JPH07118887A - Bielectrode-type electrolytic cell - Google Patents

Bielectrode-type electrolytic cell

Info

Publication number
JPH07118887A
JPH07118887A JP5224647A JP22464793A JPH07118887A JP H07118887 A JPH07118887 A JP H07118887A JP 5224647 A JP5224647 A JP 5224647A JP 22464793 A JP22464793 A JP 22464793A JP H07118887 A JPH07118887 A JP H07118887A
Authority
JP
Japan
Prior art keywords
electrolytic cell
plate
copper
unit
bipolar electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5224647A
Other languages
Japanese (ja)
Other versions
JP2634373B2 (en
Inventor
Sanbon Mun
ムン・サンボン
Jufan Cho
チョ・ジュフアン
Hochol Shin
シン・ホチョル
Jonhi Han
ハン・ジョンヒ
Junson Chee
チェー・ジュンソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAN YANG CHEM CO Ltd
KANYOU KAGAKU KK
Original Assignee
HAN YANG CHEM CO Ltd
KANYOU KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAN YANG CHEM CO Ltd, KANYOU KAGAKU KK filed Critical HAN YANG CHEM CO Ltd
Priority to JP5224647A priority Critical patent/JP2634373B2/en
Publication of JPH07118887A publication Critical patent/JPH07118887A/en
Application granted granted Critical
Publication of JP2634373B2 publication Critical patent/JP2634373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To enable excellent performance, easy operation and manufacture and management at a low cost by energizing partition walls, anodes and cathodes, forming electric conduction plates to multiple layers and disposing current distribution frames between these electric conduction plates and the electrodes.
CONSTITUTION: A unit electrolytic cell 1 is provided with electrolyte inflow ports 6 and 15, products outlets 7 and 16 and slopes for prohibiting the stagnation of gases at an inside end. The one side thereof is provided with frame walls 2 and 11 and the partition walls 3, 12 are fixed thereto. These walls and the anodes 5 and the cathodes 4 are energized between each other. The electric conduction plates 4 and 13 of the prescribed size to uniformly maintain the current density and the concn. distribution of the electrolyte in the unit electrolytic cell 1 are formed to the multiple layers. The respective unit electrolytic cells are electrically connected by many conductive medium bodies 20 positioned between the electrodes 5 and 14. The electrode current distribution frames 32 for decreasing the locally high current density and maintaining the specified current density are disposed between the conductive medium bodies 20 and the electrodes 5 and 14. The respectively unit electrolytic cells are continuously arrayed by coupling loads 23 and the partition walls 3 and 12 are energized by the many metallic plates 20 of a spring type subjected to explosive welding across these walls.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多数の単位電解槽で構成
される複極式電解槽に関するものである。詳細には塩化
アルカリ水溶液を電気分解する塩素と水酸化アルカリ金
属の電気分解生産に適合するよう、爆発溶接結合法によ
りスプリング形の金属板を得、これにより多数の単位電
解槽を連結した複極式電解槽である。連続的に連結され
た多数の単位電解槽の各電解室内部には電流密度と電解
質の濃度を均一に維持させるために多層に形成された電
気伝導板を有し、電極間には陽イオン交換膜を保護する
ために電流を均一にさせる電流分布枠を設置しており、
さらに塩素ガスの停滞から陽イオン交換膜を保護できる
ように傾斜した枠壁を備えている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar electrode electrolytic cell composed of a large number of unit electrolytic cells. Specifically, a spring-shaped metal plate was obtained by the explosive welding connection method so as to be compatible with the electrolysis production of chlorine and alkali metal hydroxide that electrolyzes an aqueous solution of alkali chloride. The electrolytic cell. Inside each electrolysis chamber of a large number of unit cells connected in series, there is a multi-layered electric conduction plate to maintain uniform current density and electrolyte concentration, and cation exchange between electrodes. In order to protect the membrane, we have installed a current distribution frame that makes the current uniform.
Furthermore, it has a sloping frame wall to protect the cation exchange membrane from the stagnation of chlorine gas.

【0002】[0002]

【従来の技術】従来の電解槽は電極(1mm厚さ)と電気伝
導板(厚さ2mm)を直接溶接して得られる。このような方
法は溶接が非常に難しく溶接状態が非常に不良になる。
不良な溶接状態により電極間が均等でなくなり、電解槽
内の薄い膜に電流密度の偏差を大きくする。電解槽内の
電流密度の不均一性は電解槽電圧を減少させ、電解槽の
性能を減少させる。
2. Description of the Related Art A conventional electrolytic cell is obtained by directly welding an electrode (1 mm thick) and an electric conductive plate (2 mm thick). In such a method, welding is very difficult and the welding state becomes very poor.
Due to the poor welding condition, the electrodes are not uniform and the deviation of the current density is increased in the thin film in the electrolytic cell. The non-uniformity of current density in the electrolytic cell reduces the electrolytic cell voltage and reduces the performance of the electrolytic cell.

【0003】電解槽の性能の減少は勿論電解槽システム
の安定性にも影響を与える。電解槽内圧力が0.5kg/
cm2程度に達すれば電極と電気伝導板がおちて局部的に
熱が生じ、この熱は膜に致命的な損傷を与え、結果的に
電解槽システムの安定性の問題を引き起こす。
Not only is the performance of the electrolytic cell reduced, but it also affects the stability of the electrolytic cell system. The pressure inside the electrolytic cell is 0.5 kg /
When the area reaches about cm 2 , heat is locally generated by the electrode and the electric conductive plate being dropped, and this heat causes fatal damage to the membrane, resulting in stability problems of the electrolytic cell system.

【0004】陽極室と陰極室の間に陽イオン交換膜が挿
入された単位電解槽が多数連結され、一方の端の単位電
解槽の陽極側と他方の端の単位電解槽の陰極には低電流
高電圧の電源が供給され、陽イオン交換膜を分離膜に用
いる塩素及び苛性カリのようなアルカリ金属物を生成す
る複極式電解槽に対して数多い先行特許が出願されてい
る。
A large number of unit electrolytic cells having a cation exchange membrane inserted therein are connected between the anode chamber and the cathode chamber, and the unit electrolytic cell at one end is connected to the anode side and the cathode of the unit electrolytic cell at the other end is low. A number of prior patents have been filed for a bipolar electrode cell that is supplied with a high-current power source and produces an alkali metal such as chlorine and potassium hydroxide using a cation exchange membrane as a separation membrane.

【0005】特に、複極式電解槽を構成する単位電解槽
と単位電解槽の電気的連結に対する先行特許としては、
一方の単位電解槽の材質がチタンである隔壁と、これに
対する他方の電解槽の材質が鉄である隔壁全体を爆発溶
接結合方法を用いた電解槽(米国特許第4111779
号)、結節(node)が形成された板を隔壁間に挿入して電
気的に連結した電解槽(欧州特許第0172495号)、
プラスチック材質で形成された各単位電解槽をボルトと
ナットの固定手段により電気的に連結した電解槽(ドイ
ツ特許第2551234号)、さらに超音波溶接やチタ
ン−銅−ステンレススチールで作製された連結部を有す
る電解槽(日本国特開昭54−90079)が挙げられ
る。
Particularly, as a prior patent for the electrical connection between the unit electrolytic cells and the unit electrolytic cells constituting the bipolar electrode electrolytic cell,
An electrolytic cell using the explosive-welding method for a partition wall in which the material of one unit electrolytic cell is titanium and the entire partition wall in which the material of the other electrolytic cell is iron (US Pat. No. 4,111,779).
No.), an electrolytic cell in which a plate on which a node is formed is inserted between partition walls and electrically connected (European Patent No. 0172495),
An electrolytic cell (German Patent No. 2551234) in which each unit electrolytic cell formed of a plastic material is electrically connected by means of fixing bolts and nuts, and a connecting portion made of ultrasonic welding or titanium-copper-stainless steel And an electrolytic cell (Japanese Patent Laid-Open No. 54-90079).

【0006】電解槽内部、特に、電極と電解室隔壁間に
設けられる電気伝導板の構造に対する先行特許としては
多数の開口部が単一板に形成された電気伝導板を有する
電解槽(欧州特許第220659号)、両側にあき空間が
形成された単一板から成る電気伝導板を有する電解槽
(米国特許第4389289号)、骨格形態とされた電気
伝導板を有する電解槽(米国特許第4417960号)に
関するものがある。
As a prior patent for the structure of the electric conduction plate provided inside the electrolytic cell, particularly between the electrode and the partition wall of the electrolysis chamber, an electrolytic cell having an electric conduction plate having a large number of openings formed in a single plate (European Patent No. 220659), an electrolytic cell having an electric conductive plate composed of a single plate having a space on both sides
(US Pat. No. 4,389,289) and an electrolytic cell (US Pat. No. 4,417,960) having an electrically conductive plate in the form of a skeleton.

【0007】一方、複極式電解槽の複極壁の形態に対す
る先行特許としては、複極壁が爆発溶接結合により作製
され、陽極室及び陰極室を分離できないようにした電解
槽(S.OGAWA, CHEM.AGE, INDIA,
31, 1980, 441; K.MOTANI, ibid, 3
1, 1980, 457)、複極壁が爆発溶接結合により
作製され、陽極室及び陽極室を分離できるようにした電
解槽(米国特許第4568434号)、陽極室と陰極室が
分離ができ、爆発溶接結合されない複極壁を有する電解
槽(J.OF ELECTROCHEMISTRY 1
2, 1982,631)に関するものがある。
On the other hand, as a prior patent for the form of the bipolar wall of the bipolar type electrolytic cell, an electrolytic cell (S.OGAWA) in which the bipolar electrode wall is made by explosive welding connection so that the anode chamber and the cathode chamber cannot be separated from each other. , CHEM.AGE, INDIA,
31, 1980, 441; MOTANI, ibid, 3
1, 1980, 457), an electrolytic cell in which a bipolar wall is made by explosive welding connection to separate an anode chamber and an anode chamber (US Pat. No. 4,568,434), an anode chamber and a cathode chamber can be separated, and an explosion occurs. An electrolytic cell having a bipolar wall that is not welded (J. OF ELECTROCHEMISTRY 1
2, 1982, 631).

【0008】さらに、電解槽操作時内部圧力が大気圧よ
り高い圧力で操作することにより塩素ガスの気泡の大き
さを減少させ、電解槽の電圧を節減できるようにした電
解槽(米国特許第4105515号)がある。
[0008] Furthermore, when operating the electrolytic cell at an internal pressure higher than the atmospheric pressure, the size of the bubbles of chlorine gas is reduced and the voltage of the electrolytic cell can be reduced (US Pat. No. 4,105,515). No.)

【0009】電解槽としては優れた性能、容易な操作そ
して少ない費用で作製および管理が可能である等の条件
を満足しなければならないが、従来の電解槽は大部分上
の条件を全て充足させることができていない。爆発溶接
結合した隔壁を有する性能の優れた電解槽は、爆発溶接
結合のために長時間と人員を必要とするため作製費が上
昇する問題点を持っている。また、爆発溶接結合をして
いない隔壁を有する電解槽は作製と維持に伴う費用が少
ないというメリットはあるが電解槽の性能が低いという
問題点を有している。単位電解槽をプラスチック材質で
作製する場合、機械的な強度を考慮して電解槽の隔壁を
厚く作製しなければならない。このため薄く小さい電解
槽を作製できず、大きい電解槽に限られ、多数の単位電
解槽が連続的に連結した電解槽の運転中、いずれかの単
位電解槽に問題点が生じる際はこれと直接連結する全て
の単位電解槽の作動を中止させた後、問題点を点検しな
ければなにないので作業性が低下する問題点等がある。
As an electrolytic cell, it has to satisfy the conditions such as excellent performance, easy operation, and the fact that it can be manufactured and managed at a low cost, but the conventional electrolytic cell largely satisfies all the above conditions. I haven't been able to. The electrolytic cell having the excellent partition having the explosion-welded joints has a problem that the manufacturing cost is increased because it requires a long time and personnel for the explosive-welded joints. Further, an electrolytic cell having a partition wall which is not explosion-welded has a merit that the cost for manufacturing and maintaining is low, but has a problem that the performance of the electrolytic cell is low. When the unit electrolytic cell is made of a plastic material, the partition wall of the electrolytic cell must be made thick in consideration of mechanical strength. For this reason, it is not possible to make a thin and small electrolytic cell, and it is limited to a large electrolytic cell, and when a problem occurs in one of the unit electrolytic cells during operation of the electrolytic cell in which many unit electrolytic cells are continuously connected, After stopping the operation of all the unit electrolytic cells that are directly connected to each other, it is necessary to check the problems, so that there is a problem that workability is deteriorated.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、複極
式電解槽を構成する各単位電解槽の陽極室隔壁と陰極室
隔壁を夫々チタンおよびニッケルの材質で形成すること
により十分な機械的強度が備えられ、作業条件により大
きさと形状を自在に選択できるようにした複極式電解槽
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sufficient machine by forming the anode chamber partition wall and the cathode chamber partition wall of each unit electrolytic cell constituting the bipolar electrode cell by titanium and nickel materials, respectively. (EN) Provided is a bipolar electrode type electrolytic cell which is provided with an appropriate strength and whose size and shape can be freely selected according to working conditions.

【0011】本発明の他の目的は、複極式電解槽を構成
する各単位電解槽をボルトとナットによる連結方法によ
り連結し、爆発溶接結合した銅とニッケルの材質で構成
された多数のスプリング型の金属板を用いて通電される
よう連結することによって、全ての単位電解槽の運転中
でも問題点が露出した単位電解槽だけを容易に交換で
き、各電解槽内部に爆発溶接結合をしていない複極式隔
壁を形成することにより、電解槽の組立て、分解に要す
る作業時間を短縮させることにより作業性を向上させる
ことができるようにした複極式電解槽を提供することで
ある。
Another object of the present invention is to connect a plurality of unit electrolytic cells constituting a bipolar electrode electrolytic cell by a connecting method using bolts and nuts, and to form a large number of springs made of explosive-welded copper and nickel materials. By connecting using a metal plate of a mold so that it can be energized, it is possible to easily replace only the unit cell where problems have been exposed even when all the unit cells are in operation, and to perform explosive welding connection inside each cell. An object of the present invention is to provide a bipolar electrode electrolytic cell capable of improving workability by reducing the working time required for assembling and disassembling the electrolytic cell by forming a non-polar electrode partition.

【0012】さらに本発明は、単位電解槽の各電解室内
部に電流密度と電解質濃度を均一に維持させるため多層
に形成された電気伝導板を備え、塩素ガスの停滞による
陽イオン交換膜保護のため傾斜した枠壁を備えた優れた
性能を有する複極式電解槽を提供することを目的とす
る。
Further, according to the present invention, an electric conduction plate formed in multiple layers is provided in each electrolysis chamber of the unit electrolytic cell in order to keep the current density and the electrolyte concentration uniform, and the cation exchange membrane is protected by the stagnation of chlorine gas. Therefore, it is an object to provide a bipolar electrode electrolytic cell having an inclined frame wall and having excellent performance.

【0013】[0013]

【課題を解決するための手段】本発明の特徴は前記のよ
うな目的を達成するために、陽極室隔壁と陽極及び陰極
室隔壁と陰極に電気的に通電させ、単位電解槽内の電流
密度と電解質の濃度分布を均一に維持させるように所定
の大きさの電気伝導板を多層に形成し、電気伝導板と電
極間に電流密度を一定に維持させるための電流分布枠を
設けたところにある。本発明のもう一つの特徴は、陽極
室隔壁と陰極室隔壁間に設置した、多数の爆発溶接結合
した金属板により通電するように設計し、各単位電解槽
内部に連結手段により電解質が流入し、生成物が流出す
るように流入口と生成物出口を電解槽下部及び上部側に
形成し、さらにガスの停滞することを阻止するために内
側端面に傾斜面を備えるようにしたところにある。
In order to achieve the above-mentioned object, the present invention is characterized in that the anode chamber partition wall and the anode and the cathode chamber partition wall and the cathode are electrically energized, and the current density in the unit electrolytic cell is increased. In order to keep the concentration distribution of the electrolyte and electrolyte uniform, a plurality of electric conduction plates of a predetermined size are formed, and a current distribution frame for maintaining a constant current density is provided between the electric conduction plate and the electrode. is there. Another feature of the present invention is that it is designed to be energized by a large number of explosion-welded metal plates installed between the anode chamber partition wall and the cathode chamber partition wall, and the electrolyte flows into each unit electrolytic cell by the connecting means. The inflow port and the product outlet are formed on the lower and upper sides of the electrolytic cell so that the product flows out, and the inner end face is provided with an inclined surface to prevent the gas from stagnating.

【0014】本発明の複極式電解槽を図を用いてさらに
説明する。図1は陽極室10と陰極室19及びこれらの
間に介在させた陽イオン交換膜21とから形成される単
位電解槽1の連続配列を示す断面図である。陽極室は陽
極室枠壁2とこれの一方の側に固定される陽極室隔壁
3、この陽極室隔壁3と後述する電気伝導板4に溶接さ
れた陽極5が相互に導通し得るよう、これらの間に多層
に形成した電気伝導板4を有する。陰極室19は陽極室
10と同様に陰極室の枠壁11とこれの一方の側に固定
した陰極室隔壁12、この陰極室隔壁12と電気伝導板
13に溶接された陰極14とが相互に導通し得るよう、
これらの間に多層に形成した電気伝導板13を有してい
る。この多層に形成した電気伝導板4,13の通路8,1
7は電解質と生成物が通過するようになる。
The bipolar electrode electrolytic cell of the present invention will be further described with reference to the drawings. FIG. 1 is a cross-sectional view showing a continuous arrangement of unit electrolytic cells 1 formed of an anode chamber 10, a cathode chamber 19 and a cation exchange membrane 21 interposed therebetween. The anode chamber includes an anode chamber frame wall 2, an anode chamber partition wall 3 fixed to one side of the anode chamber partition wall 3, and an anode chamber partition wall 3 and an anode 5 welded to an electric conduction plate 4 which will be described later so as to be electrically connected to each other. It has the electric conduction plate 4 formed in multiple layers between. Similar to the anode chamber 10, the cathode chamber 19 includes a frame wall 11 of the cathode chamber, a cathode chamber partition wall 12 fixed to one side of the frame wall 11, and the cathode chamber partition wall 12 and the cathode 14 welded to the electric conductive plate 13 to each other. To be able to conduct
An electric conduction plate 13 formed in multiple layers is provided between them. Passages 8 and 1 of the electric conduction plates 4 and 13 formed in this multilayer
7 allows electrolyte and products to pass through.

【0015】陽極室枠壁2と陰極室枠壁11は陽イオン
交換膜21を中心として対称するように形成されてい
る。単位電解槽1の下部の片側に、この単位電解槽1内
部に電解質が流入するよう電解質流入口6,15が連通
するように連結され、向かい側上部の片側には生成物が
流出する出口7,16が連通するように連結している。
The anode chamber frame wall 2 and the cathode chamber frame wall 11 are formed so as to be symmetrical with respect to the cation exchange membrane 21. Electrolyte inlets 6 and 15 are connected to one side of the lower part of the unit electrolytic cell 1 so that the electrolyte flows into the inside of the unit electrolytic cell 1, and an outlet 7 through which a product flows out to one side of the opposite upper side, 16 are connected so as to communicate with each other.

【0016】電解質流入口6,15と生成物出口7,16
はこれらと連結したフレキシブルなホース27,28を
通じて単位電解槽1の下部及び上部に位置する供給ヘッ
ド22,22'と出口ヘッド23,23'に夫々連通する
ように連結されている。
Electrolyte inlet 6,15 and product outlet 7,16
Are connected to the supply heads 22 and 22 'and the outlet heads 23 and 23' located at the lower and upper portions of the unit electrolytic cell 1 through flexible hoses 27 and 28 connected to them, respectively.

【0017】一般的に陽極室枠壁2と陰極室枠壁11の
内部端に傾斜面がない場合、塩水の電気分解時に陰極室
19で陽極室10に移動する水酸化イオンと、陽極室1
0内に停滞している塩素が夫々陽イオン交換膜21に拡
散することにより、陽イオン交換膜21内で以下の式の
ごとく反応して結晶が生成されるため陽イオン交換膜2
1の性能が低下する。 2NaOH+Cl2 → NaCl+NaOCl+H2
Generally, when there is no inclined surface at the inner ends of the anode chamber frame wall 2 and the cathode chamber frame wall 11, hydroxide ions that move to the anode chamber 10 in the cathode chamber 19 during electrolysis of salt water, and the anode chamber 1
Chlorine stagnation in 0 diffuses into the cation exchange membrane 21 and reacts in the cation exchange membrane 21 according to the following equation to generate crystals, so that the cation exchange membrane 2
The performance of 1 deteriorates. 2NaOH + Cl 2 → NaCl + NaOCl + H 2 O

【0018】このような薄膜の損傷を阻止するため、す
なわち陽極室枠壁2及び陰極室枠壁11の内側端には電
気分解生成物から生じるガス(例えば、塩水の電気分解
の際に電解槽の内側端部分に停滞する塩素ガス)から前
記陽イオン交換膜21を保護するため5°以上の傾斜角
度を有する傾斜面を形成した。電解質流入口6,15と
生成物出口7,16の設置が可能であれば、前記陽極室
枠壁2、陰極室枠壁11の厚さは特に制限はないが、通
常10mmから50mmの厚さとし、経済的には40mmの厚
さが最も好ましい。又、陽極室枠壁2と陰極室枠壁11
の材質としては電解質と生成物について化学的耐性を有
する鉄、ニッケル、チタン等の金属と、ポリエチレン、
ポリプロピレン、塩化ビニル樹脂、弗素樹脂等のプラス
チック類等が使用され、価額と電解液の漏泄及び電解槽
の機械的強度を考慮すれば金属を使用するのが望まし
い。例えば、塩水の電気分解においては陽極室枠壁2の
材質をチタン、陰極室枠壁11の材質をニッケルとする
のが最も望ましい。
In order to prevent such damage of the thin film, that is, at the inner ends of the anode chamber frame wall 2 and the cathode chamber frame wall 11, a gas generated from an electrolysis product (for example, an electrolytic cell during electrolysis of salt water) is used. An inclined surface having an inclination angle of 5 ° or more was formed to protect the cation exchange membrane 21 from chlorine gas that stagnates at the inner end portion of the. The thicknesses of the anode chamber frame wall 2 and the cathode chamber frame wall 11 are not particularly limited as long as the electrolyte inlets 6 and 15 and the product outlets 7 and 16 can be installed, but the thickness is usually 10 mm to 50 mm. Economically, the thickness of 40 mm is most preferable. Further, the anode chamber frame wall 2 and the cathode chamber frame wall 11
As the material of the above, metals such as iron, nickel and titanium, which have chemical resistance to the electrolyte and products, and polyethylene,
Plastics such as polypropylene, vinyl chloride resin, and fluorine resin are used, and it is preferable to use metal in consideration of price, leakage of electrolytic solution, and mechanical strength of the electrolytic cell. For example, in electrolysis of salt water, it is most desirable to use titanium for the material of the anode chamber frame wall 2 and nickel for the material of the cathode chamber frame wall 11.

【0019】電気伝導板4,13は隔壁3,12に溶接さ
れ活性陽極5と活性陰極14はこの電気伝導板4,13
に溶接され、陽極隔壁3から活性陽極5に電流が供給さ
れる。電気伝導板4,13は電解槽の電流密度分布と電
解質濃度分布に影響を与えることになりこれらは相互交
換(Trade−Off)する性質がある。
The electric conduction plates 4 and 13 are welded to the partition walls 3 and 12, and the active anode 5 and the active cathode 14 are connected to the electric conduction plates 4 and 13.
And the electric current is supplied to the active anode 5 from the anode partition wall 3. The electric conductive plates 4 and 13 affect the current density distribution and the electrolyte concentration distribution of the electrolytic cell, and these have the property of mutual exchange (Trade-Off).

【0020】本発明の電解槽は隔壁と電極の間に多い接
触を許容して電解槽内の活性電極面で電流密度を均一に
すると同時に、電解液濃度が電解槽内で均一になるよう
に通路8,17の電気伝導板4,13が最適な大きさと位
置に設けられている。電気伝導板4,13の材質として
は電解質と生成物に対して化学的耐性と電気伝導性が優
れたものであればよく、例えば塩水の電気分解において
は陽極室10の電気伝導板4はチタン、陰極室19の電
気伝導板13はニッケルとするのが望ましい。電気伝導
板4,13に白金族酸化物をコーティングすると電気伝
導性が一層向上する。電気伝導板4,13と電極5,14
間には電極面での電流密度を均一にするための電流分布
枠32が存在しており、これが部分的に電気伝導板を通
じて入り込んだ電流を電極面全体に均一な分布を有する
ように誘導する。
The electrolytic cell of the present invention allows a large amount of contact between the partition wall and the electrode to make the current density uniform on the active electrode surface in the electrolytic cell, and at the same time, to make the concentration of the electrolytic solution uniform in the electrolytic cell. The electric conduction plates 4 and 13 of the passages 8 and 17 are provided at optimum sizes and positions. Any material may be used as the material for the electric conduction plates 4 and 13 as long as it has excellent chemical resistance and electric conductivity to electrolytes and products. For example, in electrolysis of salt water, the electric conduction plate 4 of the anode chamber 10 is made of titanium. The electric conduction plate 13 of the cathode chamber 19 is preferably made of nickel. When the electric conduction plates 4 and 13 are coated with a platinum group oxide, electric conductivity is further improved. Electrically conductive plates 4, 13 and electrodes 5, 14
A current distribution frame 32 for equalizing the current density on the electrode surface is present between them, and this induces a current partially entering through the electric conduction plate so as to have a uniform distribution over the entire electrode surface. .

【0021】陽極隔壁3と陰極隔壁12間の電気接触抵
抗を減少させるために設けられる伝導媒介体20の材質
としては銅、ニッケル、チタンのような金属又はこれら
の合金が使用されるが、特に塩水の電気分解時には、陽
極隔壁3と陰極隔壁12は相互異なる金属であるのでこ
れら金属に電流を誘導するために銅−ニッケルの二重合
金を使用する。伝導媒介体20の構造は単位電解槽を結
合ロード29に組み合わせる際に、隣接した単位電解槽
同士が充分に密接され、夫々の単位電解槽に電流が良く
伝導するようにスプリング支持体の形態になっている。
As the material of the conduction medium 20 provided to reduce the electric contact resistance between the anode partition wall 3 and the cathode partition wall 12, a metal such as copper, nickel, titanium or an alloy thereof is used. During electrolysis of salt water, the anode partition wall 3 and the cathode partition wall 12 are metals different from each other, and therefore a copper-nickel dual alloy is used to induce a current in these metals. The structure of the conduction medium 20 is in the form of a spring support so that when the unit cells are combined with the coupling load 29, the adjacent unit cells are sufficiently brought into close contact with each other and the current is well conducted to the respective unit cells. Has become.

【0022】陽極隔壁3と陰極隔壁12としては電解槽
の内部圧を支持でき、電気伝導板4,13が溶接でき得
る程度の厚さが必要である。電解槽の機械的な強度と経
済的な側面から1−3mmの厚とするのが妥当である。隔
壁の材質は枠壁2,11の材質と同一とするのが好まし
い。隔壁3,12と枠壁2,11は溶接及びボルディング
により結合される。
The anode partition wall 3 and the cathode partition wall 12 must be thick enough to support the internal pressure of the electrolytic cell and to weld the electrically conductive plates 4 and 13. A thickness of 1-3 mm is appropriate from the mechanical strength and economical aspects of the electrolytic cell. The material of the partition wall is preferably the same as the material of the frame walls 2 and 11. The partition walls 3 and 12 and the frame walls 2 and 11 are connected by welding and bonding.

【0023】陽極5の材質としてはチタン材料と被覆さ
れた白金族金属酸化物で構成される。白金族酸化物とし
てはイリジウム化合物、ルテニウム酸化物、チタン酸化
物、ジルコニウム酸化物等が使用され、性能を向上させ
るための上記白金族化合物の混合物を使用してもよい。
The material of the anode 5 is a titanium material and a platinum group metal oxide coated thereon. As the platinum group oxide, an iridium compound, ruthenium oxide, titanium oxide, zirconium oxide or the like is used, and a mixture of the above platinum group compounds for improving performance may be used.

【0024】陽極5では塩素ガスや酸素ガスのごときガ
スを生じるため、陽極5と陽イオン交換膜21間に存在
するガスにより電流が遮断され電解電圧が上昇する。こ
のため40%の開口を有する多孔性板と同様な形状に電
極を作成し、発生したガスが陽極5の後面に放出される
ようにしてガスによる電解電流の遮断を阻止し、電解電
圧を低く保つ。
Gases such as chlorine gas and oxygen gas are generated at the anode 5, so that the gas existing between the anode 5 and the cation exchange membrane 21 interrupts the current and raises the electrolysis voltage. Therefore, an electrode is formed in the same shape as a porous plate having an opening of 40% so that the generated gas is released to the rear surface of the anode 5 to prevent the electrolytic current from being cut off by the gas and to lower the electrolytic voltage. keep.

【0025】多孔性板には孔をあけた平らな金属と膨張
した金属電極が使用される。塩水の電気分解では膨張し
た金属の使用が好ましい。その形状は金属の消耗と費用
の面から選択される。陽極5と陽極室隔壁3間の距離
(図1のD)は陽極5で発生したガスが陽極5の後面に放
出されることを促進し、電極5,14と陽イオン交換膜
21間のガス蓄積が緩和されて低電圧となるよう、可能
ならば大きくすることが求められる。
A perforated flat metal and an expanded metal electrode are used for the porous plate. The use of expanded metal is preferred for electrolysis of brine. The shape is selected in terms of metal consumption and cost. Distance between the anode 5 and the anode chamber partition wall 3
(D of FIG. 1) promotes the release of the gas generated at the anode 5 to the rear surface of the anode 5, so that the gas accumulation between the electrodes 5 and 14 and the cation exchange membrane 21 is alleviated to a low voltage. , If possible, it is required to be large.

【0026】陰極14の材質としては鉄、ニッケル又は
これらの合金を使用するが、性能が向上するように前記
金属を陰極材料として使用し、さらにラニー・ニッケ
ル、ニッケル酸化物等でコーティングして陰極とする。
陰極14の構造は上述の陽極5と同じ構造にすればよ
く、陰極14と陰極室隔壁12間の距離(図1のD)は陽
極5の場合と同じ理由から大きくすることが好ましい。
しかしながら、陰極室19では最小距離として20mmが
求められる。これは前記D'がこの最小距離より小さく
製作されると陰極14で発生したガスが合体される際の
大きさが20mm以上になるため電解槽内でガス空間を形
成し、瞬間的に電解電流を遮断させ電解電圧を上昇させ
るため好ましくない。
Iron, nickel, or an alloy thereof is used as the material of the cathode 14. The metal is used as the cathode material so as to improve the performance, and the cathode is coated with Raney nickel, nickel oxide or the like. And
The structure of the cathode 14 may be the same as that of the above-described anode 5, and the distance between the cathode 14 and the cathode chamber partition 12 (D in FIG. 1) is preferably large for the same reason as in the case of the anode 5.
However, a minimum distance of 20 mm is required in the cathode chamber 19. This is because when D'is manufactured to be smaller than this minimum distance, the size of the gas generated at the cathode 14 when combined is 20 mm or more, so that a gas space is formed in the electrolytic cell and the electrolytic current is instantaneously generated. Is interrupted and the electrolysis voltage is increased, which is not preferable.

【0027】ガスケット(gasket)9,18は単位電解槽
内の電解質溶液の漏泄を阻止するために陽イオン交換膜
21の両端部に設けられる。ガスケットは可能な限り平
らな表面を有するものが好ましく、材質としては電解質
と生成物に対する化学的耐性を有する物質を使用すれば
よい。例えば塩水の電解分解である場合はエチレン−プ
ロピレンゴム、クロロプロピレンゴム、ブチルゴム、弗
素ゴム等が好適に使用されるが、価額と性能の面でガス
ケット9は弗素ゴム、ガスケット19はエチレン−プロ
ピレンゴムとするのが好ましい。ガスケットの形状及び
大きさは電解質枠壁と同一条件にて設置する。
Gaskets 9 and 18 are provided at both ends of the cation exchange membrane 21 in order to prevent leakage of the electrolyte solution in the unit electrolytic cell. The gasket preferably has a surface as flat as possible, and a material having a chemical resistance to the electrolyte and the product may be used as the material. For example, in the case of electrolytic decomposition of salt water, ethylene-propylene rubber, chloropropylene rubber, butyl rubber, fluorine rubber and the like are preferably used. However, in terms of price and performance, gasket 9 is fluorine rubber and gasket 19 is ethylene-propylene rubber. Is preferred. The gasket shape and size shall be set under the same conditions as the electrolyte frame wall.

【0028】陽イオン交換膜21は陽極室10の陽極5
と陰極室19の陰極14間に設置する。陽イオン交換膜
としては陽イオン交換体を有する弗素含有樹脂が使用さ
れる。陽イオン交換体としてはスルホ基膜形態及びカル
ボキシル基膜形態又はこれらの結合した複合膜が使用さ
れる。複合膜が使用される場合には陽極5と対向する方
はスルホ基膜が位置し、陰極14と向かい合う方はカル
ボキシル基膜が位置するようになる。
The cation exchange membrane 21 is the anode 5 of the anode chamber 10.
And the cathode 14 of the cathode chamber 19 are installed. A fluorine-containing resin having a cation exchanger is used as the cation exchange membrane. As the cation exchanger, a sulfo group membrane form, a carboxyl group membrane form, or a composite membrane in which these are combined is used. When a composite film is used, the sulfo group film is located on the side facing the anode 5, and the carboxyl group film is located on the side facing the cathode 14.

【0029】電解槽の造作において各単位電解槽1の内
部圧力は大気圧以上(0.2−2kg/m2)に維持する。単
位電解槽1内の圧力変化は出口ヘッド23に設けた調節
バルブ(図示されていない)により調節する。
In the production of the electrolytic cell, the internal pressure of each unit electrolytic cell 1 is maintained above atmospheric pressure (0.2-2 kg / m 2 ). The pressure change in the unit electrolytic cell 1 is adjusted by a control valve (not shown) provided in the outlet head 23.

【0030】図2、図3は単位電解槽を構成する電解室
の平面図である。陽極室10と陰極室19の電気伝導板
4,13は同一位置に設けられる。図2に表示したI方
向に沿う電気伝導板4の位置は電解槽の電流密度分布に
影響を与えるため、狭い間隔で設置されることが必要で
あるが、経済性及び電解質濃度分布の面から200−5
00mm間隔に設置され、より好ましくは300mm間隔に
設けられる。図3は本発明の複極式電解槽の電解室に関
する他の実施例を示したもので、隣接した電気伝導板
4',13'が互い違いとなるように設置することにより
電解質の濃度分布は一層均一になる。
2 and 3 are plan views of an electrolysis chamber which constitutes a unit electrolysis cell. The electric conduction plates 4 and 13 of the anode chamber 10 and the cathode chamber 19 are provided at the same position. The position of the electric conduction plate 4 along the I direction shown in FIG. 2 influences the current density distribution of the electrolytic cell, so it is necessary to install the electric conduction plate 4 at a narrow interval, but from the viewpoint of economical efficiency and electrolyte concentration distribution. 200-5
It is installed at intervals of 00 mm, more preferably at intervals of 300 mm. FIG. 3 shows another embodiment relating to the electrolysis chamber of the bipolar electrolyzer of the present invention, in which the adjacent electroconductive plates 4 ′ and 13 ′ are installed so as to be staggered so that the concentration distribution of the electrolyte is It becomes more uniform.

【0031】図4は単位電解槽を成す陽極室と陰極室の
側面図であり、図2に標記したII方向に沿った電気伝導
板4の単位大きさBは100−500mm、特に200−
400mmであるものが最も好ましい。
FIG. 4 is a side view of the anode chamber and the cathode chamber forming the unit electrolytic cell. The unit size B of the electric conductive plate 4 along the II direction marked in FIG. 2 is 100-500 mm, especially 200-.
Most preferably, it is 400 mm.

【0032】電気伝導板4の単位大きさBと各電気伝導
板4の間隔Aの比を面積比(A/(A+B)×100)で表
現する場合、60−80%であり好ましくは70%であ
る。60%以下の場合は電流密度が不均一となり80%
以上は電解質濃度が不均一になるため好ましくない。
When the ratio of the unit size B of the electric conductive plate 4 and the interval A of each electric conductive plate 4 is expressed by the area ratio (A / (A + B) × 100), it is 60-80%, preferably 70%. Is. If it is less than 60%, the current density becomes non-uniform and 80%
The above is not preferable because the electrolyte concentration becomes non-uniform.

【0033】図4の(A)、(B)、(C)、(D)は本発明の
各単位電解槽を電気的に連結させる爆発溶接結合した金
属板の構造を示すものである。金属板20はニッケル3
0と銅板31から成形される。これは所定の大きさおよ
び形状を有する構造として爆発溶接結合した銅板31上
の一方の端及び中央又は両側端に所定の形状を有する銅
板31を連結したものである。単位電解槽を電気的に連
結するには、金属板20を隣接する単位電解槽1'の隔
壁間に位置させ、金属板20のニッケル板30を単位電
解槽1の陰極室隔壁12に溶接した後、所定の外力で単
位電解槽1を圧縮させ金属板20に溶接された歪んだ銅
板31'が、隣接した単位電解槽1'のニッケル30と爆
発溶接結合された銅板31'に密着するように電気的に
連結するのである。
FIGS. 4A, 4B, 4C and 4D show the structure of the explosion-welded metal plate for electrically connecting the unit electrolytic cells of the present invention. The metal plate 20 is nickel 3
It is formed from 0 and the copper plate 31. This is a structure in which a copper plate 31 having a predetermined shape is connected to one end and a center or both ends of a copper plate 31 which is explosion-welded as a structure having a predetermined size and shape. In order to electrically connect the unit electrolytic cells, the metal plate 20 is positioned between the partition walls of the adjacent unit electrolytic cells 1 ′, and the nickel plate 30 of the metal plate 20 is welded to the cathode chamber partition wall 12 of the unit electrolytic cell 1. After that, the distorted copper plate 31 ′, which is compressed to the unit electrolytic cell 1 by a predetermined external force and welded to the metal plate 20, is brought into close contact with the copper plate 31 ′ that is explosion-welded to the nickel 30 of the adjacent unit electrolytic cell 1 ′. To be electrically connected to.

【0034】上述の爆発溶接結合された金属板20は図
4の(A)に図示したように、横長100mm、縦長28.
5mm、厚さ1mmを有する銅板31と横長100mm、縦長
28.5mm、厚さ2mmを有するニッケル板30を爆発溶
接結合したものであり、前記銅板31の片側に横長10
0mm、縦長240mm、厚さ1mmの銅板31'を1mmだけ
結合するように溶接させた後、縦120mm地点である中
央でV字型に屈曲させたものである。(イ)は前記のよう
な爆発溶接結合した金属板20の銅板31両側に銅板3
1'を溶接して所定位置で屈曲させたものである。(C)
は爆発溶接結合した金属板20の銅板31中央地点にて
屈曲し、菱形とした複数個の銅板31'を溶接したもの
であり、(D)は爆発溶接結合した金属板20の銅板31
の片側に平板型の銅板31'を溶接したものである。
As shown in FIG. 4 (A), the metal plate 20 joined by explosion welding described above has a length of 100 mm and a length of 28.
A copper plate 31 having a length of 5 mm and a thickness of 1 mm and a nickel plate 30 having a length of 100 mm, a length of 28.5 mm, and a thickness of 2 mm are explosively welded together, and one side of the copper plate 31 has a width of 10 mm.
A copper plate 31 'having a length of 0 mm, a length of 240 mm, and a thickness of 1 mm was welded so as to be bonded by 1 mm, and then bent in a V shape at the center which is a 120 mm length. (A) is the copper plate 3 on both sides of the copper plate 31 of the metal plate 20 which is explosion-welded as described above.
1'was welded and bent at a predetermined position. (C)
Is a plurality of copper plates 31 ′ that are bent and bent in a diamond shape at the central point of the copper plate 31 of the metal plate 20 joined by explosion welding, and (D) is the copper plate 31 of the metal plate 20 joined by explosion welding.
A flat copper plate 31 'is welded to one side of the.

【0035】図5は本発明による電気伝導板と電極間に
設置した、電極に均一な電流密度を提供するための枠を
示す。陰極枠壁11に流入する電流は、電気伝導板13
を通じて電極14に供給されるのであるが、この時電流
分布枠32は電流分布を予め緩和し、膜に局部的な電流
密度が分布することを防止する。さらに、電解槽内部の
一部分を覆うことにより、電解槽でガスが合体停滞する
領域と膜とを隔離し、ブリスタリングによる影響から膜
を保護する。
FIG. 5 shows a frame installed between the electric conductive plate and the electrode according to the present invention to provide a uniform current density to the electrode. The current flowing into the cathode frame wall 11 is the electric conduction plate 13
The current distribution frame 32 relaxes the current distribution in advance at this time, and prevents the local current density from being distributed in the film. Further, by covering a part of the inside of the electrolytic cell, the region where the gas coalesces and stagnates in the electrolytic cell is isolated from the film, and the film is protected from the influence of blistering.

【0036】これを一層詳細に説明すると、電流分布枠
(4−5mm)が溶接を容易に誘導して電気伝導板で受けた
電流が電極面に均一に分布されるようにする。電気伝導
板の大きさ(a)は電極にて放出されるガスの放出を阻止
しない大きさが適当であり、これは電解槽内で発生する
ガスの最大の大きさを基準に設計される。適当な大きさ
は1−10mmとすることが可能であるが、4mmとするの
が最も好適である。間隔(b)は電気伝導板の間隔と一致
するように作製する。
To explain this in more detail, the current distribution frame
(4-5 mm) easily induces welding so that the electric current received by the electric conductive plate is uniformly distributed on the electrode surface. The size (a) of the electrically conductive plate is appropriate so as not to prevent the release of the gas released at the electrode, and this is designed based on the maximum size of the gas generated in the electrolytic cell. A suitable size can be 1-10 mm, with 4 mm being most preferred. The space (b) is formed so as to match the space between the electrically conductive plates.

【0037】既存の電解槽は膜保護のためコーナーごと
に傾斜枠を設置して電解槽内で塩素ガスの停滞を抑制
し、塩素が膜内に拡散してここで苛性ソーダと反応し、
膜内で致命的な結晶が生成されることを阻止している。
しかし、このような方法では電解槽の作製費の上昇を誘
導する。本発明によれば電解槽内に塩素が停滞するコー
ナーを電流分布枠がカバーするようになり、電解槽コー
ナーをまるめる必要がなくなる。
In the existing electrolytic cell, an inclined frame is installed at each corner to protect the membrane to suppress the stagnation of chlorine gas in the electrolytic cell, and chlorine diffuses into the membrane to react with caustic soda.
It prevents the formation of deadly crystals in the film.
However, such a method induces an increase in the manufacturing cost of the electrolytic cell. According to the present invention, the current distribution frame covers the corner where chlorine is stagnant in the electrolytic cell, and it is not necessary to round the corner of the electrolytic cell.

【0038】[0038]

【実施例】図1に示した構造の複極式電解槽を作成し
た。各部の大きさは以下の通りである。 陽極室の幅(D) : 50mm 陰極室の幅(D') : 35mm 電解槽の縦長 : 1000mm 電解槽の横長 : 2000mm 電解槽内電気伝導板間の間隔 : 300mm 電気伝導板の長さ(B)(図4参照) : 200mm 電気伝導板間の間隔(A)(図4参照): 50mm 隣接する電気伝導板間の配置: 図2の形態で形成する。 陽極: 数値安定性電極(材料はチタン、被覆物はルテニ
ウム−チタン酸化物) 陰極: 活性電極(材料は鉄、被覆物はラニー・ニッケル)
EXAMPLE A bipolar electrode type electrolytic cell having the structure shown in FIG. 1 was prepared. The size of each part is as follows. Width of anode chamber (D): 50 mm Width of cathode chamber (D '): 35 mm Vertical length of electrolysis cell: 1000 mm Horizontal length of electrolysis cell: 2000 mm Distance between electroconductive plates in electrolysis cell: 300 mm Length of electroconductive plate (B ) (See FIG. 4): 200 mm Distance between electric conductive plates (A) (See FIG. 4): 50 mm Arrangement between adjacent electric conductive plates: Formed in the form of FIG. Anode: Numerically stable electrode (material is titanium, coating is ruthenium-titanium oxide) Cathode: Active electrode (material is iron, coating is Raney nickel)

【0039】電気伝導板と電極間には図6のごとき電流
分布枠を設置した。各単位電解槽間に米国デュポン社の
ナピオン90209の陽イオン交換膜を設けた。電解槽
間に設けられるガスケットの材質は、陽極室では1mm厚
さのフッ素高分子テフロン、陰極室には2mm厚のエチレ
ン−プロピレンゴムを使用した。
A current distribution frame as shown in FIG. 6 was set between the electric conductive plate and the electrodes. A cation exchange membrane of Napion 90209 manufactured by DuPont, USA was provided between the unit electrolytic cells. The material of the gasket provided between the electrolytic cells was 1 mm thick fluoropolymer Teflon in the anode chamber and 2 mm thick ethylene-propylene rubber in the cathode chamber.

【0040】濃度300g/Lの塩水を塩酸でpH4とし
たものを、陽極室に供給されるようにし、水は陰極室下
部に供給されるようにした。電気分解の運転条件は次の
通りである。 温度 : 90℃ 電流密度: 3.0KA/2 陽極室出口濃度: 200g/L 陰極室苛性ソーダ濃度: 30% 陽極室圧力 : 1.5kg/cm2 陰極室圧力 : 1.6kg/cm 上記運転条件で運転したところ、槽電圧は3.32V、
電流効率は97%となった。
Salt water having a concentration of 300 g / L and adjusted to pH 4 with hydrochloric acid was supplied to the anode chamber, and water was supplied to the lower portion of the cathode chamber. The operating conditions for electrolysis are as follows. Temperature: 90 ° C. Current density: 3.0 kA / 2 anode chamber outlet concentration: 200 g / L cathode compartment sodium hydroxide concentration: 30% anode chamber pressure: 1.5 kg / cm 2 cathode chamber pressure: 1.6 kg / cm 2 above operating conditions When operated at, the cell voltage is 3.32V,
The current efficiency was 97%.

【0041】[0041]

【実施例2】電解室内の隣接する電気伝導板が互い違い
となるように配置した(図3参照)以外は実施例1と同
一構造の電解槽を作成した。実施例1と同一条件で運転
した場合、槽電圧が3.2V、電流効率は97.5%で
あった。
Example 2 An electrolytic cell having the same structure as in Example 1 was prepared except that the adjacent electroconductive plates in the electrolysis chamber were arranged so as to be staggered (see FIG. 3). When operated under the same conditions as in Example 1, the cell voltage was 3.2 V and the current efficiency was 97.5%.

【0042】[0042]

【発明の効果】以上のように本発明の複極式電解槽は、
陰極室と陽イオン交換膜及び陽極室にて構成され、締結
手段により結合した多数の単位電解槽が爆発溶接結合で
ない結合ロードにより連続的に配列されるため、電解槽
の組立てと分解時間が短縮できる。人件費が大幅に節減
され、電解槽内部に多数の電気伝導板と内側端に傾斜面
が形成することにより電解槽の性能を向上させる。さら
に本発明の複極式電解槽は、アルカリ金属塩化物を電気
分解して塩素とアルカリ金属物を生成することは勿論、
水電解のごとき他の電解にも用いることができる。
As described above, the bipolar electrode electrolytic cell of the present invention is
It consists of a cathode chamber, a cation exchange membrane, and an anode chamber, and a large number of unit electrolytic cells connected by fastening means are continuously arranged by a coupling load that is not explosive welding, thus shortening the assembly and disassembly time of the electrolytic cell. it can. The labor cost is significantly reduced, and the performance of the electrolytic cell is improved by forming a large number of electrically conductive plates inside the electrolytic cell and an inclined surface at the inner end. Further, the bipolar electrode electrolytic cell of the present invention, of course, electrolyzes an alkali metal chloride to produce chlorine and an alkali metal,
It can also be used for other electrolysis such as water electrolysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による複極式電解槽を構成する単位電
解槽の連続配列を示す断面図。
FIG. 1 is a cross-sectional view showing a continuous arrangement of unit electrolytic cells constituting a bipolar electrode electrolytic cell according to the present invention.

【図2】 単位電解槽を成す電解室の平面図。FIG. 2 is a plan view of an electrolysis chamber forming a unit electrolysis cell.

【図3】 単位電解槽を成す別の電解質の平面図。FIG. 3 is a plan view of another electrolyte forming a unit electrolytic cell.

【図4】 単位電解槽を成す陽極室と陰極室の側面図。FIG. 4 is a side view of an anode chamber and a cathode chamber forming a unit electrolytic cell.

【図5】 各単位電解槽を電気的に連結させる、爆発溶
接結合した金属板の構造。
FIG. 5 shows a structure of explosion-welded metal plates for electrically connecting the unit electrolytic cells.

【図6】 電極と電気伝導板間に設けられた電流分布を
均一に維持させる枠の構造。
FIG. 6 is a structure of a frame provided between an electrode and an electric conduction plate for maintaining a uniform current distribution.

【符号の説明】[Explanation of symbols]

1:単位電解槽、2,11:枠壁、3:陽極室隔壁、1
2:陰極室隔壁、4,13:電気伝導板、5:陽極、1
4:陰極、6,15:電解質流入口、7,16:生成物
流出口、8,17:通路、9、18:ガスケット、1
0:陽極室、19:陰極室、20:電導媒介体、21:
陽イオン交換膜、22:供給ヘッド、23:出口ヘッ
ド、27,28:ホース、29:結合ロード、30:銅
−ニッケル鋼板、31:銅板、32:電極電流分布枠
1: unit electrolytic cell, 2, 11: frame wall, 3: anode compartment partition wall, 1
2: Cathode chamber partition wall, 4, 13: Electric conductive plate, 5: Anode, 1
4: cathode, 6, 15: electrolyte inlet, 7, 16: product flow outlet, 8, 17: passage, 9, 18: gasket, 1
0: Anode chamber, 19: Cathode chamber, 20: Conducting medium, 21:
Cation exchange membrane, 22: supply head, 23: outlet head, 27, 28: hose, 29: binding load, 30: copper-nickel steel plate, 31: copper plate, 32: electrode current distribution frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 シン・ホチョル 大韓民国テジョン、ユソング、シンソンド ン119番 テーリムトゥレ・アパートメン ト110−707 (72)発明者 ハン・ジョンヒ 大韓民国テジョン、トング、テ1ドン330 −15番 (72)発明者 チェー・ジュンソン 大韓民国ソウル、マポグ、サンスドン331 −2番 サンス・アパートメント・ビー− 407 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shin Ho-chul Taejeong, Yousung, Shinsung Dong 119, Taerim Tule Apartment 110-707 (72) Inventor Han Jung-hee Taejong, Tong, Tae-dong 330- 15th (72) Inventor Chae Junsung 331-2nd Suns Apartment B-407 Sansdong, Mapog, Seoul, South Korea

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 陽極室、陽イオン交換膜及び陰極室から
構成される多数の単位電解槽からなる複極式電解槽にお
いて、単位電解槽1内部に連結手段により電解質が流入
し、生成物が流出するよう電解質流入口6,15と生成
物出口7,16が上部及び下部に設けられ、単位電解槽
1の内側端にガスが停滞することを阻止するため傾斜面
が形成され、この一方の側に隔壁3,12がそれぞれ固
定される枠壁2,11と、隔壁3,12と陽極5及び陰極
14間に電気的に導通させて単位電解槽1内の電流密度
と電解質の濃度分布を均一に維持するため一定の大きさ
で多層に形成された電気伝導板4,13が設けられてお
り、各単位電解槽1は両隔壁3,12間に位置する多数
の電導媒介体20により電気的に連結されており、この
電導媒介体20と電極5,14間に局部的な高い電流密
度を減少させるために電極電流分布枠32を設置してい
る単位電解槽が、結合ロード23により連続的に配列さ
れ、陽極室隔壁3と陰極室隔壁12間の爆発溶接結合し
た多数の金属板20により通電されることを特徴とする
複極式電解槽。
1. A bipolar electrode type electrolytic cell comprising a large number of unit electrolytic cells composed of an anode chamber, a cation exchange membrane and a cathode chamber, wherein an electrolyte flows into the unit electrolytic cell 1 by a connecting means to produce a product. Electrolyte inlets 6 and 15 and product outlets 7 and 16 are provided at the upper and lower portions so as to flow out, and an inclined surface is formed at the inner end of the unit electrolytic cell 1 to prevent gas from stagnating. The partition walls 3 and 12 are fixed to the side walls, respectively, and the partition walls 3 and 12 and the anode 5 and the cathode 14 are electrically connected to each other so that the current density in the unit electrolytic cell 1 and the concentration distribution of the electrolyte are In order to maintain the uniformity, a plurality of electrically conductive plates 4 and 13 having a certain size are provided, and each unit electrolytic cell 1 is electrically connected by a large number of electrically conductive mediators 20 located between both partition walls 3 and 12. Are electrically connected, and the conductive medium 20 and the electrodes 5, 1 The unit electrolyzers in which the electrode current distribution frames 32 are installed in order to reduce the locally high current density are continuously arranged by the coupling load 23, and the explosion between the anode chamber partition wall 3 and the cathode chamber partition wall 12 occurs. A bipolar electrode type electrolytic cell, which is energized by a large number of metal plates 20 welded together.
【請求項2】 隣接する電気伝導板4,13を互い違い
となるように設置することを特徴とする請求項1記載の
複極式電解槽。
2. The multipolar electrolytic cell according to claim 1, wherein adjacent electric conductive plates 4 and 13 are installed so as to be staggered from each other.
【請求項3】 電気伝導板4,13の単位の大きさが2
00mmであることを特徴とする請求項1又は2記載の複
極式電解槽。
3. The unit size of the electrically conductive plates 4 and 13 is 2.
The bipolar electrode cell according to claim 1 or 2, which has a length of 00 mm.
【請求項4】 枠壁2,11の内側端に角度5°で傾斜
面が形成されることを特徴とする請求項1記載の複極式
電解槽。
4. The bipolar electrode electrolytic cell according to claim 1, wherein an inclined surface is formed at an angle of 5 ° at the inner ends of the frame walls 2 and 11.
【請求項5】 単位電解槽1の内部圧が0.2−2kg/c
m2で維持されることを特徴とする請求項1記載の複極式
電解槽。
5. The internal pressure of the unit electrolytic cell 1 is 0.2-2 kg / c.
The bipolar electrode according to claim 1, which is maintained at m 2 .
【請求項6】 陰極14と陰極室隔壁12の間の最小距
離Dが最小限20mm以上に形成されることを特徴とする
請求項1又は4記載の複極式電解槽。
6. A bipolar electrode cell according to claim 1, wherein the minimum distance D between the cathode 14 and the cathode chamber partition wall 12 is at least 20 mm.
【請求項7】 金属板20が爆発溶接結合された銅−ニ
ッケル板の銅板31の一方の側にV字型である銅板3
1'が溶接されたものであることを特徴とする請求項1
記載の複極式電解槽。
7. A copper plate 3 which is V-shaped on one side of a copper plate 31 of a copper-nickel plate to which the metal plate 20 is explosion-welded.
1'is welded.
The described bipolar electrode electrolytic cell.
【請求項8】 金属板20が銅−ニッケル板の銅板31
の両側にV字型である複数個の銅板31'が溶接された
ものであることを特徴とする請求項7記載の複極式電解
槽。
8. A copper plate 31 in which the metal plate 20 is a copper-nickel plate.
8. The bipolar electrode type electrolytic cell according to claim 7, wherein a plurality of V-shaped copper plates 31 'are welded on both sides of the bipolar plate.
【請求項9】 金属板20が銅−ニッケル板の銅板31
の一方の側に平らな銅31'が溶接されたものであるこ
とを特徴とする請求項7記載の複極式電解槽。
9. A copper plate 31 in which the metal plate 20 is a copper-nickel plate.
The bipolar electrolytic cell according to claim 7, wherein flat copper 31 'is welded to one side of the one side.
【請求項10】 金属板20が銅−ニッケル板の銅板3
1の中央に菱形である銅板31'が溶接されたものであ
ることを特徴とする請求項7記載の複極式電解槽。
10. A copper plate 3 in which the metal plate 20 is a copper-nickel plate.
8. The bipolar electrode type electrolytic cell according to claim 7, wherein a diamond-shaped copper plate 31 'is welded to the center of 1.
JP5224647A 1993-09-09 1993-09-09 Bipolar electrolytic cell Expired - Lifetime JP2634373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5224647A JP2634373B2 (en) 1993-09-09 1993-09-09 Bipolar electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5224647A JP2634373B2 (en) 1993-09-09 1993-09-09 Bipolar electrolytic cell

Publications (2)

Publication Number Publication Date
JPH07118887A true JPH07118887A (en) 1995-05-09
JP2634373B2 JP2634373B2 (en) 1997-07-23

Family

ID=16817004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5224647A Expired - Lifetime JP2634373B2 (en) 1993-09-09 1993-09-09 Bipolar electrolytic cell

Country Status (1)

Country Link
JP (1) JP2634373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113802136A (en) * 2021-09-29 2021-12-17 中国华能集团清洁能源技术研究院有限公司 Electrolytic cell system and working method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113802136A (en) * 2021-09-29 2021-12-17 中国华能集团清洁能源技术研究院有限公司 Electrolytic cell system and working method thereof
CN113802136B (en) * 2021-09-29 2023-10-20 中国华能集团清洁能源技术研究院有限公司 Electrolytic tank system and working method thereof

Also Published As

Publication number Publication date
JP2634373B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
AU556195B2 (en) Unitary central cell element for filter press electrolysis cell structure
US4923582A (en) Monopolar, bipolar and/or hybrid memberane cell
KR890003860B1 (en) Multi-cell electrolyzer
CA1094017A (en) Hollow bipolar electrolytic cell anode-cathode connecting device
JPS62502125A (en) Monopolar and bipolar electrolyzers and their electrode structures
US4244802A (en) Monopolar membrane cell having metal laminate cell body
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
US3755105A (en) Vacuum electrical contacts for use in electrolytic cells
US4738763A (en) Monopolar, bipolar and/or hybrid membrane cell
EP0187273A1 (en) A monopolar or bipolar electrochemical terminal unit having an electric current transmission element
US4519888A (en) Electrolytic cell
US4673479A (en) Fabricated electrochemical cell
US4568434A (en) Unitary central cell element for filter press electrolysis cell structure employing a zero gap configuration and process utilizing said cell
US4560452A (en) Unitary central cell element for depolarized, filter press electrolysis cells and process using said element
JP2634373B2 (en) Bipolar electrolytic cell
EP0185270A1 (en) Method of making a unitary electric current transmission element for monopolar or bipolar filter press-type electrochemical cell units
US5399250A (en) Bipolar electrolyzer
EP0130215B1 (en) Monopolar, bipolar and/or hybrid membrane cell
US4690748A (en) Plastic electrochemical cell terminal unit
KR970004140B1 (en) Electrolyte of double electrode
KR940010104B1 (en) Plural form of electrolytic cell
JPS627885A (en) Multipair electrolytic cell for alkali chloride using ion-exchange membrane method
KR940010103B1 (en) Plural form of electrolytic cell
JPS5964786A (en) Single-electrode type electrolytic cell adapted to ion exchange membrane method
JPH03232987A (en) Bipolar electrolytic cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 17