condition. Thus, blood can be analyzed every time it is gathered from a patient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生化学分析装置及び方
法に係り、特に液体クロマトグラフィをベースにしたヘ
モグロビン亜分画を定量する分析計及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for biochemical analysis, and more particularly to an analyzer and apparatus for quantifying hemoglobin subfraction based on liquid chromatography.

【0002】[0002]

【従来の技術】従来、液体クロマトグラフィをベースに
したグリコヘモグロビン分析計は特開平3−255360 号公
報に記載されるように、分離カラムに陽イオン交換カラ
ムを、溶離液として塩濃度の異なる2ないし3種類の緩
衝液を使用し、ステップワイズあるいはグラジェント溶
出法によりヘモグロビンの亜分画を分離していた。この
方法は分離カラムの平衡化及び分離に時間を要し、1検
体当たりの分析時間が長かった。そのため、未知検体の
分析前に数回コントロールを分析し、分離カラムの平衡
化を十分に確保したあとで連続して分析しなければ効率
が悪かった。
2. Description of the Related Art Conventionally, a glycohemoglobin analyzer based on liquid chromatography has a cation exchange column as a separation column and two or more different salt concentrations as eluents, as described in JP-A-3-255360. The hemoglobin subfraction was separated by stepwise or gradient elution using three types of buffers. This method requires a long time for equilibration and separation of the separation column, and the analysis time per sample was long. Therefore, the efficiency was poor unless the control was analyzed several times before the analysis of the unknown sample, and after the equilibration of the separation column was sufficiently secured, continuous analysis was performed.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は分析を
開始する時までに相当数の検体が確保できる施設では有
効であるが、小規模の病院のように外来患者が不定期に
しかも断続的に来るような施設では検体数が集まるまで
分析を遅らせるなどの対策が必要であった。一方、糖尿
病患者の増加に伴い、専門外来の病院が現れた。このよ
うな病院では検体数が多くても一日当たり数十検体であ
り、分析は外注に出されているのが通例であった。しか
し、このような場合には医師による患者への治療あるい
は生活指導は前回(通常約1ヵ月前)来院時の分析デー
タに基づいて行われることになる。グリコヘモグロビン
はその性質上約1〜2ヵ月前の血糖値を反映すると言わ
れているため、これまでのように外注分析をした場合2
〜3ヵ月前の血糖状態に基づいて指導することになり問
題があった。
The above-mentioned conventional technique is effective in a facility where a considerable number of specimens can be secured by the time the analysis is started, but outpatients are irregular and intermittent like small hospitals. In facilities that come to Japan, it was necessary to take measures such as delaying the analysis until the number of samples collected. On the other hand, with the increase in the number of diabetic patients, specialized outpatient hospitals have appeared. At such hospitals, the number of specimens was at most several tens per day, and analysis was usually outsourced. However, in such a case, the treatment or life guidance of the patient by the doctor will be performed based on the analysis data at the previous visit (usually about one month before). Glycohemoglobin, by its nature, is said to reflect the blood glucose level of about 1 to 2 months ago, so when outsourced analysis is performed as before, it is 2
There was a problem because I was instructed based on my blood glucose level three months ago.

【0004】本発明は、このような事情に基づいてなさ
れたものであり、患者から採血が行われる都度分析が実
行可能なグリコヘモグロビン分析計を提供することを目
的とする。
The present invention has been made under these circumstances, and an object of the present invention is to provide a glycohemoglobin analyzer capable of performing an analysis each time blood is collected from a patient.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために、本発明は溶離液とポンプとを連結する配管を
カラム恒温ユニット内を通して加熱し気泡トラップにて
配管内の気泡がポンプに入らないようにしたものであ
る。
In order to achieve such an object, the present invention heats a pipe connecting an eluent and a pump through a column constant temperature unit, and a bubble trap causes bubbles in the pipe to flow into the pump. It was designed so that it would not enter.

【0006】また、分離カラムが平衡状態に達するまで
待たずに分析する為に待機の状態から検体分析へ移行
後、即検体を連続して分析し、n回目とn−1回目との
定量値の差の絶対値が指定された一定値以下になった時
点でその検体の分析を終了するようにしたものである。
Further, in order to analyze without waiting until the equilibrium state of the separation column is reached, the sample is continuously analyzed immediately after shifting from the standby state to the sample analysis, and the quantitative values of the nth time and the (n-1) th time are analyzed. The analysis of the sample is terminated when the absolute value of the difference becomes less than a specified constant value.

【0007】さらに、カラムのロット差及び装置間差が
存在しても許容しうるように、最大の繰返し回数nとn
回目とn−1回目の定量値の差(絶対値)が書き変え可
能としたものである。
Further, the maximum number of repetitions n and n is set so as to be allowable even if there is a lot difference between columns and a difference between apparatuses.
The difference (absolute value) between the quantitative value at the 1st time and the quantitative value at the (n-1) th time can be rewritten.

【0008】[0008]

【作用】本発明によるグリコヘモグロビン分析計は、分
離カラムを室温より高めに維持し、溶離液をこのカラム
恒温ユニット内を通過させて飽和状態にある溶存空気を
気泡とし、気泡トラップにて捕集する。これにより、待
機行程の低流量から分析行程の定常流量に移行時に速や
かに安定した流量状態を得ることができる。
In the glycohemoglobin analyzer according to the present invention, the separation column is maintained at a temperature higher than room temperature, and the eluent is passed through the constant temperature unit of the column to make the dissolved air in the saturated state into bubbles, which are collected by the bubble trap. To do. As a result, a stable flow rate state can be promptly obtained when the low flow rate in the standby process is changed to the steady flow rate in the analysis process.

【0009】また、本発明による分析計は、分析行程に
移行後連続して同一検体を分析し、n回目とn−1回目
の定量値の差(絶対置)がある一定値以下になった時点
で分析終了とする。液体クロマトグラフをベースとした
グリコヘモグロビン分析計では濃度の異なる2〜3種類
の溶離液を一定時間間隔で送液する。そのため、分離カ
ラムの状態が平衡化されるまで数回のサイクルが必要で
あり、従来は一連の分析の前に平衡化したあと検体分析
に入っていた。本発明では定量値が安定して出力される
まで繰返し分析するので平衡化前の誤った定量値が出力
されることはない。
In addition, the analyzer according to the present invention continuously analyzes the same sample after shifting to the analysis step, and the difference (absolute position) between the quantitative values at the n-th time and the (n-1) -th time becomes less than a certain value. The analysis ends at this point. In a glycohemoglobin analyzer based on a liquid chromatograph, two to three kinds of eluents having different concentrations are sent at regular time intervals. Therefore, several cycles are required until the state of the separation column is equilibrated, and conventionally, the sample analysis was performed after equilibration before a series of analyses. In the present invention, since repeated analysis is performed until the quantitative value is stably output, an incorrect quantitative value before equilibration is not output.

【0010】[0010]

【実施例】本発明によるグリコヘモグロビン分析計につ
いて図1により説明する。
EXAMPLE A glycohemoglobin analyzer according to the present invention will be described with reference to FIG.

【0011】検体を吸引,吐出,注入するノズル12,
ノズルを固定する可動アーム8,可動アーム8を駆動す
るモータ9,全血の検体を希釈・溶血する希釈ポート
7,検体の吸引等に使用するシリンジ10,希釈・溶血
液11,溶血サンプルを注入する注入弁13から構成さ
れるサンプリング機構1,溶離液14a,b間で濃度勾
配を発生させるグラジェントユニット16,送液ポンプ
15から構成される送液機構2,溶血サンプルをヘモグ
ロビンの亜分画に分離する分離カラム17,分離カラム
を室温より高く維持する恒温ユニット18,検知器19
から構成される分離・検出機構3,データ処理機構4よ
り構成される。溶離液が流通する配管20は、グラジェ
ントユニット16に至る途中で恒温ユニット18を通過
する。もし、恒温ユニット18を通過中に溶離液に気泡
が発生した場合は気泡トラップ21で捕集するようにな
っている。
A nozzle 12 for sucking, discharging and injecting a sample,
A movable arm 8 for fixing the nozzle, a motor 9 for driving the movable arm 8, a dilution port 7 for diluting / hemolyzing a sample of whole blood, a syringe 10 used for aspirating the sample, a dilution / hemolysis 11, and a hemolyzed sample are injected. Sampling mechanism composed of an injection valve 13, a gradient unit 16 for generating a concentration gradient between eluents 14a and 14b, a liquid supply mechanism composed of a liquid supply pump 15, and a hemolysis sample subfractionation of hemoglobin Separation column 17 for separating into two, constant temperature unit 18 for keeping the separation column higher than room temperature, detector 19
It is composed of a separation / detection mechanism 3 and a data processing mechanism 4. The pipe 20 through which the eluent flows passes through the constant temperature unit 18 on the way to the gradient unit 16. If bubbles are generated in the eluent while passing through the constant temperature unit 18, they are collected by the bubble trap 21.

【0012】次に本分析計の動作について、図2を用い
て説明する。
Next, the operation of this analyzer will be described with reference to FIG.

【0013】(1)スタート 電源を投入すると本分析計を構成する全ての部品に通電
される。
(1) Start When the power supply is turned on, all the parts constituting this analyzer are energized.

【0014】(2)準備運転 ポンプが通常の流量で送液を開始する。恒温ユニット1
8,カラム圧力,検知器19のランプ強度等が安定した
ことを確認する。検出信号のノイズ,ドリフト,圧力等
がある一定条件を満足するまで動作する。
(2) Preparatory operation The pump starts the liquid transfer at a normal flow rate. Constant temperature unit 1
8. Confirm that the column pressure and the lamp strength of the detector 19 are stable. It operates until certain conditions such as detection signal noise, drift, and pressure are satisfied.

【0015】(3)リファレンス分析 準備運転完了条件をクリアしたら希釈ポート6に入れて
あるリファレンス(溶血液)を分析し、グリコヘモグロ
ビン(HbA1c),ヘモグロビンF,ヘモグロビン(H
bA0)等の保持時間等を確認する。
(3) Reference analysis When the conditions for completing the preparatory operation are cleared, the reference (hemolysis) contained in the dilution port 6 is analyzed, and glycohemoglobin (HbA 1c ), hemoglobin F, hemoglobin (H) is obtained.
Check the holding time of bA 0 ).

【0016】(4)待機 溶離液の送液流量を通常分析時より低めに溶とし、分析
キーが押されるまで待機する。
(4) Standby The solution flow rate of the eluent is set to be lower than in the normal analysis, and the process waits until the analysis key is pressed.

【0017】(5)分析 分析キーを押すと分析行程に入る。ポンプの流量は通常
状態に上がり、可動アーム8が前方にスライドし検体の
一定量を吸引する。次に検体を希釈・溶血液11ととも
に希釈ポート6に吐出する。この溶血サンプルを注入ポ
ート7より注入弁13に送る。このとき注入弁13の流
路は破線に示すようになっている。次に注入弁13を実
線の流路に切り換え、同時に濃度の異なる溶離液14
a,bを混合しグラジェントを発生し、分離カラムへと
溶血サンプルを導いてヘモグロビン亜分画に分離する。
1回目に注入した溶血サンプルの分離が終了したら希釈
ポートに残っている溶血サンプルを注入ポート7により
再度注入し分離を開始する。この分析をn回繰り返す
が、n回目の定量値とn−1回目の定量値の差がある一
定値以下になったらこの検体の分析を終了として待機す
る。繰り返し数nは整数であり任意に設定できる。も
し、設定した繰り返し数nと同じだけ分析してもn回目
とn−1回目の定量値の差が一定値以下にならない場合
にはエラーを表示し、ストップする。
(5) Analysis When the analysis key is pressed, the analysis process starts. The flow rate of the pump rises to a normal state, and the movable arm 8 slides forward to suck a fixed amount of the sample. Next, the sample is discharged to the dilution port 6 together with the diluted / lysed blood 11. The hemolyzed sample is sent from the injection port 7 to the injection valve 13. At this time, the flow path of the injection valve 13 is as shown by the broken line. Next, the injection valve 13 is switched to the flow path indicated by the solid line, and at the same time, the eluents 14 with different concentrations are
A and b are mixed to generate a gradient, and the hemolyzed sample is guided to a separation column and separated into a hemoglobin subfraction.
When the separation of the hemolyzed sample injected for the first time is completed, the hemolyzed sample remaining in the dilution port is injected again through the injection port 7 to start the separation. This analysis is repeated n times, but when the difference between the n-th quantitative value and the (n-1) -th quantitative value becomes a certain value or less, the analysis of this sample is terminated and waits. The number of repetitions n is an integer and can be set arbitrarily. If the difference between the quantified values at the n-th time and the (n-1) -th time is not less than a fixed value even if the analysis is performed by the same number as the set number of repetitions n, an error is displayed and the operation is stopped.

【0018】次に実際の分析例について説明する。Next, an actual analysis example will be described.

【0019】分離カラムにはカルボキシメチル基を導入
したメタアクリレートポリマーゲルを充填したものを使
用した。カラムサイズは内径4.6mm ,長さは35mmで
ある。溶離液には52.5mmol/lリン酸緩衝液(pH
6.2)と210mmol/lのリン酸緩衝液(pH6.
1)を使用した。分析時の流量は1.2ml/min,待機
時は0.2ml/minとし、カラム温度は40℃とした。
希釈・溶血液には0.1%の界面活性剤(Triton X−1
00)を用い、全血の検体を希釈・溶血液で約200倍
に希釈して溶血サンプルとした。この10μlを注入し
た。ヘモグロビン亜分画の検知には波長415nm可視
光度計を使用した。上記した条件で得られたクロマトグ
ラムを図3に示す。
The separation column used was one packed with a carboxymethyl group-introduced methacrylate polymer gel. The column has an inner diameter of 4.6 mm and a length of 35 mm. The eluent is 52.5 mmol / l phosphate buffer (pH
6.2) and 210 mMol / l phosphate buffer (pH 6.
1) was used. The flow rate during the analysis was 1.2 ml / min, the standby time was 0.2 ml / min, and the column temperature was 40 ° C.
0.1% surfactant (Triton X-1) for dilution and hemolysis
00) was used to dilute a whole blood sample about 200 times with hemolyzed blood to prepare a hemolyzed sample. This 10 μl was injected. A visible photometer with a wavelength of 415 nm was used to detect the hemoglobin subfraction. The chromatogram obtained under the above conditions is shown in FIG.

【0020】図2に示すフローにより、それぞれ3本の
カラムを用いて分析した結果を表1に示す。検体は糖尿
病患者3人の血液を用いた。カラム1と2は新品を,カ
ラム3は約2000検体分析したものを使用した。新品
のカラムの場合には1回目の定量値が高めに出る傾向が
あるが、これは1回の分析でヘモグロビンA0(HbA0)が
完全に溶出しきれずにカラムに残留しているためと考え
られる。表1に見るように繰り返し数nを3に設定し、
さらに定量値の差の絶対値を0.1 に設定すればカラム
1及び2は3回分析した時点で、カラム3では2回分析
した時点で分析は終了することがわかる。
Table 1 shows the results of analysis using the three columns according to the flow shown in FIG. The blood samples of three diabetic patients were used as samples. Columns 1 and 2 were new, and column 3 was about 2000 samples analyzed. In the case of a new column, the first quantitative value tends to be higher, which is because hemoglobin A 0 (HbA 0 ) cannot be completely eluted and remains in the column in one analysis. Conceivable. As shown in Table 1, the repetition number n is set to 3,
Further, if the absolute value of the difference between the quantitative values is set to 0.1, it can be seen that the analysis is completed when columns 1 and 2 are analyzed three times and when column 3 is analyzed twice.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】以上の説明から明らかなように準備運転
終了後待機させておき、分析時に同一検体を繰り返し分
析して定量値の差の絶対値がある一定値以下になった時
点で終了し、この時の定量値を打ち出すことにより、断
続的に訪れる外来患者の血液が分析できるという効果が
ある。
As is clear from the above description, the preparation operation is made to wait after the completion of the preparatory operation, and the same sample is repeatedly analyzed at the time of analysis, and the operation is terminated when the absolute value of the difference between the quantitative values becomes a certain value or less. By setting a quantitative value at this time, it is possible to analyze the blood of an outpatient who visits intermittently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるグリコヘモグロビン分析計の流路
を示す図である。
FIG. 1 is a diagram showing a flow path of a glycohemoglobin analyzer according to the present invention.

【図2】本発明の分析手順を示す図である。FIG. 2 is a diagram showing an analysis procedure of the present invention.

【図3】図1に示すグリコヘモグロビン分析計により得
られるクロマトグラムである。
FIG. 3 is a chromatogram obtained by the glycohemoglobin analyzer shown in FIG.

【符号の説明】 1…サンプリング機構、2…送液機構、3…分離・検出
機構、4…データ処理機構、5…検体、8…可動アー
ム、9…駆動モータ、10…シリンジ、13…注入弁、
14…溶離液、15…送液ポンプ、16…グラジェント
ユニット、17…分離カラム、18…恒温ユニット、1
9…検知器。
[Explanation of Codes] 1 ... Sampling mechanism, 2 ... Liquid feeding mechanism, 3 ... Separation / detection mechanism, 4 ... Data processing mechanism, 5 ... Specimen, 8 ... Movable arm, 9 ... Drive motor, 10 ... Syringe, 13 ... Injection valve,
14 ... Eluent, 15 ... Liquid feed pump, 16 ... Gradient unit, 17 ... Separation column, 18 ... Constant temperature unit, 1
9 ... Detector.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】検体を吸引・吐出し、希釈・溶血後その一
定量を注入するサンプリング機構と、塩濃度の異なる2
種類以上の溶離液を送液する送液機構と、サンプリング
機構により注入された溶血検体をヘモグロビン亜分画に
分離し、各分画を検知する分離・検出機構と、該分離・
検出機構からの検出信号を処理して定量計算を行うデー
タ処理機構からなるグリコヘモグロビン分析計におい
て、分離・検出機構を構成する分離カラムを室温より5
℃以上高く維持するように恒温ユニットを設け、溶離液
貯槽と送液ポンプとを連結する配管が前記恒温ユニット
内を通るようにするとともに、恒温ユニットと送液ポン
プを連結する配管途中に気泡トラップを設けたことを特
徴とするグリコヘモグロビン分析計。
1. A sampling mechanism for aspirating / discharging a specimen, diluting / hemolyzing and injecting a fixed amount thereof, and 2 having different salt concentrations.
A liquid feeding mechanism that feeds more than one type of eluent, a hemolysis sample injected by the sampling mechanism is separated into hemoglobin subfractions, and a separation / detection mechanism that detects each fraction, and the separation / detection mechanism
In a glycohemoglobin analyzer including a data processing mechanism that processes a detection signal from the detection mechanism to perform a quantitative calculation, the separation column that constitutes the separation / detection mechanism is kept at room temperature from 5
A constant temperature unit is installed so that the temperature is kept higher than ℃, and the pipe connecting the eluent storage tank and the liquid sending pump passes through the constant temperature unit, and a bubble trap is provided in the middle of the pipe connecting the constant temperature unit and the liquid sending pump. A glycohemoglobin analyzer characterized by being provided.
【請求項2】請求項1に記載のグリコヘモグロビン分析
計において、電源を投入後ポンプ圧力,出力信号レベ
ル,出力信号ノイズ等の条件を満足するまで動作する準
備運転行程、準備運転終了後分析が実施されるまで溶離
液流量を準備運転あるいは/及び分析中よりも低くして
待機する待機行程、同一の未知検体を連続して2回以上
n回分析し、n回目の定量値とn−1回目の定量値との
差の絶対値が指定された一定値以下になった時に分析を
終了し、待機行程に移行する行程から構成される分析手
順を具備したことを特徴とするグリコヘモグロビン分析
計。
2. The glycohemoglobin analyzer according to claim 1, wherein after the power is turned on, a preparatory operation step that operates until pump pressure, an output signal level, an output signal noise, etc. are satisfied, and an analysis after the preparatory operation is completed. Until the execution, the eluent flow rate is made lower than the preparatory operation or / and waiting during the analysis, and the same unknown sample is continuously analyzed twice or more times n times. Glycohemoglobin analyzer characterized by comprising an analysis procedure composed of a step of ending the analysis when the absolute value of the difference from the quantitative value at the second time becomes equal to or less than a specified constant value, and shifting to a standby step. .
【請求項3】請求項2に記載のグリコヘモグロビン分析
計において、n回目とn−1回目との定量値との差の絶
対値及び繰返し数nを書換え可能としたことを特徴とす
るグリコヘモグロビン分析計。
3. The glycohemoglobin analyzer according to claim 2, wherein the absolute value of the difference between the quantitative values at the n-th time and the (n-1) -th time and the number of repetitions n are rewritable. Analyzer.
JP26604793A 1993-10-25 1993-10-25 Glycohemoglobin analyzer Expired - Fee Related JP3271394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26604793A JP3271394B2 (en) 1993-10-25 1993-10-25 Glycohemoglobin analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26604793A JP3271394B2 (en) 1993-10-25 1993-10-25 Glycohemoglobin analyzer

Publications (2)

Publication Number Publication Date
JPH07120447A true JPH07120447A (en) 1995-05-12
JP3271394B2 JP3271394B2 (en) 2002-04-02

Family

ID=17425660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26604793A Expired - Fee Related JP3271394B2 (en) 1993-10-25 1993-10-25 Glycohemoglobin analyzer

Country Status (1)

Country Link
JP (1) JP3271394B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264889A (en) * 1996-03-28 1997-10-07 Tosoh Corp Processing method of data of measuring equipment of saccharified hemoglobin using liquid chromatography
JP2006023280A (en) * 2004-06-09 2006-01-26 Hitachi High-Technologies Corp Liquid chromatograph
JP2007040810A (en) * 2005-08-03 2007-02-15 Hitachi High-Technologies Corp Liquid chromatograph system
WO2007091654A1 (en) 2006-02-09 2007-08-16 Arkray, Inc. Liquid chromatograph
WO2007094242A1 (en) 2006-02-16 2007-08-23 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
WO2007111282A1 (en) 2006-03-24 2007-10-04 Arkray, Inc. Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
WO2007111283A1 (en) 2006-03-24 2007-10-04 Arkray, Inc. Method for determination of glycosylated hemoglobin level and apparatus for determination of the level
JP2012053063A (en) * 2004-06-09 2012-03-15 Hitachi High-Technologies Corp Liquid chromatograph

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264889A (en) * 1996-03-28 1997-10-07 Tosoh Corp Processing method of data of measuring equipment of saccharified hemoglobin using liquid chromatography
JP2006023280A (en) * 2004-06-09 2006-01-26 Hitachi High-Technologies Corp Liquid chromatograph
JP2012053063A (en) * 2004-06-09 2012-03-15 Hitachi High-Technologies Corp Liquid chromatograph
JP2007040810A (en) * 2005-08-03 2007-02-15 Hitachi High-Technologies Corp Liquid chromatograph system
WO2007091654A1 (en) 2006-02-09 2007-08-16 Arkray, Inc. Liquid chromatograph
EP2221616A2 (en) 2006-02-09 2010-08-25 ARKRAY, Inc. Liquid chromatography apparatus
WO2007094242A1 (en) 2006-02-16 2007-08-23 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
US8495906B2 (en) 2006-02-16 2013-07-30 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
WO2007111282A1 (en) 2006-03-24 2007-10-04 Arkray, Inc. Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
WO2007111283A1 (en) 2006-03-24 2007-10-04 Arkray, Inc. Method for determination of glycosylated hemoglobin level and apparatus for determination of the level
US8268625B2 (en) 2006-03-24 2012-09-18 Arkray, Inc. Method of measuring glycated hemoglobin concentration and concentration measuring apparatus

Also Published As

Publication number Publication date
JP3271394B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US5695720A (en) Flow analysis network apparatus
US20080116122A1 (en) Chromatography systems comprising single-use components
US20080085507A1 (en) System for rapid analysis of glycated proteinaceous species in biological samples
US8343774B2 (en) Chromatography-based monitoring and control of multiple process streams
US5474677A (en) Automatic measurement method of glycohemoglobin and sample injection valve
JPH07120447A (en) Glycohemoglobin analyzer
US9164115B2 (en) High-speed, automated chromatographic analyzer for determination of nonglycated and glycated proteinaceous species in blood samples
JP2013195139A (en) Analysis apparatus, analysis program and analysis method
CN103278655B (en) Flow path system suitable for glycosylated hemoglobin analysis based on multichannel peristaltic pump
JP4989628B2 (en) Glycohemoglobin concentration measuring method and concentration measuring apparatus
JPH0197857A (en) Automatic measuring method of glycosylated hemoglobin and sample introducing valve
JPH0684962B2 (en) Sample pretreatment method
JPH08226924A (en) Fluid module for automatic analizer
CN108780064B (en) Analysis device
JP3018032B2 (en) Automatic method for measuring glycohemoglobin
JP6856434B2 (en) Liquid chromatographic measurement method, liquid chromatography measurement device, and liquid chromatography measurement program
JPH03205559A (en) Chromatographic analysis of biosample and liquid chromatograph device
US11300548B2 (en) Liquid chromatography systems
Ratanawimarnwong et al. Simultaneous Injection Effective Mixing Flow Analysis (SIEMA): Its Development and Application Mini-Review
JPH04127055A (en) Sample introducing method and apparatus and diagnostic apparatus using the same
Ersser et al. Automated, quantitative, low-pressure, cation-exchange chromatography of haemoglobin variants on midget columns
JPH08101212A (en) Continuous measuring apparatus of liquid sample
EP3851827A1 (en) Filtration module and assembly for filtering a process medium in a bioprocess and method of sampling during a bioprocess
US20200348326A1 (en) Fluidic Sample Pretreatment Device
JPH0486554A (en) Analysis method for sugar albumin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090125

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees