JPH07119489A - Cooling device for turbine stationary blade - Google Patents

Cooling device for turbine stationary blade

Info

Publication number
JPH07119489A
JPH07119489A JP26761993A JP26761993A JPH07119489A JP H07119489 A JPH07119489 A JP H07119489A JP 26761993 A JP26761993 A JP 26761993A JP 26761993 A JP26761993 A JP 26761993A JP H07119489 A JPH07119489 A JP H07119489A
Authority
JP
Japan
Prior art keywords
heat
pipe
stationary
stationary vane
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26761993A
Other languages
Japanese (ja)
Other versions
JP3365005B2 (en
Inventor
Hidemichi Yamawaki
栄道 山脇
Takashi Maie
孝 真家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP26761993A priority Critical patent/JP3365005B2/en
Publication of JPH07119489A publication Critical patent/JPH07119489A/en
Application granted granted Critical
Publication of JP3365005B2 publication Critical patent/JP3365005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To cool a stationary vane without feeding cooling air in the stationary vane by a method wherein the heat absorbing part of a heat pipe is arranged to each turbine stationary blade and the radiation part of the heat pipe is arranged to the inner upper half part of a bypass air duct. CONSTITUTION:Metallic fluid, such as potassium and sodium, is used as internal fluid of a heat pipe 20. The heating medium transfer pipe 22 of the heat pipe 20 is connected to one of heat absorbing parts 21 arranged in an annular manner according to arrangement of a stationary vane 12 and one of radiation parts 23 arranged in a semicircular shape. A lower half heat absorbing part 21 is connected to a right heat-exchange part R and left heat-exchange part L and the upper half heat absorbing part 21 is connected to an upper jeer heat- exchange part T. When the stationary vane 12 is exposed to high temperature atmosphere and temperature is increased, the heat thereof is transmitted to the heat absorbing part 21. The stationary vane 12 is cooled by the steam latent heat of internal fluid, internal fluid is raised in a heating medium transfer pipe 22 and guided to radiation part 23 and cooled by air in a bypass air flow passage 14 and a latent heat content is discharged. As noted above, cooling is effected without feeding cooling air in the stationary blade.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タービン静翼の冷却装
置に係り、特に、ヒートパイプを利用してタービン静翼
の冷却を図る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for turbine vanes, and more particularly to a technique for cooling turbine vanes using a heat pipe.

【0002】[0002]

【従来の技術】図3は、航空機に使用されるガスタービ
ンエンジン(ターボファンエンジン)の構造例を示すも
のである。図中符号1は空気取入口、2は低圧圧縮機、
3はファン空気排出ダクト、4は高圧圧縮機、5は燃焼
室、6は高圧タービン、6aはタービン軸、7は低圧タ
ービン、8は排気ダクト、9はディスク、10は動翼、
11はケーシング、12は静翼(タービン静翼)、13
はバイパスダクト、14はバイパス空気流路である。
2. Description of the Related Art FIG. 3 shows a structural example of a gas turbine engine (turbo fan engine) used in an aircraft. In the figure, reference numeral 1 is an air intake port, 2 is a low pressure compressor,
3 is a fan air exhaust duct, 4 is a high pressure compressor, 5 is a combustion chamber, 6 is a high pressure turbine, 6a is a turbine shaft, 7 is a low pressure turbine, 8 is an exhaust duct, 9 is a disk, 10 is a moving blade,
11 is a casing, 12 is a vane (turbine vane), 13
Is a bypass duct, and 14 is a bypass air flow path.

【0003】従来、低圧圧縮機2、高圧圧縮機4、高圧
タービン6及び低圧タービン7の部分において、例えば
静翼12を冷却する方法として、静翼12の内部に蛇行
状態等の冷却流路を形成しておいて、抽気した冷却空気
を送り込んで冷却する技術や、冷却空気を静翼12の前
縁部等に噴出して、その近傍の冷却を促進させる技術が
考えられている。
Conventionally, as a method for cooling the stationary blades 12 in the low pressure compressor 2, the high pressure compressor 4, the high pressure turbine 6 and the low pressure turbine 7, for example, a cooling flow path such as a meandering state is provided inside the stationary blades 12. There have been considered a technique for forming and forming the cooling air by sending the extracted bleeding air, and a technique for ejecting the cooling air to the front edge portion of the stationary blade 12 to accelerate cooling in the vicinity thereof.

【0004】[0004]

【発明が解決しようとする課題】しかし、静翼12の内
部に冷却流路を形成する技術であると、冷却空気との接
触性を向上させるように冷却流路の数を多くすると、静
翼12の強度に悪影響を及ぼすことになり、そして、冷
却空気を静翼12から噴出するようにすると、特に、高
圧タービン6等に不要の冷却空気を送り込むことになっ
て、ガスタービンの熱効率を低下させる要因の一つとな
る。
However, in the technique of forming the cooling flow passages inside the stationary blade 12, if the number of cooling flow passages is increased so as to improve the contactability with the cooling air, the stationary blades will be formed. If the cooling air is jetted from the stationary vanes 12, unnecessary cooling air will be sent to the high-pressure turbine 6 and the like, thereby lowering the thermal efficiency of the gas turbine. It will be one of the factors that cause it.

【0005】本発明は、これらの課題に鑑みてなされた
もので、冷却空気を静翼の内部に送り込むことなく、静
翼を効果的に冷却することを目的としている。
The present invention has been made in view of these problems, and an object thereof is to effectively cool the vane without sending cooling air into the vane.

【0006】[0006]

【課題を解決するための手段】タービン静翼をヒートパ
イプの熱伝達によって冷却する場合に、各タービン静翼
にヒートパイプの吸熱部が配されるとともに、バイパス
エアダクトの内部の上半分に、ヒートパイプの放熱部が
配される構成のタービン静翼の冷却装置としている。
When cooling a turbine vane by heat transfer from a heat pipe, a heat absorbing portion of the heat pipe is arranged in each turbine vane, and heat is transferred to the upper half of the bypass air duct. The cooling device for the turbine vane has a structure in which the heat radiation part of the pipe is arranged.

【0007】[0007]

【作用】タービン静翼が高温になると、タービン静翼か
らヒートパイプの吸熱部への熱伝導による熱移動が行な
われ、ヒートパイプの内部液体が蒸気化して上方に導か
れる。蒸気はヒートパイプの内部を通って放熱部まで上
昇する。放熱部は、バイパスエアダクトの中のバイパス
空気との熱交換によって冷却され、蒸気が凝縮されて液
体となる。この凝縮液は、重力に基づいてヒートパイプ
の中のウイックにより吸熱部まで戻される循環をする。
これらの内部液体の蒸発及び凝縮に際して、放熱部がバ
イパスエアダクトの内部の上半分に配されていると、蒸
気が昇り一方の伝達路及び凝縮液が下り一方の伝達路を
経由することになって、循環時の抵抗が低減される。
When the turbine vane becomes hot, heat is transferred from the turbine vane to the heat absorbing portion of the heat pipe by heat conduction, and the liquid inside the heat pipe is vaporized and guided upward. The vapor passes through the inside of the heat pipe and rises to the heat dissipation portion. The heat radiating portion is cooled by heat exchange with the bypass air in the bypass air duct, and the vapor is condensed into a liquid. This condensate circulates back to the heat absorbing section by the wick in the heat pipe based on gravity.
When radiating and condensing these internal liquids, if the heat radiating portion is arranged in the upper half of the bypass air duct, the vapor rises and one condensate goes down and one condensate goes down one pass. The resistance during circulation is reduced.

【0008】[0008]

【実施例】以下、本発明に係るタービン静翼の冷却装置
の一実施例について、図1及び図2に基づいて説明す
る。図1及び図2において、符号20はヒートパイプ、
21は吸熱部、22は熱媒移送管、23は放熱部、24
は放熱フィン、A,B,C,D,E,Fは屈曲部、Tは
上側熱交換部、Rは右側熱交換部、Lは左側熱交換部で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a cooling device for a turbine vane according to the present invention will be described below with reference to FIGS. 1 and 2, reference numeral 20 is a heat pipe,
Reference numeral 21 is a heat absorbing portion, 22 is a heat medium transfer pipe, 23 is a heat radiating portion, 24
Is a radiating fin, A, B, C, D, E and F are bent portions, T is an upper heat exchange portion, R is a right heat exchange portion, and L is a left heat exchange portion.

【0009】前記ヒートパイプ20は、静翼12の環境
温度範囲を勘案して内部流体が選定され、例えば使用温
度範囲が500〜1200℃のカリウムやナトリウム等
の金属流体が適用される。内部流体がカリウムやナトリ
ウムである場合には、熱媒移送管22の材質(パイプ
材)として、ステンレス鋼,ニッケル,インコネル等が
適用され、熱媒移送管22に挿入されるウイック材とし
ては、セラミックス繊維や金属繊維等が適用される。
For the heat pipe 20, an internal fluid is selected in consideration of the ambient temperature range of the stationary blade 12, and for example, a metal fluid such as potassium or sodium having a working temperature range of 500 to 1200 ° C. is applied. When the internal fluid is potassium or sodium, stainless steel, nickel, Inconel, or the like is applied as the material (pipe material) of the heat medium transfer pipe 22, and as the wick material inserted into the heat medium transfer pipe 22, Ceramic fibers or metal fibers are applied.

【0010】前記吸熱部21は、各静翼12の内部に一
体に埋設されるとともに、熱媒移送管22によって、バ
イパス空気流路14の上半分に配される各熱交換部T,
R,Lに対して接続される。
The heat absorbing portion 21 is integrally embedded in each of the stationary vanes 12, and the heat exchanging portions T, which are arranged in the upper half of the bypass air passage 14 by the heat medium transfer pipe 22, are provided.
It is connected to R and L.

【0011】前記熱媒移送管22は、図1に示すよう
に、各静翼12の配置にともなってリング状に配される
吸熱部21の一つと、半円状に配される放熱部23の一
つとを接続するが、その際に、下半分の吸熱部21にあ
っては、右側熱交換部R及び左側熱交換部Lと接続さ
れ、上半分の吸熱部21にあっては、上側熱交換部Tと
接続される。つまり、下半分の吸熱部21に対しては、
図2に示すように、熱媒移送管22が、静翼12から半
径内方向に引き出された後に、屈曲部Aで周方向に曲げ
られて周方向に沿って導かれ、屈曲部Bで半径外方向に
曲げられた後、その近傍の静翼12の内部を貫通して静
翼12の外側まで引き出され、次いで屈曲部Cで周方向
に曲げられて周方向に沿って導かれてから、屈曲部Dで
曲げられることにより、放熱部23に接続される。そし
て、上半分の吸熱部21に対しては、図1に示すよう
に、静翼12から半径外方向に引き出されて、例えば屈
曲部E,Fで2回屈曲させられた後、上側熱交換部Tの
範囲の放熱部23に接続される。
As shown in FIG. 1, the heat transfer medium transfer pipe 22 includes one of the heat absorbing parts 21 arranged in a ring shape and the heat radiating part 23 arranged in a semicircle according to the arrangement of the respective vanes 12. Of the lower half of the heat absorbing part 21 is connected to the right side heat exchanging part R and the left side heat exchanging part L, and the upper half of the heat absorbing part 21 is connected to the upper side. It is connected to the heat exchange section T. That is, for the lower half heat absorbing part 21,
As shown in FIG. 2, after the heat transfer medium transfer pipe 22 is drawn inward from the stationary blade 12 in the radial direction, it is bent in the circumferential direction at the bent portion A and guided along the circumferential direction, and is bent at the bent portion B in the radius direction. After being bent outward, it penetrates the inside of the stationary blade 12 in the vicinity thereof and is pulled out to the outside of the stationary blade 12, then is bent in the circumferential direction at the bent portion C and guided along the circumferential direction, By being bent at the bent portion D, it is connected to the heat dissipation portion 23. Then, as shown in FIG. 1, the upper half heat absorbing portion 21 is pulled out from the vane 12 in the radial outward direction and is bent twice at, for example, the bending portions E and F, and then the upper heat exchange is performed. It is connected to the heat dissipation part 23 in the range of the part T.

【0012】このように構成されているタービン静翼の
冷却装置にあって、両圧縮機2,4及び両タービン6,
7が作動状態になると、静翼12が高温雰囲気に晒され
て、静翼12が温度上昇する。
In the turbine stator blade cooling device thus constructed, both compressors 2, 4 and both turbines 6,
When 7 becomes an operating state, the stationary blade 12 is exposed to a high temperature atmosphere, and the temperature of the stationary blade 12 rises.

【0013】この際に、静翼12の熱は、熱伝導によっ
てヒートパイプ20の吸熱部21に伝達され、ヒートパ
イプ20の内部液体の蒸気化が生じ、潜熱(気化熱)を
奪うことによって静翼12を冷却する。
At this time, the heat of the stationary blades 12 is transferred to the heat absorbing portion 21 of the heat pipe 20 by heat conduction, vaporization of the liquid inside the heat pipe 20 occurs, and the latent heat (vaporization heat) is taken away, so that the heat is removed. Cool the wings 12.

【0014】ヒートパイプ20の吸熱部21において、
吸熱によって蒸気化した内部流体は、例えば図2の実線
の矢印で示すように、熱媒移送管22の中を順次上昇し
て、放熱部23まで導かれる。
In the heat absorbing portion 21 of the heat pipe 20,
The internal fluid that has been vaporized by absorbing heat sequentially rises in the heat medium transfer pipe 22 and is guided to the heat radiating portion 23, as shown by the solid arrow in FIG.

【0015】放熱部23は、バイパスダクト13におけ
るバイパス空気流路14に送り込まれているバイパス空
気との熱交換によって冷却され、放熱部23における内
部の蒸気の凝縮液化が生じて潜熱分の熱を放出する。
The heat radiating section 23 is cooled by heat exchange with the bypass air sent to the bypass air flow path 14 in the bypass duct 13, and the vapor in the heat radiating section 23 is condensed and liquefied to generate heat of latent heat. discharge.

【0016】放熱部23の凝縮液は、例えば図2の破線
の矢印で示すように、熱媒移送管22の中のウイックを
経由して重力の作用に基づいて吸熱部21まで流下し、
再び蒸気化して熱媒移送管22に沿って上昇する。
The condensate in the heat radiating portion 23 flows down to the heat absorbing portion 21 by virtue of the action of gravity via the wick in the heat medium transfer pipe 22, as indicated by the dashed arrow in FIG.
It vaporizes again and rises along the heat medium transfer pipe 22.

【0017】これらの蒸気の上昇及び液体の流下に際し
ては、図2で代表しているように、下半分の静翼12を
右側熱交換部Rまたは左側熱交換部Lに接続し、その熱
媒移送管22が屈曲部A,B,C,Dで曲げられて、上
り一方及び下り一方の伝達路を経由することによって、
円滑な循環が行なわれる。そして、上半分の静翼12に
あっては、熱媒移送管22によって吸熱部21からその
外側に配された熱媒移送管22が、必要に応じて2箇所
の屈曲部E,Fで曲げられて、蒸気及び液体が上り一方
及び下り一方の伝達路を経由することによって、円滑な
循環が行なわれる。
When these vapors rise and liquids flow down, as shown in FIG. 2, the lower half vane 12 is connected to the right side heat exchange section R or the left side heat exchange section L, and its heat medium is connected. By the transfer pipe 22 being bent at the bent portions A, B, C, D and passing through one of the upstream and downstream transmission paths,
Smooth circulation is achieved. In the upper half vane 12, the heat medium transfer pipe 22 disposed outside the heat absorbing part 21 by the heat medium transfer pipe 22 is bent at two bent portions E and F as necessary. As a result, the vapor and the liquid pass through one of the upstream and one of the downstream transmission paths, whereby smooth circulation is performed.

【0018】〔他の実施態様〕本発明にあっては、実施
例に代えて以下の技術を採用することができる。 a)バイパス空気流路14の下半分に、上側熱交換部
T、右側熱交換部R及び左側熱交換部Lに見合った流路
抵抗を付与するために、他の箇所を冷却するための熱交
換部やダミー部材を配すること。 b)ヒートパイプ20における吸熱部21、熱媒移送管
22または放熱部23に、複数の静翼12が並列状態に
接続されて、内部流体が共用されること。
[Other Embodiments] In the present invention, the following techniques can be adopted instead of the embodiments. a) Heat for cooling the other parts of the bypass air flow passage 14 in order to give flow passage resistances commensurate with the upper heat exchange portion T, the right heat exchange portion R and the left heat exchange portion L to the lower half. Place replacement parts and dummy members. b) A plurality of stationary blades 12 are connected in parallel to the heat absorbing portion 21, the heat medium transfer pipe 22 or the heat radiating portion 23 of the heat pipe 20 so that the internal fluid is shared.

【0019】[0019]

【発明の効果】本発明に係るタービン静翼の冷却装置に
よれば、以下のような効果を奏する。 (1) タービン静翼とバイパスダクトの内部とにヒー
トパイプを配して、タービン静翼を冷却するものである
から、冷却空気を静翼の内部に送り込むことなく、ヒー
トパイプとの間で熱伝導に基づく熱交換を行ない、静翼
を効果的に冷却することができる。 (2) バイパスエアダクトの内部の上半分に、ヒート
パイプの放熱部が配されることにより、蒸気の上昇路を
上り一方及び凝縮液の下降路を下り一方として、循環路
の抵抗を軽減し、熱交換効率を向上させることができ
る。
The cooling device for a turbine vane according to the present invention has the following effects. (1) Since a heat pipe is arranged between the turbine vane and the inside of the bypass duct to cool the turbine vane, heat is not exchanged with the heat pipe without sending cooling air into the vane. The heat exchange based on conduction can be performed to effectively cool the vanes. (2) By disposing the heat radiating portion of the heat pipe in the upper half of the bypass air duct, the resistance of the circulation path is reduced by making the vapor ascending path upward and the condensate descending path downward. The heat exchange efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るタービン静翼の冷却装置の一実施
例を示す横断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a cooling device for a turbine vane according to the present invention.

【図2】図1の静翼とヒートパイプとの関係を示す拡大
図である。
FIG. 2 is an enlarged view showing the relationship between the stationary blade and the heat pipe of FIG.

【図3】ガスタービンエンジンの構造例を示す正断面図
である。
FIG. 3 is a front sectional view showing a structural example of a gas turbine engine.

【符号の説明】[Explanation of symbols]

1 空気取入口 2 低圧圧縮機 3 ファン空気排出ダクト 4 高圧圧縮機 5 燃焼室 6 高圧タービン 7 低圧タービン 8 排気ダクト 11 ケーシング 12 静翼(タービン静翼) 13 バイパスダクト 14 バイパス空気流路 20 ヒートパイプ 21 吸熱部 22 熱媒移送管 23 放熱部 24 放熱フィン A,B,C,D,E,F 屈曲部 T 上側熱交換部 R 右側熱交換部 L 左側熱交換部 1 Air Intake 2 Low Pressure Compressor 3 Fan Air Discharge Duct 4 High Pressure Compressor 5 Combustion Chamber 6 High Pressure Turbine 7 Low Pressure Turbine 8 Exhaust Duct 11 Casing 12 Static Blade (Turbine Static Blade) 13 Bypass Duct 14 Bypass Air Flow Path 20 Heat Pipe 21 heat absorption part 22 heat medium transfer pipe 23 heat dissipation part 24 heat dissipation fins A, B, C, D, E, F bent part T upper heat exchange part R right heat exchange part L left heat exchange part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービン静翼をヒートパイプの熱伝達に
よって冷却するものであって、各タービン静翼にヒート
パイプの吸熱部が配されるとともに、バイパスエアダク
トの内部の上半分に、ヒートパイプの放熱部が配される
ことを特徴とするタービン静翼の冷却装置。
1. A turbine vane is cooled by heat transfer from a heat pipe, wherein each turbine vane is provided with a heat absorbing portion of the heat pipe, and a heat pipe of the heat pipe is provided in an upper half of the bypass air duct. A cooling device for a turbine vane, characterized in that a heat radiating portion is provided.
JP26761993A 1993-10-26 1993-10-26 Turbine vane cooling system Expired - Fee Related JP3365005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26761993A JP3365005B2 (en) 1993-10-26 1993-10-26 Turbine vane cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26761993A JP3365005B2 (en) 1993-10-26 1993-10-26 Turbine vane cooling system

Publications (2)

Publication Number Publication Date
JPH07119489A true JPH07119489A (en) 1995-05-09
JP3365005B2 JP3365005B2 (en) 2003-01-08

Family

ID=17447216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26761993A Expired - Fee Related JP3365005B2 (en) 1993-10-26 1993-10-26 Turbine vane cooling system

Country Status (1)

Country Link
JP (1) JP3365005B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031997A (en) * 2006-07-28 2008-02-14 General Electric Co <Ge> Heat transfer system for turbine engine using heat pipe
JP2008057538A (en) * 2006-08-31 2008-03-13 General Electric Co <Ge> Heat pipe-based cooling apparatus for turbine engine
FR2915520A1 (en) * 2007-04-30 2008-10-31 Snecma Sa Engine e.g. jet engine, assembly arrangement for aircraft, has heat pipe arranging evaporation end mounted on rectifier stage, and condensation end mounted on nacelle wall that radially determines annular fresh air flow channel
JP2009057969A (en) * 2007-08-30 2009-03-19 Snecma Electricity generation in turbomachine
CN102052156A (en) * 2009-10-30 2011-05-11 通用电气公司 Apparatus and method for turbine engine cooling
EP3075987A1 (en) * 2015-04-02 2016-10-05 General Electric Company Heat pipe cooling system for a turbomachine
JP2017106441A (en) * 2015-12-03 2017-06-15 ゼネラル・エレクトリック・カンパニイ Closed loop cooling method and system with heat pipes for gas turbine engine
US9797310B2 (en) 2015-04-02 2017-10-24 General Electric Company Heat pipe temperature management system for a turbomachine
JP2018515705A (en) * 2015-04-02 2018-06-14 ゼネラル・エレクトリック・カンパニイ Heat pipe temperature management system for wheels and buckets in turbomachinery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031997A (en) * 2006-07-28 2008-02-14 General Electric Co <Ge> Heat transfer system for turbine engine using heat pipe
JP2008057538A (en) * 2006-08-31 2008-03-13 General Electric Co <Ge> Heat pipe-based cooling apparatus for turbine engine
FR2915520A1 (en) * 2007-04-30 2008-10-31 Snecma Sa Engine e.g. jet engine, assembly arrangement for aircraft, has heat pipe arranging evaporation end mounted on rectifier stage, and condensation end mounted on nacelle wall that radially determines annular fresh air flow channel
JP2009057969A (en) * 2007-08-30 2009-03-19 Snecma Electricity generation in turbomachine
CN102052156A (en) * 2009-10-30 2011-05-11 通用电气公司 Apparatus and method for turbine engine cooling
EP3075987A1 (en) * 2015-04-02 2016-10-05 General Electric Company Heat pipe cooling system for a turbomachine
US9797310B2 (en) 2015-04-02 2017-10-24 General Electric Company Heat pipe temperature management system for a turbomachine
JP2018515705A (en) * 2015-04-02 2018-06-14 ゼネラル・エレクトリック・カンパニイ Heat pipe temperature management system for wheels and buckets in turbomachinery
US10598094B2 (en) 2015-04-02 2020-03-24 General Electric Company Heat pipe temperature management system for wheels and buckets in a turbomachine
JP2017106441A (en) * 2015-12-03 2017-06-15 ゼネラル・エレクトリック・カンパニイ Closed loop cooling method and system with heat pipes for gas turbine engine

Also Published As

Publication number Publication date
JP3365005B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US7966807B2 (en) Vapor cooled static turbine hardware
JP6746335B2 (en) Heat pipe temperature management system for turbomachinery
US8459040B2 (en) Rear hub cooling for high pressure compressor
JP2016196881A (en) Heat pipe temperature management system for turbomachine
US5178514A (en) Cooling of gas turbine shroud rings
US7748211B2 (en) Vapor cooling of detonation engines
JP4439053B2 (en) Bay cooling turbine casing
US3388888A (en) Cooled turbine nozzle for high temperature turbine
US4218179A (en) Isothermal aerofoil with insulated internal passageway
EP3239479A1 (en) Fluid cooling system for a gas turbine engine and corresponding gas turbine engine
US3314648A (en) Stator vane assembly
JP2011094626A (en) Device and method for cooling turbine engine
JP5825759B2 (en) Apparatus and method for cooling a turbine using a heat pipe
GB2136880A (en) Anti-icing of gas turbine engine air intakes
JP2017020493A (en) Turbine band anti-chording flanges
US20100054926A1 (en) System and method for thermal management of a gas turbine inlet
EP3354851B1 (en) Hybrid airfoil cooling
JPH07119489A (en) Cooling device for turbine stationary blade
CN106917683A (en) The system and method that playback is mitigated by passive cooling
JP2016197002A (en) Heat pipe aftercooling system for turbomachine
US2708564A (en) Turbine apparatus
US11248486B2 (en) Aircraft turbine-engine module casing, comprising a heat pipe associated with a sealing ring surrounding a movable impeller of the module
CN110753782A (en) Device for cooling an annular outer turbine casing
US11834993B1 (en) Engine exhaust reverse flow prevention
WO2000001928A1 (en) Gas turbine blade

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021001

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees