JPH07118376A - Electrical polyester insulator - Google Patents

Electrical polyester insulator

Info

Publication number
JPH07118376A
JPH07118376A JP28448493A JP28448493A JPH07118376A JP H07118376 A JPH07118376 A JP H07118376A JP 28448493 A JP28448493 A JP 28448493A JP 28448493 A JP28448493 A JP 28448493A JP H07118376 A JPH07118376 A JP H07118376A
Authority
JP
Japan
Prior art keywords
test piece
polyester
temperature
polyester copolymer
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28448493A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
厚志 高橋
Fusao Hanzawa
房夫 半澤
Mamoru Fujita
守 藤田
Toru Kurabayashi
徹 倉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP28448493A priority Critical patent/JPH07118376A/en
Publication of JPH07118376A publication Critical patent/JPH07118376A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To diminish temp. dependence of polyester and a decrease in electrical resistivity, widen the range of processing temps., and improve moldability and electrical insulating properties by incorporating a copolymer obtained by copolymerizing a specific acid component with a specific diol component. CONSTITUTION:A monomer mixture which comprises an acid component consisting of terephthalic acid and/or diethyl terephthalate and a diol component consisting of a 2,2-dialkyl-1,3-propanediol (a) wherein the alkyls are selected from ethyl, propyl, butyl, pentyl, and hexyl and ethylene glycol (b) in an (a)/(b) ratio of 3/97 to 50/50 by mol, and which may optionally contain an aromatic carboxylic acid, an aliphatic dicarboxylic acid, a polyol, etc., is reacted by (trans)esterification. The resulting ester is condensation-polymerized to obtain a copolyester having an intrinsic viscosity of 0.3-1.2dl/g. This copolyester is dried to a water content of 3,000ppm or lower, melted with an extruder at 260-300 deg.C, and then molded through quenching to 50-60 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機器、電子機器、
電線関連等に用いられる電気絶縁物に関するものであ
り、さらに詳しくは、高い電気抵抗率を有し、日常使
用、水中および高温多湿下で使用しても、電気抵抗率の
低下が少なく、フィルム、熱収縮フィルム、シ−ト、フ
レキシブルプリント基板などに有用なポリエステル電気
絶縁物に関する。
BACKGROUND OF THE INVENTION The present invention relates to electric equipment, electronic equipment,
The present invention relates to an electric insulator used for electric wires and the like, and more specifically, it has a high electric resistivity, and even if it is used in daily use, in water, or under high temperature and high humidity, the electric resistivity does not decrease so much, a film, The present invention relates to a polyester electric insulator useful for heat shrink films, sheets, flexible printed circuit boards and the like.

【0002】[0002]

【従来の技術】電気絶縁物には、体積抵抗率の比較的高
いプラスチックである高密度ポリエチレン、高密度ポリ
プロピレンおよび塩化ビニル樹脂が、従来より用いられ
ている。しかし、これらの汎用プラスチックは、いずれ
も体積抵抗率が1014〜1016Ω・cm程度の電気絶縁物
としては充分なものではなかった。そこで、体積抵抗率
を大きくする方法として、特開昭56−159242号
公報に、塩化ビニル樹脂にスチレンと無水フタル酸との
コポリマ−を添加する方法が開示されている。しかし、
この方法は、塩化ビニル樹脂に加えられる他の添加剤で
あるDOP等の可塑剤や金属石鹸等の安定剤が、体積抵
抗率に悪影響をおよぼしたり、ブリード等を引き起こし
たりするため、配合処方を制限する必要があり、多様な
用途に不向きとなる。また、該樹脂組成物によって得ら
れる成形品は、廃棄処分に苦慮するという欠点も有して
いる。最近では、体積抵抗率が1016〜1017Ω・cmと
優れた電気絶縁性を示す割に、比較的低価格で、化学的
にも安定で、機械強度が大きく、耐熱性および耐寒性に
も良好であることから、電気絶縁物の原料として、ポリ
エステル材料が注目を浴びるようになり、電気絶縁材料
の多くをポリエステルが占めるようになってきた。
2. Description of the Related Art High-density polyethylene, high-density polypropylene and vinyl chloride resin, which are plastics having a relatively high volume resistivity, have been conventionally used for electrical insulators. However, none of these general-purpose plastics is sufficient as an electrical insulator having a volume resistivity of about 10 14 to 10 16 Ω · cm. Therefore, as a method of increasing the volume resistivity, Japanese Patent Application Laid-Open No. 56-159242 discloses a method of adding a copolymer of styrene and phthalic anhydride to a vinyl chloride resin. But,
In this method, a plasticizer such as DOP and a stabilizer such as metal soap, which are other additives added to the vinyl chloride resin, adversely affect the volume resistivity or cause bleeding, etc. It needs to be restricted, making it unsuitable for various applications. In addition, the molded product obtained from the resin composition has a drawback that it is difficult to dispose of it. Recently, it has a relatively low price, is chemically stable, has a large mechanical strength, and has excellent heat resistance and cold resistance despite its excellent volumetric resistivity of 10 16 to 10 17 Ω · cm. Since the above is also good, a polyester material has come to the spotlight as a raw material of the electric insulating material, and the polyester occupies most of the electric insulating material.

【0003】しかし、従来のポリエステルは、体積抵抗
率が使用温度により、大きく変化するという温度依存性
が大きいものであるため、安定した電気絶縁物が得られ
ず、また、水中または高温多湿の環境下において使用す
ると、加水分解反応を生じるため劣化し易いという欠点
を有しており、この結果、ポリエステル中に加水分解物
等が存在することとなり、特に、電荷を帯びた加水分解
物が影響して体積抵抗率を大きく低下させていた。さら
に、従来のポリエステルは、結晶性を有するものである
ために、加工温度領域が狭く、流れが悪いという成形加
工性の悪いものであった。
However, the conventional polyester has a large temperature dependency in that the volume resistivity greatly changes depending on the use temperature, so that a stable electrical insulator cannot be obtained, and the polyester is underwater or in a hot and humid environment. When used below, it has a drawback that it is prone to deterioration because it causes a hydrolysis reaction.As a result, the presence of a hydrolyzate and the like in the polyester, especially, a hydrolyzate with a charge has an effect. The volume resistivity was greatly reduced. Further, since the conventional polyester has crystallinity, the processing temperature range is narrow and the flow is poor, so that the molding processability is poor.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
の問題点を解消することを課題とし、日常使用、水中お
よび高温多湿下で使用しても、電気抵抗率の低下が少な
く、フィルム、熱収縮フィルム、シ−ト、フレキシブル
プリント基板などに有用な優れた電気絶縁性を有するポ
リエステル電気絶縁物を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and the electric resistivity is less likely to decrease even in daily use, in water and under high temperature and high humidity. The present invention provides a polyester electric insulator having excellent electric insulating properties, which is useful for heat shrink films, sheets, flexible printed boards and the like.

【0005】[0005]

【課題を解決する為の手段】本発明者らは鋭意研究を行
った結果、テレフタル酸または/およびテレフタル酸ジ
エステル、エチレングリコ−ルおよび特定の2,2−ア
ルキル置換−1,3−プロパンジオ−ルを共重合して得
られる特定のポリエステル共重合体を用いたポリエステ
ル電気絶縁物が、上記の課題に対して優れた効果の得ら
れることを見い出し、本発明を完成した。
DISCLOSURE OF THE INVENTION As a result of intensive studies, the present inventors have found that terephthalic acid or / and terephthalic acid diester, ethylene glycol and a specific 2,2-alkyl-substituted-1,3-propanedio It was found that a polyester electric insulator using a specific polyester copolymer obtained by copolymerizing styrene-polyvinyl alcohol has excellent effects on the above problems, and completed the present invention.

【0006】本発明は下記の構成を有する。 (1)酸成分としてテレフタル酸または/およびテレフ
タル酸ジエステル、ジオール成分としてエチレングリコ
−ルとアルキル置換基がエチル基、プロピル基、ブチル
基、ペンチル基およびヘキシル基のいずれかから選ばれ
る2,2−アルキル置換−1,3−プロパンジオ−ルと
を用い、これらの酸成分とジオール成分とを主成分と
し、共重合反応によって得られる固有粘度0.3〜1.
2dl/gのポリエステル共重合体を用いたポリエステル
電気絶縁物。 (2)ジオール成分を構成する2,2−アルキル置換−
1,3−プロパンジオ−ルとエチレングリコ−ルのモル
比が、3/97〜50/50の範囲である前記第1項記
載のポリエステル電気絶縁物。 (3)下記条件で成形した試験片を構成するポリエステ
ル共重合体の有するガラス転移点から2℃引いた温度以
下において、該試験片の体積抵抗率の常用対数に対して
の温度変化が、0.02/℃以下である前記第1項記載
のポリエステル電気絶縁物。 記 ペレット状ポリエステル共重合体を270〜285℃に
温度設定した真空雰囲気のTダイ押出機を用いて、加熱
溶融し、シ−ト状に押出した後、60℃のキャスティン
グドラムで急冷固化させ透明な厚さ0.5mmのシ−ト
を得、該シ−トを90〜110℃に温度設定した窒素ガ
ス雰囲気の2軸延伸機を用い、延伸速度300%/mi
nで3倍×3倍の同時二軸延伸を行い0.05mmのフ
ィルムを得、試験片とする。 (4)下記条件で成形した試験片を、液温25±1℃の
水槽中に14日間浸漬した時の試験片の体積抵抗率と浸
漬前の試験片の体積抵抗率との常用対数における差およ
び下記条件で成形した試験片を、50℃相対湿度90%
に設定した恒温恒湿槽内に14日間放置した時の試験片
の体積抵抗率と放置する前の試験片の体積抵抗率との常
用対数における差がいずれも1未満である前記第1項記
載のポリエステル電気絶縁物。 記 ペレット状ポリエステル共重合体を270〜285℃に
温度設定した真空雰囲気のTダイ押出機を用いて、加熱
溶融し、シ−ト状に押出した後、60℃のキャスティン
グドラムで急冷固化させ透明な厚さ0.5mmのシ−ト
を得、試験片とする。
The present invention has the following configuration. (1) Terephthalic acid or / and terephthalic acid diester as an acid component, ethylene glycol and an alkyl substituent as a diol component are selected from ethyl group, propyl group, butyl group, pentyl group and hexyl group 2,2 -Alkyl-substituted-1,3-propanediol, an acid component and a diol component as main components, and an intrinsic viscosity obtained by a copolymerization reaction is 0.3 to 1.
Polyester electrical insulator using 2 dl / g polyester copolymer. (2) 2,2-alkyl substitution constituting the diol component-
The polyester electrical insulator according to the above-mentioned item 1, wherein the molar ratio of 1,3-propanediol and ethylene glycol is in the range of 3/97 to 50/50. (3) At a temperature equal to or lower than the glass transition point of the polyester copolymer constituting the test piece molded under the following conditions by 2 ° C. or less, the temperature change with respect to the common logarithm of the volume resistivity of the test piece is 0. 2. The polyester electric insulator according to the above item 1, which has a temperature of 0.02 / ° C. or less. The pelletized polyester copolymer was heated and melted using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C, extruded into a sheet, and then rapidly cooled and solidified by a casting drum at 60 ° C to be transparent. A sheet having a thickness of 0.5 mm was obtained, and the sheet was stretched at a stretching rate of 300% / mi using a biaxial stretching machine in a nitrogen gas atmosphere in which the temperature was set to 90 to 110 ° C.
Simultaneous biaxial stretching of 3 times × 3 times with n is performed to obtain a 0.05 mm film, which is used as a test piece. (4) Difference in common logarithm between the volume resistivity of the test piece and the volume resistivity of the test piece before immersion when the test piece molded under the following conditions was immersed in a water bath at a liquid temperature of 25 ± 1 ° C. for 14 days. And a test piece molded under the following conditions, 50 ° C relative humidity 90%
The difference in the common logarithm between the volume resistivity of the test piece when left to stand for 14 days in the constant temperature and humidity chamber set to above and the volume resistivity of the test piece before being left is all less than 1 above. Polyester electrical insulation. The pelletized polyester copolymer was melted by heating using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C, extruded into a sheet, and then rapidly solidified by a casting drum at 60 ° C to be transparent. A sheet having a thickness of 0.5 mm is obtained and used as a test piece.

【0007】本発明にかかるポリエステル共重合体は、
エチレングリコ−ルと特定の2,2−アルキル置換−
1,3−プロパンジオ−ルからなるジオール成分とテレ
フタル酸または/およびテレフタル酸ジエステルからな
る酸成分とを主成分として用い、これらを共重合反応さ
せることによって得られる。共重合に供するジオ−ル成
分は、エチレングリコ−ルと2,2−アルキル置換−
1,3−プロパンジオ−ルのモル比が、97/3〜50
/50であることが好ましい。2,2−アルキル置換−
1,3−プロパンジオ−ルが3モル%未満では、ポリエ
ステル共重合体の溶融粘度を下げる減粘効果が乏しいの
で、ポリエステル電気絶縁物を安定生産することが困難
となる。また、加湿下または水中において使用すると体
積抵抗率が著しく低下する。逆に、2,2−アルキル置
換−1,3−プロパンジオ−ルが50モル%を越える
と、ポリエステル共重合体の重合度が低下するため、ポ
リエステル電気絶縁物の機械的強度が著しく低下する。
The polyester copolymer according to the present invention is
Ethylene glycol and specific 2,2-alkyl substitution-
It is obtained by using a diol component composed of 1,3-propanediol and an acid component composed of terephthalic acid or / and a terephthalic acid diester as main components and subjecting them to a copolymerization reaction. The diol component used for the copolymerization is ethylene glycol and 2,2-alkyl-substituted-
The molar ratio of 1,3-propanediol is 97 / 3-50.
It is preferably / 50. 2,2-alkyl substitution-
When the content of 1,3-propanediol is less than 3 mol%, the viscosity reducing effect of lowering the melt viscosity of the polyester copolymer is poor, so that stable production of the polyester electrical insulator becomes difficult. Further, when it is used under humidification or in water, the volume resistivity remarkably decreases. On the contrary, when the content of 2,2-alkyl-substituted-1,3-propanediol exceeds 50 mol%, the degree of polymerization of the polyester copolymer is lowered, so that the mechanical strength of the polyester electric insulator is remarkably lowered. .

【0008】本発明にかかる2,2−アルキル置換−
1,3−プロパンジオ−ルは、アルキル置換基がエチ
ル、プロピル、ブチル、ペンチルおよびヘキシルの群か
ら選ばれたものであり、具体的には、2,2−ジエチル
−1,3−プロパンジオ−ル(以下、DMPと記
す。)、2−ブチル−2−エチル−1,3−プロパンジ
オ−ル(以下、DMHと記す。)、2−ペンチル−2−
プロピル−1,3−プロパンジオ−ル(以下、DMNと
記す。)、2−ブチル−2−ヘキシル−1,3−プロパ
ンジオ−ル(以下、DMUと記す。)が挙げられる。こ
れらは使用目的に応じて、単独または任意の組合せによ
り使用できる。
2,2-Alkyl-substituted according to the present invention
1,3-propanediol is one in which the alkyl substituent is selected from the group of ethyl, propyl, butyl, pentyl and hexyl, and specifically, 2,2-diethyl-1,3-propanediol. -(Hereinafter referred to as DMP), 2-butyl-2-ethyl-1,3-propanediol (hereinafter referred to as DMH), 2-pentyl-2-
Propyl-1,3-propanediol (hereinafter referred to as DMN) and 2-butyl-2-hexyl-1,3-propanediol (hereinafter referred to as DMU) are included. These can be used alone or in any combination depending on the purpose of use.

【0009】本発明にかかるポリエステル共重合体は、
テレフタル酸または/およびテレフタル酸ジエステル、
エチレングリコ−ル、2,2−アルキル置換−1,3−
プロパンジオ−ル以外の成分として、該共重合体の特性
が本発明の効果を損なわない範囲で、例えばイソフタル
酸、オルソフタル酸、1,2−ビス(4−カルボフェノ
キシ)エタン、2,6−ナフタリンジカルボン酸、トリ
メリット酸などの芳香族カルボン酸、アジピン酸、セバ
シン酸、シュウ酸などの脂肪族ジカルボン酸、プロピレ
ングリコ−ル、ブチレングリコ−ル、ビスフェノ−ル
A、ネオペンチルグリコ−ル、ポリエチレングリコ−
ル、ポリプロピレングリコ−ル、グリセリン、ペンタエ
リスト−ルなどのポリオ−ルなどを共重合成分として含
有してもよい。
The polyester copolymer according to the present invention is
Terephthalic acid or / and terephthalic acid diester,
Ethylene glycol, 2,2-alkyl substituted-1,3-
As a component other than propanediol, for example, isophthalic acid, orthophthalic acid, 1,2-bis (4-carbophenoxy) ethane, 2,6-, as long as the characteristics of the copolymer do not impair the effects of the present invention. Aromatic carboxylic acids such as naphthalene dicarboxylic acid and trimellitic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid and oxalic acid, propylene glycol, butylene glycol, bisphenol A, neopentyl glycol, Polyethylene glycol
Polyol, polypropylene glycol, glycerin, polyol such as pentaerythritol and the like may be contained as a copolymerization component.

【0010】本発明にかかるポリエステル共重合体の重
合法としては、通常用いられている種々の方法が利用出
来る。例えば、テレフタル酸とジオ−ル成分とをエステ
ル化反応させ、該反応によって生成した水を留出させた
後、反応器内を徐々に減圧して高真空下とし、内部のエ
ステル化反応物を重縮合反応させる方法、テレフタル酸
ジエステルとジオ−ル成分とをエステル交換反応させ、
該反応によって生成したアルコールを留出させた後、反
応器内を徐々に減圧して高真空下とし、内部のエステル
化反応物を重縮合反応させる方法、もしくは、酸成分と
して、テレフタル酸とテレフタル酸ジエステルとの混合
物を用い、上記の両方法を同時に行なう方法がある。
As the method for polymerizing the polyester copolymer according to the present invention, various commonly used methods can be used. For example, terephthalic acid and a diol component are subjected to an esterification reaction, water generated by the reaction is distilled off, and then the pressure inside the reactor is gradually reduced to a high vacuum to remove the esterification reaction product inside. Polycondensation reaction method, transesterification reaction of terephthalic acid diester and diol component,
After distilling off the alcohol produced by the reaction, the pressure inside the reactor is gradually reduced to a high vacuum to cause a polycondensation reaction of the esterification reaction product inside, or terephthalic acid and terephthalic acid are used as acid components. There is a method in which both of the above methods are carried out simultaneously by using a mixture with an acid diester.

【0011】酸成分とジオール成分とのエステル反応を
促進させる触媒として、酢酸マンガン、酢酸カルシウ
ム、酢酸亜鉛などを使用して良く、エステル化物の重縮
合反応を促進させる触媒として、三酸化アンチモン、酸
化ゲルマニウム、ジブチル錫オキシド、チタンテトラブ
トキシドなど公知のものを使用しても良い。
Manganese acetate, calcium acetate, zinc acetate or the like may be used as a catalyst for promoting the ester reaction between the acid component and the diol component, and antimony trioxide or oxidation may be used as a catalyst for promoting the polycondensation reaction of the esterified product. Known materials such as germanium, dibutyltin oxide and titanium tetrabutoxide may be used.

【0012】本発明のポリエステル電気絶縁物は、必要
に応じて安定剤を含有して良く。該安定剤としては、リ
ン酸トリメチル、リン酸トリフェニルなどのリン酸化合
物、イルガノックス1010などのヒンダ−ドフェノ−
ル系化合物を挙げることができるが、それ以外の安定剤
を用いてもよい。
The polyester electrical insulation of the present invention may optionally contain stabilizers. Examples of the stabilizer include phosphoric acid compounds such as trimethyl phosphate and triphenyl phosphate, and hindered pheno-type compounds such as Irganox 1010.
However, other stabilizers may be used.

【0013】本発明にかかるポリエステル共重合体は、
固有粘度が0.3〜1.2dl/gの範囲のものでなくて
はならない。固有粘度が1.2dl/gを越えると溶融粘
度が高くなり過ぎ、オリフィス内に汚れを生じて長期の
安定生産が困難となる。一方、0.3dl/g未満になる
とポリエステル電気絶縁物の機械的強度が低下する。好
ましくは0.5〜0.8dl/gが良い。固有粘度の測定
は、粘度計定数が0.00956のウベローデ粘度計を
用いて、30℃における所定量の液体が落下する時間を
計ることによって求めた。具体的には、所定量の(ポリ
エステル共重合体を溶媒に溶解させた)溶液の落下時間
を同量の溶媒の落下時間で除した値から1を引いた数値
を比粘度とし、溶解させるポリエステル共重合体の添加
量を変化させて、該溶液の濃度を変化させながら比粘度
を測定し、還元比粘度(比粘度/溶液の濃度)を算出
し、各溶液濃度に対しての各還元比粘度をプロットし、
濃度を0に外挿した時の値を固有粘度とした。
The polyester copolymer according to the present invention is
The intrinsic viscosity must be in the range 0.3-1.2 dl / g. When the intrinsic viscosity exceeds 1.2 dl / g, the melt viscosity becomes too high and stains occur in the orifice, making stable production for a long period of time difficult. On the other hand, if it is less than 0.3 dl / g, the mechanical strength of the polyester electrical insulator will be reduced. It is preferably 0.5 to 0.8 dl / g. The intrinsic viscosity was measured by using an Ubbelohde viscometer having a viscometer constant of 0.00956 and measuring the time for a predetermined amount of liquid to drop at 30 ° C. Specifically, the specific viscosity is defined as a value obtained by subtracting 1 from the value obtained by dividing the drop time of a predetermined amount of a solution (in which a polyester copolymer is dissolved in a solvent) by the drop time of the same amount of solvent, and determining the specific viscosity. By changing the addition amount of the copolymer and measuring the specific viscosity while changing the concentration of the solution, the reduced specific viscosity (specific viscosity / concentration of solution) was calculated, and the reduction ratio for each solution concentration was calculated. Plot the viscosity,
The value when the concentration was extrapolated to 0 was taken as the intrinsic viscosity.

【0014】従来のポリエステル共重合体は、水分が存
在すると、成形時に加水分解を起こしてしまうため、成
形を行なう前に、ポリエステル共重合体を絶乾とよばれ
る極微量水分率(200ppm以下)まで乾燥しなけれ
ばならない。しかし、本発明にかかるポリエステル共重
合体は、3000ppm以下の含水率であれば通常の成
形法で容易にポリエステル電気絶縁物を得ることができ
る。すなわち、含水率が3000ppmであれば乾燥工
程を省くことができる。成形方法としては、260〜3
00℃に温度設定した押出機でポリエステル共重合体を
熱溶融し、ダイより押出された溶融樹脂を50〜60℃
のキャステイングドラム上で急冷固化する方法が一般的
なものであるが、必ずしもこの方法に準ずる必要はな
い。また、必要に応じて、延伸成形をおこなっても良
く、一般には、80〜110℃の温度範囲で、縦1軸延
伸、縦横同時または縦延伸後横延伸の二段階逐次2軸延
伸する方法があり、延伸方法としては、テンタ−法やチ
ュ−ブ法がある。本発明にかかるポリエステル共重合体
は、非晶性であるか、極めて非晶性に近いものなので、
結晶性である従来のポリエステル共重合体と比較し、成
形加工性に優れているため、適当な加工条件を選ぶこと
で、従来の加工機を改良する事なく、目的の用途に合っ
た電気絶縁性ポリエステルを容易に得ることが出来る。
Since the conventional polyester copolymer undergoes hydrolysis at the time of molding when water is present, a very small amount of water content (200 ppm or less) called absolute drying of the polyester copolymer is carried out before molding. Have to dry up. However, with the polyester copolymer according to the present invention, if the water content is 3000 ppm or less, a polyester electrical insulator can be easily obtained by a usual molding method. That is, if the water content is 3000 ppm, the drying step can be omitted. As a molding method, 260 to 3
The polyester copolymer is heat-melted by an extruder set to a temperature of 00 ° C, and the molten resin extruded from the die is heated to 50 to 60 ° C.
The method of rapidly cooling and solidifying on a casting drum is generally used, but it is not always necessary to follow this method. Further, if necessary, stretching may be carried out, and in general, a method of carrying out two-step sequential biaxial stretching of longitudinal uniaxial stretching, longitudinal and transverse simultaneous or longitudinal stretching and lateral stretching in a temperature range of 80 to 110 ° C. As a stretching method, there are a tenter method and a tube method. The polyester copolymer according to the present invention is amorphous or extremely close to amorphous,
Compared with conventional polyester copolymers that are crystalline, they have superior molding processability, so by selecting appropriate processing conditions, electrical insulation suitable for the intended use can be achieved without improving conventional processing machines. -Based polyester can be easily obtained.

【0015】本発明のポリエステル電気絶縁物は、ガラ
ス転移点以下の温度では、体積抵抗率の温度依存性が小
さく、特に、用いられているポリエステル共重合体のガ
ラス転移点から2℃引いた温度以下の温度領域では、体
積抵抗率の温度依存性が極めて小さく、良好な体積抵抗
率を安定して維持することができる。また、該電気絶縁
物の体積抵抗率は、水中、高温多湿下に曝されてもほと
んど変化なく安定している。この優れた電気絶縁性を生
かし、電気機器、電子機器、電線関連に信頼性の高いポ
リエステル電気絶縁物材料を提供することが出来る。
The polyester electrical insulator of the present invention has a small temperature dependence of volume resistivity at a temperature below the glass transition point, and in particular, the temperature obtained by subtracting 2 ° C. from the glass transition point of the polyester copolymer used. In the temperature range below, the temperature dependence of the volume resistivity is extremely small, and a good volume resistivity can be stably maintained. Further, the volume resistivity of the electrical insulator is stable with little change even when exposed to high temperature and high humidity in water. By utilizing this excellent electric insulation property, it is possible to provide a highly reliable polyester electric insulation material for electric devices, electronic devices and electric wires.

【0016】本発明のポリエステル電気絶縁物が、優れ
た電気絶縁性を有する理由としては、必ずしも明確では
ないが、本発明にかかるポリエステル共重合体の構成成
分である2,2−アルキル置換−1,3−プロパンジオ
−ルの保有する2つのアルキル置換基、いわゆる、4級
炭素を有することが、耐熱性を向上させ、電子キャリア
−の移動阻害に効果があり、ガラス転移点以下の温度で
の体積抵抗率を安定に保つのではないかと推定できる。
また、本発明のポリエステル電気絶縁物が、水中、高温
加湿下においても、体積抵抗率の低下の少ない理由とし
ては、本発明にかかるポリエステル共重合体の有する該
アルキル置換基が、疎水性基なので、水分子がポリエス
テル共重合体中のエステル結合部まで到達するのを防止
できるため、該エステル結合の加水分解反応を防止で
き、加水分解反応に伴う不純物発生を緩和できるので、
体積抵抗率の低下が極めて少ないのではないかと推測で
きる。
The reason why the polyester electrical insulator of the present invention has an excellent electrical insulating property is not always clear, but it is 2,2-alkyl-substituted-1, which is a constituent component of the polyester copolymer of the present invention. Having two alkyl substituents possessed by 1,3-propanediol, so-called quaternary carbon, has the effect of improving heat resistance and inhibiting the transfer of electron carriers, at temperatures below the glass transition point. It can be presumed that the volume resistivity of will be kept stable.
Further, the reason why the polyester electrical insulator of the present invention has a small decrease in volume resistivity even under high temperature and humidity in water is that the alkyl substituent of the polyester copolymer according to the present invention is a hydrophobic group. Since it is possible to prevent the water molecule from reaching the ester bond part in the polyester copolymer, the hydrolysis reaction of the ester bond can be prevented and the generation of impurities accompanying the hydrolysis reaction can be mitigated.
It can be inferred that the decrease in volume resistivity is extremely small.

【0017】[0017]

【実施例】実施例において、本発明を具体的に説明す
る。実施例および比較例中に示されるポリエステル共重
合体の物性試験、ポリエステル共重合体成形物の物性試
験(フィルム、シート)は、以下の方法に準じて実施し
た。 1.ポリエステル共重合体の物性試験 (1)ポリエステル共重合体中のジオ−ル成分のモル比
測定 ジオ−ル成分のモル比を核磁気共鳴スペクトルを用いて
測定した。 (2)固有粘度測定 フェノ−ル/テトラクロロエタン(6/4)を溶媒と
し、30℃で溶液の落下時間を測定し算出した。 (3)水分率測定 微量水分測定装置を使用し、カ−ルフィッシャ−法によ
り測定した。 (4)ガラス転移点測定 示差熱走査分析装置を使用し、JIS−K7121に準
じて測定した。 2.ポリエステル共重合体成形物の物性試験(フィル
ム、シート) (1)固有粘度測定 フェノ−ル/テトラクロロエタン(6/4)を溶媒と
し、30℃で溶液の落下時間を測定し算出した。 (2)粘度変化率 ポリエステル共重合体の固有粘度からポリエステル共重
合体成形物の固有粘度を引いたものをポリエステル共重
合体の固有粘度で割った値。この値の小さい方が、耐加
水分解性に優れていることを表わす。 (3)結晶性 X線回折装置に平板カメラを装着し、X線透過写真を撮
影して結晶性を調べた。非晶性であるものをA、若干の
結晶性が認められるものをB、結晶性であるものをCと
し、目視によって評価した。 (4)体積抵抗率測定 電気抵抗測定機を使用し、500Vの印加電圧で、JI
S−C2318に準じて測定した。この値の大きい方
が、電気絶縁性に優れていることを表わす。 (5)浸水処理試験 液温25±1℃の水槽中に、各試験片を1日、7日、1
4日間浸漬した後、該試験片の体積抵抗率を測定した。
この値の変化の小さい方が、安定した電気絶縁物である
ことを表わす。 (6)恒温多湿処理 温度50℃相対湿度90%に設定した恒温恒湿槽内に、
各試験片を1日、7日、14日間放置した後、該試験片
の体積抵抗率を測定した。この値の変化の小さい方が、
安定した電気絶縁物であることを表わす。 (7)恒温処理試験 25,35,45,55,65℃の各温度に設定した恒
温槽に各試験片を入れ、所定温度の該試験片の体積抵抗
率を測定した。この値の変化の小さい方が、安定した電
気絶縁物であることを表わす。
The present invention will be specifically described in Examples. The physical property tests of polyester copolymers and the physical property tests (films, sheets) of molded polyester copolymers shown in Examples and Comparative Examples were carried out according to the following methods. 1. Physical property test of polyester copolymer (1) Measurement of molar ratio of diol component in polyester copolymer The molar ratio of diol component was measured using nuclear magnetic resonance spectrum. (2) Intrinsic viscosity measurement Using phenol / tetrachloroethane (6/4) as a solvent, the drop time of the solution was measured and calculated at 30 ° C. (3) Moisture content measurement The moisture content was measured by the Cal-Fisher method using a trace amount water content measuring device. (4) Measurement of glass transition point It was measured according to JIS-K7121 using a differential thermal scanning analyzer. 2. Physical Properties Test of Polyester Copolymer Molded Product (Film, Sheet) (1) Measurement of Intrinsic Viscosity Using phenol / tetrachloroethane (6/4) as a solvent, the drop time of the solution was measured at 30 ° C. and calculated. (2) Viscosity change rate A value obtained by subtracting the intrinsic viscosity of a polyester copolymer molded product from the intrinsic viscosity of the polyester copolymer, divided by the intrinsic viscosity of the polyester copolymer. The smaller this value is, the better the hydrolysis resistance is. (3) Crystallinity A flat panel camera was attached to the X-ray diffractometer, and an X-ray transmission photograph was taken to examine the crystallinity. It was visually evaluated that the non-crystalline material was A, the slightly crystallizable material was B, and the crystalline material was C. (4) Volume resistivity measurement Using an electric resistance measuring machine, with an applied voltage of 500 V, JI
It measured according to S-C2318. The larger this value is, the better the electric insulation is. (5) Water immersion treatment test Each test piece was placed in a water tank with a liquid temperature of 25 ± 1 ° C. for 1 day, 7 days, 1 day.
After soaking for 4 days, the volume resistivity of the test piece was measured.
The smaller the change in this value, the more stable the electrical insulator. (6) Constant temperature and high humidity treatment In a constant temperature and humidity chamber set to a temperature of 50 ° C and a relative humidity of 90%,
After leaving each test piece for 1, 7, and 14 days, the volume resistivity of the test piece was measured. The smaller the change in this value,
Represents a stable electrical insulator. (7) Constant Temperature Treatment Test Each test piece was placed in a constant temperature bath set at each temperature of 25, 35, 45, 55 and 65 ° C., and the volume resistivity of the test piece at a predetermined temperature was measured. The smaller the change in this value, the more stable the electrical insulator.

【0018】実施例1 10Lの四ツ口フラスコに、テレフタル酸(以下、TP
Aと記す。)を16.10モル、DMHを1.77モ
ル、触媒として酢酸亜鉛を0.011モル、三酸化アン
チモンを0.004モル仕込み、該フラスコを窒素気流
下で200〜205℃に加熱し、3.2モルの水を除去
した後、該フラスコにエチレングリコ−ル(以下、EG
と記す。)を30.4モル滴下し、同温度で2時間加熱
を続け、28.6モルの水を除去した。次に、該フラス
コを昇温して270〜275℃とし、1時間の加熱を行
った後、該フラスコ内を0.3〜0.5Torrに減圧
し、さらに280〜285℃に昇温を行い、未反応のジ
オ−ル(DMHとEG)を除去しながら、重縮合を行っ
た。得られたポリエステル共重合体は、造粒してペレッ
トとした。該ペレットの水分率は2700ppm、ガラ
ス転移点は74℃、固有粘度は0.76dl/gであっ
た。また、ポリエステル共重合体中のジオール成分のモ
ル比は、EG/DMH=90/10であった。ペレット
状ポリエステル共重合体を270〜285℃に温度設定
した真空雰囲気のTダイ押出機を用いて、加熱溶融し、
シ−ト状に押出した後、60℃のキャスティングドラム
で急冷固化させ透明な厚さ0.5mmのシ−トを得、該
シ−トを90〜110℃に温度設定した窒素ガス雰囲気
の2軸延伸機を用い、延伸速度300%/minで3倍
×3倍の同時二軸延伸を行い0.05mmのフィルムを
得、試験片とした。得られた試験片を用いてポリエステ
ル共重合体成形物の物性試験を上記測定方法に準じて測
定した。その結果を表1、2に示す。
Example 1 A 10 L four-necked flask was charged with terephthalic acid (hereinafter referred to as TP).
Write A. ) Of 16.10 mol, DMH of 1.77 mol, zinc acetate of 0.011 mol as catalyst and antimony trioxide of 0.004 mol were charged, and the flask was heated to 200 to 205 ° C. under a nitrogen stream, and 3 After removing 2 mol of water, ethylene glycol (hereinafter referred to as EG
Is written. 30.4 mol) was added dropwise, and heating was continued for 2 hours at the same temperature to remove 28.6 mol of water. Next, the flask was heated to 270 to 275 ° C., heated for 1 hour, depressurized to 0.3 to 0.5 Torr, and further heated to 280 to 285 ° C. Polycondensation was performed while removing unreacted diol (DMH and EG). The obtained polyester copolymer was granulated into pellets. The pellets had a water content of 2700 ppm, a glass transition point of 74 ° C. and an intrinsic viscosity of 0.76 dl / g. The molar ratio of the diol component in the polyester copolymer was EG / DMH = 90/10. The pelletized polyester copolymer is heated and melted by using a T-die extruder in a vacuum atmosphere whose temperature is set to 270 to 285 ° C.,
After extruding into a sheet shape, it is rapidly cooled and solidified by a casting drum at 60 ° C. to obtain a transparent sheet having a thickness of 0.5 mm, and the sheet is heated at 90 to 110 ° C. under a nitrogen gas atmosphere of 2 Simultaneous biaxial stretching of 3 times × 3 times was performed using an axial stretching machine at a stretching speed of 300% / min to obtain a 0.05 mm film, which was used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Tables 1 and 2.

【0019】実施例2 二軸延伸を実施しなかった以外は、実施例1に準拠して
厚さ0.5mmのシ−トを得、試験片とした。得られた
試験片を用いてポリエステル共重合体成形物の物性試験
を上記測定方法に準じて測定した。その結果を表1に示
す。
Example 2 A sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that biaxial stretching was not performed, and the sheet was used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Table 1.

【0020】実施例3 10Lの四ツ口フラスコに、TPAを16.10モル、
DMHを3.54モル、触媒として酢酸亜鉛を0.01
1モル、三酸化アンチモンを0.004モル仕込み、該
フラスコを窒素気流下で200〜205℃に加熱し、
6.1モルの水を除去した後、該フラスコにEGを2
8.7モル滴下し、同温度で2時間加熱を続け、25.
6モルの水を除去した。次に、該フラスコを昇温して2
70〜275℃とし、1時間の加熱を行った後、該フラ
スコ内を0.3〜0.5Torrに減圧し、さらに28
0〜285℃に昇温を行い、未反応のジオ−ル(DMH
とEG)を除去しながら、重縮合を行った。得られたポ
リエステル共重合体は、造粒してペレットとした。該ペ
レットの水分率は1100ppm、ガラス転移点は69
℃、固有粘度は0.71dl/gであった。また、ポリエ
ステル共重合体中のジオール成分のモル比は、EG/D
MH=80/20であった。ペレット状ポリエステル共
重合体を270〜285℃に温度設定した真空雰囲気の
Tダイ押出機を用いて、加熱溶融し、シ−ト状に押出し
た後、60℃のキャスティングドラムで急冷固化させ透
明な厚さ0.5mmのシ−トを得、該シ−トを90〜1
10℃に温度設定した窒素ガス雰囲気の2軸延伸機を用
い、延伸速度300%/minで3倍×3倍の同時二軸
延伸を行い0.05mmのフィルムを得、試験片とし
た。得られた試験片を用いてポリエステル共重合体成形
物の物性試験を上記測定方法に準じて測定した。その結
果を表1、2に示す。
Example 3 In a 10 L four-necked flask, 16.10 mol of TPA,
DMH 3.54 mol, zinc acetate 0.01% as a catalyst
1 mol, 0.004 mol of antimony trioxide were charged, and the flask was heated to 200 to 205 ° C. under a nitrogen stream,
After removing 6.1 moles of water, add 2 EG to the flask.
8.7 mol was added dropwise, heating at the same temperature was continued for 2 hours, and 25.
6 moles of water were removed. Next, the flask is heated to 2
After heating to 70 to 275 ° C. and heating for 1 hour, the pressure in the flask is reduced to 0.3 to 0.5 Torr, and further 28
The temperature is raised to 0 to 285 ° C, and unreacted diol (DMH
And EG) were removed while polycondensation was performed. The obtained polyester copolymer was granulated into pellets. The pellets had a water content of 1100 ppm and a glass transition point of 69.
The inherent viscosity was 0.71 dl / g. Further, the molar ratio of the diol component in the polyester copolymer is EG / D
MH = 80/20. The pelletized polyester copolymer was heated and melted by using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C., extruded in a sheet form, and then rapidly cooled and solidified by a casting drum at 60 ° C. to make it transparent. A sheet having a thickness of 0.5 mm is obtained, and the sheet is 90 to 1
Using a biaxial stretching machine in a nitrogen gas atmosphere whose temperature was set to 10 ° C., simultaneous biaxial stretching of 3 × 3 times at a stretching speed of 300% / min was performed to obtain a 0.05 mm film, which was used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Tables 1 and 2.

【0021】実施例4 10Lの四ツ口フラスコに、TPAを16.10モル、
DMHを5.31モル、触媒として酢酸亜鉛を0.01
1モル、三酸化アンチモンを0.004モル仕込み、該
フラスコを窒素気流下で200〜205℃に加熱し、
9.4モルの水を除去した後、該フラスコにEGを2
6.9モル滴下し、同温度で2時間加熱を続け、22.
2モルの水を除去した。次に、該フラスコを昇温して2
70〜275℃とし、1時間の加熱を行った後、該フラ
スコ内を0.3〜0.5Torrに減圧し、さらに28
0〜285℃に昇温を行い、未反応のジオ−ル(DMH
とEG)を除去しながら、重縮合を行った。得られたポ
リエステル共重合体は、造粒してペレットとした。該ペ
レットの水分率は1700ppm、ガラス転移点は66
℃、固有粘度は0.61dl/gであった。また、ポリエ
ステル共重合体中のジオール成分のモル比は、EG/D
MH=70/30であった。ペレット状ポリエステル共
重合体を270〜285℃に温度設定した真空雰囲気の
Tダイ押出機を用いて、加熱溶融し、シ−ト状に押出し
た後、60℃のキャスティングドラムで急冷固化させ透
明な厚さ0.5mmのシ−トを得、該シ−トを90〜1
10℃に温度設定した窒素ガス雰囲気の2軸延伸機を用
い、延伸速度300%/minで3倍×3倍の同時二軸
延伸を行い0.05mmのフィルムを得、試験片とし
た。得られた試験片を用いてポリエステル共重合体成形
物の物性試験を上記測定方法に準じて測定した。その結
果を表1に示す。
Example 4 In a 10 L four-necked flask, 16.10 mol of TPA,
DMH 5.31 mol, zinc acetate 0.01% as a catalyst
1 mol, 0.004 mol of antimony trioxide were charged, and the flask was heated to 200 to 205 ° C. under a nitrogen stream,
After removing 9.4 moles of water, add 2 EG to the flask.
6.9 mol was added dropwise, and heating was continued for 2 hours at the same temperature.
2 mol of water was removed. Next, the flask is heated to 2
After heating to 70 to 275 ° C. and heating for 1 hour, the pressure in the flask is reduced to 0.3 to 0.5 Torr, and further 28
The temperature is raised to 0 to 285 ° C, and unreacted diol (DMH
And EG) were removed while polycondensation was performed. The obtained polyester copolymer was granulated into pellets. The pellet had a water content of 1700 ppm and a glass transition point of 66.
The inherent viscosity was 0.61 dl / g. Further, the molar ratio of the diol component in the polyester copolymer is EG / D
MH = 70/30. The pelletized polyester copolymer was heated and melted by using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C., extruded in a sheet form, and then rapidly cooled and solidified by a casting drum at 60 ° C. to make it transparent. A sheet having a thickness of 0.5 mm is obtained, and the sheet is 90 to 1
Using a biaxial stretching machine in a nitrogen gas atmosphere whose temperature was set to 10 ° C., simultaneous biaxial stretching of 3 × 3 times at a stretching speed of 300% / min was performed to obtain a 0.05 mm film, which was used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Table 1.

【0022】実施例5 10Lの四ツ口フラスコに、TPAを16.10モル、
DMPを1.77モル、触媒として酢酸亜鉛を0.01
1モル、三酸化アンチモンを0.004モル仕込み、該
フラスコを窒素気流下で200〜205℃に加熱し、
3.1モルの水を除去した後、該フラスコにEGを3
0.4モル滴下し、同温度で2時間加熱を続け、28.
8モルの水を除去した。次に、該フラスコを昇温して2
70〜275℃とし、1時間の加熱を行った後、該フラ
スコ内を0.3〜0.5Torrに減圧し、さらに28
0〜285℃に昇温を行い、未反応のジオ−ル(DMP
とEG)を除去しながら、重縮合を行った。得られたポ
リエステル共重合体は、造粒してペレットとした。該ペ
レットの水分率は2800ppm、ガラス転移点は71
℃、固有粘度は0.66dl/gであった。また、ポリエ
ステル共重合体中のジオール成分のモル比は、EG/D
MP=90/10であった。ペレット状ポリエステル共
重合体を270〜285℃に温度設定した真空雰囲気の
Tダイ押出機を用いて、加熱溶融し、シ−ト状に押出し
た後、60℃のキャスティングドラムで急冷固化させ透
明な厚さ0.5mmのシ−トを得、該シ−トを90〜1
10℃に温度設定した窒素ガス雰囲気の2軸延伸機を用
い、延伸速度300%/minで3倍×3倍の同時二軸
延伸を行い0.05mmのフィルムを得、試験片とし
た。得られた試験片を用いてポリエステル共重合体成形
物の物性試験を上記測定方法に準じて測定した。その結
果を表1、2に示す。
Example 5 In a 10 L four-necked flask, 16.10 mol of TPA,
1.77 mol of DMP and 0.01 of zinc acetate as a catalyst
1 mol, 0.004 mol of antimony trioxide were charged, and the flask was heated to 200 to 205 ° C. under a nitrogen stream,
After removing 3.1 moles of water, the flask was charged with 3 g of EG.
0.4 mol was added dropwise, heating was continued for 2 hours at the same temperature, and 28.
8 mol of water was removed. Next, the flask is heated to 2
After heating to 70 to 275 ° C. and heating for 1 hour, the pressure in the flask is reduced to 0.3 to 0.5 Torr, and further 28
The temperature is raised to 0 to 285 ° C, and unreacted diol (DMP
And EG) were removed while polycondensation was performed. The obtained polyester copolymer was granulated into pellets. The water content of the pellets was 2800 ppm, and the glass transition point was 71.
The inherent viscosity was 0.66 dl / g. Further, the molar ratio of the diol component in the polyester copolymer is EG / D
MP = 90/10. The pelletized polyester copolymer was heated and melted by using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C., extruded in a sheet form, and then rapidly cooled and solidified by a casting drum at 60 ° C. to make it transparent. A sheet having a thickness of 0.5 mm is obtained, and the sheet is 90 to 1
Using a biaxial stretching machine in a nitrogen gas atmosphere whose temperature was set to 10 ° C., simultaneous biaxial stretching of 3 × 3 times at a stretching speed of 300% / min was performed to obtain a 0.05 mm film, which was used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Tables 1 and 2.

【0023】実施例6 10Lの四ツ口フラスコに、TPAを16.10モル、
DMNを7.08モル、触媒として酢酸亜鉛を0.01
1モル、三酸化アンチモンを0.004モル仕込み、該
フラスコを窒素気流下で200〜205℃に加熱し、1
2.6モルの水を除去した後、該フラスコにEGを2
5.1モル滴下し、同温度で2時間加熱を続け、19.
4モルの水を除去した。次に、該フラスコを昇温して2
70〜275℃とし、1時間の加熱を行った後、該フラ
スコ内を0.3〜0.5Torrに減圧し、さらに28
0〜285℃に昇温を行い、未反応のジオ−ル(DMN
とEG)を除去しながら、重縮合を行った。得られたポ
リエステル共重合体は、造粒してペレットとした。該ペ
レットの水分率は1700ppm、ガラス転移点は67
℃、固有粘度は0.56dl/gであった。また、ポリエ
ステル共重合体中のジオール成分のモル比は、EG/D
MN=60/40であった。ペレット状ポリエステル共
重合体を270〜285℃に温度設定した真空雰囲気の
Tダイ押出機を用いて、加熱溶融し、シ−ト状に押出し
た後、60℃のキャスティングドラムで急冷固化させ透
明な厚さ0.5mmのシ−トを得、該シ−トを90〜1
10℃に温度設定した窒素ガス雰囲気の2軸延伸機を用
い、延伸速度300%/minで3倍×3倍の同時二軸
延伸を行い0.05mmのフィルムを得、試験片とし
た。得られた試験片を用いてポリエステル共重合体成形
物の物性試験を上記測定方法に準じて測定した。その結
果を表1に示す。
Example 6 In a 10 L four-necked flask, 16.10 mol of TPA,
DMN 7.08 mol, zinc acetate 0.01% as a catalyst
1 mol and 0.004 mol of antimony trioxide were charged, and the flask was heated to 200 to 205 ° C. under a nitrogen stream,
After removing 2.6 moles of water, add 2 EG to the flask.
5.1 mol was added dropwise, heating was continued for 2 hours at the same temperature, and 19.
4 mol of water was removed. Next, the flask is heated to 2
After heating to 70 to 275 ° C. and heating for 1 hour, the pressure in the flask is reduced to 0.3 to 0.5 Torr, and further 28
The temperature was raised to 0 to 285 ° C, and unreacted diol (DMN
And EG) were removed while polycondensation was performed. The obtained polyester copolymer was granulated into pellets. The pellets had a moisture content of 1700 ppm and a glass transition point of 67.
The inherent viscosity was 0.56 dl / g. Further, the molar ratio of the diol component in the polyester copolymer is EG / D
MN = 60/40. The pelletized polyester copolymer was heated and melted by using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C., extruded in a sheet form, and then rapidly cooled and solidified by a casting drum at 60 ° C. to make it transparent. A sheet having a thickness of 0.5 mm is obtained, and the sheet is 90 to 1
Using a biaxial stretching machine in a nitrogen gas atmosphere whose temperature was set to 10 ° C., simultaneous biaxial stretching of 3 × 3 times at a stretching speed of 300% / min was performed to obtain a 0.05 mm film, which was used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Table 1.

【0024】比較例1 10Lの四ツ口フラスコに、TPAを16.10モル、
EGを32.2モル、触媒として酢酸亜鉛を0.011
モル、三酸化アンチモンを0.004モル仕込み、該フ
ラスコを窒素気流下で200〜205℃に加熱し、2時
間加熱を続け、32.0モルの水を除去した。次に、該
フラスコを昇温して270〜275℃とし、1時間の加
熱を行った後、該フラスコ内を0.3〜0.5Torr
に減圧し、さらに280〜285℃に昇温を行い、未反
応のジオ−ル(EG)を除去しながら、重縮合を行っ
た。得られたポリエステル共重合体は、造粒してペレッ
トとした。該ペレットの水分率は2100ppm、ガラ
ス転移点は79℃、固有粘度は0.78dl/gであっ
た。ペレット状ポリエステル共重合体を270〜285
℃に温度設定した真空雰囲気のTダイ押出機を用いて、
加熱溶融して押出成形を実施したが、成形不良により目
的のシート得られなかった。
Comparative Example 1 In a 10 L four-necked flask, 16.10 mol of TPA,
EG 32.2 mol, zinc acetate 0.011 as a catalyst
Mol and antimony trioxide (0.004 mol) were charged, the flask was heated to 200 to 205 ° C. under a nitrogen stream, and the heating was continued for 2 hours to remove 32.0 mol of water. Next, the temperature of the flask was raised to 270 to 275 ° C., and after heating for 1 hour, the inside of the flask was 0.3 to 0.5 Torr.
The pressure was reduced to 2, and the temperature was further raised to 280 to 285 ° C., and polycondensation was performed while removing unreacted diol (EG). The obtained polyester copolymer was granulated into pellets. The pellets had a water content of 2100 ppm, a glass transition point of 79 ° C. and an intrinsic viscosity of 0.78 dl / g. Pelletized polyester copolymer 270-285
Using a T-die extruder in a vacuum atmosphere whose temperature is set to ℃,
Extrusion molding was carried out by heating and melting, but the target sheet could not be obtained due to defective molding.

【0025】比較例2 ペレット状ポリエステル共重合体として、比較例1で得
られたペレット状ポリエステル共重合体を用いた以外
は、実施例1に準拠してフィルムを得、試験片とした。
得られた試験片を用いてポリエステル共重合体成形物の
物性試験を上記測定方法に準じて測定した。その結果を
表1、2に示す。
Comparative Example 2 A film was obtained in the same manner as in Example 1 except that the pellet-shaped polyester copolymer obtained in Comparative Example 1 was used as the pellet-shaped polyester copolymer, to obtain a test piece.
Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Tables 1 and 2.

【0026】比較例3 ペレット状ポリエステル共重合体として、比較例1で得
られたペレット状ポリエステル共重合体を用い、二軸延
伸を実施しなかった以外は、実施例1に準拠して厚さ
0.5mmのシ−トを得、試験片とした。得られた試験
片を用いてポリエステル共重合体成形物の物性試験を上
記測定方法に準じて測定した。その結果を表1に示す。
Comparative Example 3 The pelletized polyester copolymer obtained in Comparative Example 1 was used as the pelletized polyester copolymer, and the thickness was in accordance with Example 1 except that biaxial stretching was not carried out. A 0.5 mm sheet was obtained and used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Table 1.

【0027】比較例4 10Lの四ツ口フラスコに、TPAを16.10モル、
NPGを1.77モル、触媒として酢酸亜鉛を0.01
1モル、三酸化アンチモンを0.004モル仕込み、該
フラスコを窒素気流下で200〜205℃に加熱し、
3.2モルの水を除去した後、該フラスコにEGを3
0.4モル滴下し、同温度で2時間加熱を続け、28.
7モルの水を除去した。次に、該フラスコを昇温して2
70〜275℃とし、1時間の加熱を行った後、該フラ
スコ内を0.3〜0.5Torrに減圧し、さらに28
0〜285℃に昇温を行い、未反応のジオ−ル(NPG
とEG)を除去しながら、重縮合を行った。得られたポ
リエステル共重合体は、造粒してペレットとした。該ペ
レットの水分率は2300ppm、ガラス転移点は75
℃、固有粘度は0.90dl/gであった。また、ポリエ
ステル共重合体中のジオール成分のモル比は、EG/N
PG=90/10であった。ペレット状ポリエステル共
重合体を270〜285℃に温度設定した真空雰囲気の
Tダイ押出機を用いて、加熱溶融し、シ−ト状に押出し
た後、60℃のキャスティングドラムで急冷固化させ透
明な厚さ0.5mmのシ−トを得、該シ−トを90〜1
10℃に温度設定した窒素ガス雰囲気の2軸延伸機を用
い、延伸速度300%/minで3倍×3倍の同時二軸
延伸を行い0.05mmのフィルムを得、試験片とし
た。得られた試験片を用いてポリエステル共重合体成形
物の物性試験を上記測定方法に準じて測定した。その結
果を表1に示す。
Comparative Example 4 16.10 mol of TPA was added to a 10 L four-necked flask,
1.77 mol of NPG and 0.01% of zinc acetate as a catalyst
1 mol, 0.004 mol of antimony trioxide were charged, and the flask was heated to 200 to 205 ° C. under a nitrogen stream,
After removing 3.2 moles of water, the flask was charged with 3 EG.
0.4 mol was added dropwise, heating was continued for 2 hours at the same temperature, and 28.
7 mol of water was removed. Next, the flask is heated to 2
After heating to 70 to 275 ° C. and heating for 1 hour, the pressure in the flask is reduced to 0.3 to 0.5 Torr, and further 28
The temperature is raised to 0 to 285 ° C, and unreacted diol (NPG
And EG) were removed while polycondensation was performed. The obtained polyester copolymer was granulated into pellets. Moisture content of the pellets is 2300ppm, glass transition point is 75
The inherent viscosity was 0.90 dl / g. The molar ratio of the diol component in the polyester copolymer is EG / N
PG = 90/10. The pelletized polyester copolymer was heated and melted by using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C., extruded in a sheet form, and then rapidly cooled and solidified by a casting drum at 60 ° C. to make it transparent. A sheet having a thickness of 0.5 mm is obtained, and the sheet is 90 to 1
Using a biaxial stretching machine in a nitrogen gas atmosphere whose temperature was set to 10 ° C., simultaneous biaxial stretching of 3 × 3 times at a stretching speed of 300% / min was performed to obtain a 0.05 mm film, which was used as a test piece. Using the obtained test piece, the physical property test of the polyester copolymer molded article was measured according to the above measuring method. The results are shown in Table 1.

【0028】表1から分かるように、本発明のポリエス
テル電気絶縁物は、水中または高温多湿下に曝されて
も、体積抵抗率の低下が極めて少なく、常用対数におい
て1未満という優れた値を示した。また、図1から分か
るように、本発明のポリエステル電気絶縁物は、該電気
絶縁物を構成するポリエステル共重合体のガラス転移点
以下で、7×1016Ω・cmより大きい体積抵抗率を示
し、温度に対する体積抵抗率の最大変化も常用対数にお
いて0.02/℃以下という、極めて優れた安定性を示
した。本発明のポリエステル電気絶縁物は、用いたポリ
エステル共重合体との固有粘度における差が極めて小さ
く、耐加水分解性に優れていることが判る。そして、加
水分解物が微小であるため、成形中に発泡が起こらず、
表面平滑性、透明性に優れ、風合いの良いポリエステル
電気絶縁物が得られる。
As can be seen from Table 1, the polyester electrical insulator of the present invention shows an extremely small decrease in volume resistivity even when exposed to water or high temperature and high humidity, and exhibits an excellent value of less than 1 in common logarithm. It was Further, as can be seen from FIG. 1, the polyester electrical insulator of the present invention exhibits a volume resistivity of 7 × 10 16 Ω · cm or less at the glass transition point of the polyester copolymer constituting the electrical insulator or less. The maximum change in volume resistivity with respect to temperature was 0.02 / ° C or less in the common logarithm, indicating extremely excellent stability. It can be seen that the polyester electrical insulator of the present invention has an extremely small difference in intrinsic viscosity from the polyester copolymer used and is excellent in hydrolysis resistance. And since the hydrolyzate is minute, foaming does not occur during molding,
A polyester electric insulator having excellent surface smoothness and transparency and a good texture can be obtained.

【0029】[0029]

【発明の効果】従来のポリエステル電気絶縁物は、該電
気絶縁物を構成するポリエステルが化学構造上、加水分
解を起こし易いために、水中および高温多湿下では、体
積抵抗率の低下が著しかった。また、ガラス転移点以下
の温度に対する体積抵抗率の温度依存性も大きかった。
これに対して、本発明のポリエステル電気絶縁物は、
2,2−アルキル置換−1,3−プロパンジオ−ルを有
するポリエステル共重合体を用いているので、日常の使
用、水中および高温多湿下で使用しても、電気抵抗率の
低下が少なく、フィルム、熱収縮フィルム、シ−ト、フ
レキシブルプリント基板などに有用な優れた電気絶縁性
を有するポリエステル電気絶縁物が得られる。従って、
本発明のポリエステル電気絶縁物は、電気機器、電子機
器、電線関連に使用される材料として、従来のポリエス
テル電気絶縁物では得られなかった極めて安定した体積
抵抗率および水中や高温多湿等の厳しい環境下にも適す
るという特性を持つものである。
EFFECT OF THE INVENTION In the conventional polyester electrical insulator, the volume resistivity is significantly lowered in water and under high temperature and high humidity because the polyester constituting the electrical insulator is apt to undergo hydrolysis due to its chemical structure. Further, the temperature dependence of the volume resistivity with respect to the temperature below the glass transition point was also large.
In contrast, the polyester electrical insulator of the present invention,
Since the polyester copolymer having 2,2-alkyl-substituted-1,3-propanediol is used, the electrical resistivity is less likely to decrease even in daily use or in water and under high temperature and high humidity. It is possible to obtain a polyester electric insulator having excellent electric insulation useful for a film, a heat shrinkable film, a sheet, a flexible printed circuit board and the like. Therefore,
INDUSTRIAL APPLICABILITY The polyester electric insulator of the present invention has a very stable volume resistivity and a severe environment such as water and high temperature / humidity, which cannot be obtained by the conventional polyester electric insulator, as a material used for electric devices, electronic devices and electric wires. It has the property that it is also suitable for the bottom.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【図1】[Figure 1]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月10日[Submission date] May 10, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、3、5及び比較例2によって得られ
たポリエステル共重合体成形物の温度(25〜60℃)
に対して変化する体積抵抗率(常用対数)をプロットし
た相関図である。
FIG. 1 Temperature of a polyester copolymer molded article obtained in Examples 1, 3, 5 and Comparative Example 2 (25 to 60 ° C.)
It is the correlation diagram which plotted the volume resistivity (common logarithm) which changes with respect to.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】削除[Correction method] Delete

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸成分としてテレフタル酸または/および
テレフタル酸ジエステル、ジオール成分としてエチレン
グリコ−ルとアルキル置換基がエチル基、プロピル基、
ブチル基、ペンチル基およびヘキシル基のいずれかから
選ばれる2,2−アルキル置換−1,3−プロパンジオ
−ルとを用い、これらの酸成分とジオール成分とを主成
分とし、共重合反応によって得られる固有粘度0.3〜
1.2dl/gのポリエステル共重合体を用いることを特
徴とするポリエステル電気絶縁物。
1. A terephthalic acid or / and a terephthalic acid diester as an acid component, an ethylene glycol and an alkyl substituent as an ethyl group or a propyl group as a diol component,
A 2,2-alkyl-substituted-1,3-propanediol selected from any of a butyl group, a pentyl group and a hexyl group is used, and the acid component and the diol component are the main components, and a copolymerization reaction is performed. Obtained intrinsic viscosity 0.3-
A polyester electrical insulator characterized by using a 1.2 dl / g polyester copolymer.
【請求項2】ジオール成分を構成する2,2−アルキル
置換−1,3−プロパンジオ−ルとエチレングリコ−ル
のモル比が、3/97〜50/50の範囲であることを
特徴とする請求項1記載のポリエステル電気絶縁物。
2. A molar ratio of 2,2-alkyl-substituted-1,3-propanediol and ethylene glycol constituting the diol component is in the range of 3/97 to 50/50. The polyester electrical insulator according to claim 1.
【請求項3】下記条件で成形した試験片を構成するポリ
エステル共重合体の有するガラス転移点から2℃引いた
温度以下において、該試験片の体積抵抗率の常用対数に
対しての温度変化が、0.02/℃以下であることを特
徴とする請求項1記載のポリエステル電気絶縁物。 記 ペレット状ポリエステル共重合体を270〜285℃に
温度設定した真空雰囲気のTダイ押出機を用いて、加熱
溶融し、シ−ト状に押出した後、60℃のキャスティン
グドラムで急冷固化させ透明な厚さ0.5mmのシ−ト
を得、該シ−トを90〜110℃に温度設定した窒素ガ
ス雰囲気の2軸延伸機を用い、延伸速度300%/mi
nで3倍×3倍の同時二軸延伸を行い0.05mmのフ
ィルムを得、試験片とする。
3. A temperature change with respect to the common logarithm of the volume resistivity of the test piece at a temperature not higher than 2 ° C. below the glass transition point of the polyester copolymer constituting the test piece molded under the following conditions. , 0.02 / ° C or less, The polyester electrical insulator according to claim 1, wherein The pelletized polyester copolymer was heated and melted using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C, extruded into a sheet, and then rapidly cooled and solidified by a casting drum at 60 ° C to be transparent. A sheet having a thickness of 0.5 mm was obtained, and the sheet was stretched at a stretching rate of 300% / mi using a biaxial stretching machine in a nitrogen gas atmosphere in which the temperature was set to 90 to 110 ° C.
Simultaneous biaxial stretching of 3 times × 3 times with n is performed to obtain a 0.05 mm film, which is used as a test piece.
【請求項4】下記条件で成形した試験片を、液温25±
1℃の水槽中に14日間浸漬した時の試験片の体積抵抗
率と浸漬前の試験片の体積抵抗率との常用対数における
差および下記条件で成形した試験片を、50℃相対湿度
90%に設定した恒温恒湿槽内に14日間放置した時の
試験片の体積抵抗率と放置する前の試験片の体積抵抗率
との常用対数における差がいずれも1未満であることを
特徴とする請求項1記載のポリエステル電気絶縁物。 記 ペレット状ポリエステル共重合体を270〜285℃に
温度設定した真空雰囲気のTダイ押出機を用いて、加熱
溶融し、シ−ト状に押出した後、60℃のキャスティン
グドラムで急冷固化させ透明な厚さ0.5mmのシ−ト
を得、試験片とする。
4. A test piece molded under the following conditions has a liquid temperature of 25 ±
The difference in the common logarithm between the volume resistivity of the test piece when immersed in a water tank at 1 ° C for 14 days and the volume resistivity of the test piece before immersion, and a test piece molded under the following conditions, 50 ° C relative humidity 90% The difference in the common logarithm between the volume resistivity of the test piece when left to stand for 14 days in the constant temperature and humidity chamber set to 1 and the volume resistivity of the test piece before being left is all less than 1. The polyester electric insulator according to claim 1. The pelletized polyester copolymer was heated and melted using a T-die extruder in a vacuum atmosphere whose temperature was set at 270 to 285 ° C, extruded into a sheet, and then rapidly cooled and solidified by a casting drum at 60 ° C to be transparent. A sheet having a thickness of 0.5 mm is obtained and used as a test piece.
JP28448493A 1993-10-19 1993-10-19 Electrical polyester insulator Pending JPH07118376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28448493A JPH07118376A (en) 1993-10-19 1993-10-19 Electrical polyester insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28448493A JPH07118376A (en) 1993-10-19 1993-10-19 Electrical polyester insulator

Publications (1)

Publication Number Publication Date
JPH07118376A true JPH07118376A (en) 1995-05-09

Family

ID=17679123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28448493A Pending JPH07118376A (en) 1993-10-19 1993-10-19 Electrical polyester insulator

Country Status (1)

Country Link
JP (1) JPH07118376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054440A (en) * 2000-12-28 2002-07-08 조 정 래 Copolyester polymer and copolyester fiber manufactured therefrom
WO2007026007A1 (en) 2005-09-01 2007-03-08 Rhodius Schleifwerkzeuge Gmbh & Co. Kg Separating and grinding device, clamping device, and tool featuring vibration damping
JP2016072160A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Battery packaging material
US11476524B2 (en) 2014-09-30 2022-10-18 Dai Nippon Printing Co., Ltd. Packaging material for batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054440A (en) * 2000-12-28 2002-07-08 조 정 래 Copolyester polymer and copolyester fiber manufactured therefrom
WO2007026007A1 (en) 2005-09-01 2007-03-08 Rhodius Schleifwerkzeuge Gmbh & Co. Kg Separating and grinding device, clamping device, and tool featuring vibration damping
JP2016072160A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Battery packaging material
US11476524B2 (en) 2014-09-30 2022-10-18 Dai Nippon Printing Co., Ltd. Packaging material for batteries

Similar Documents

Publication Publication Date Title
JP3335683B2 (en) Polyester film and method for producing the same
JP6822397B2 (en) Polyethylene terephthalate resin composition and a film comprising it
JP2008189944A (en) Molded product of amorphous copolyester
US5545364A (en) Process for the preparation of heat resistant polyester film
JPH07118376A (en) Electrical polyester insulator
JP6277804B2 (en) Polyethylene terephthalate resin composition and method for producing the same
JP2017052839A (en) Polyethylene terephthalate resin composition and method for producing the same
KR950009483B1 (en) Moldable polyester resin having high heat stability in melting and molded article thereof
JP4402232B2 (en) Heat shrinkable polyester film
KR20050117240A (en) Polyester shrinkable film
JP3232817B2 (en) Low dielectric polyester
JPS59229314A (en) Polyester film
JP2595960B2 (en) Composite polyester film
JP5002878B2 (en) Copolyester
US5132068A (en) Processes for producing transparent copolyester films
KR100205201B1 (en) Biaxial oriented polyester film for fire retardant
KR101127951B1 (en) Biaxially-oriented polyester film and preparation method thereof
JP2018119091A (en) Polyethylene terephthalate resin composition and film made of the same
JPS5941327A (en) Polyester electrical insulating material
JPH06206266A (en) Polyester film and its production
JPH04130132A (en) Polyester which develops anisotropy when melted
US3533995A (en) Heat stabilization of polyester resin with alkyl dialkoxyphosphinyl formate
JPH06200000A (en) Polyester composition
CN115536819A (en) High-processability terephthalic acid copolyester and preparation method thereof
TW202405050A (en) Liquid crystal polyester resin, liquid crystal polyester resin composition and molded products composed thereof