JPH07118322B2 - Gas diffusion electrode - Google Patents

Gas diffusion electrode

Info

Publication number
JPH07118322B2
JPH07118322B2 JP61076891A JP7689186A JPH07118322B2 JP H07118322 B2 JPH07118322 B2 JP H07118322B2 JP 61076891 A JP61076891 A JP 61076891A JP 7689186 A JP7689186 A JP 7689186A JP H07118322 B2 JPH07118322 B2 JP H07118322B2
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
reaction layer
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61076891A
Other languages
Japanese (ja)
Other versions
JPS62232863A (en
Inventor
長一 古屋
哲 本尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP61076891A priority Critical patent/JPH07118322B2/en
Priority to DE87830085T priority patent/DE3786943T2/en
Priority to EP87830085A priority patent/EP0241432B1/en
Publication of JPS62232863A publication Critical patent/JPS62232863A/en
Priority to US07/356,612 priority patent/US4931168A/en
Priority to US07/716,810 priority patent/US5266177A/en
Publication of JPH07118322B2 publication Critical patent/JPH07118322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料電池、二次電池等に用いるガス拡散電極
の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement of a gas diffusion electrode used in a fuel cell, a secondary battery or the like.

(従来の技術) 従来、ガス拡散電極として、Pt、親水性カーボンブラッ
ク、撥水性カーボンブラック、ポリ四弗化エチレンより
成る反応層に、撥水性のカーボンブラック、ポリ四弗化
エチレンより成るガス拡散層を結合して成るものがあ
る。
(Prior Art) Conventionally, as a gas diffusion electrode, a gas diffusion electrode composed of Pt, hydrophilic carbon black, water repellent carbon black, and polytetrafluoroethylene was added to a reaction layer composed of water repellent carbon black and polytetrafluoroethylene. Some are made by combining layers.

このガス拡散電極は、例えば燃料電池等に使用した場
合、電解液は反応層を透過するが、ガス拡散層を透過せ
ず、反応により生成したガス或いは供給ガスのみガス拡
散層を拡散透過する。
When this gas diffusion electrode is used in, for example, a fuel cell or the like, the electrolytic solution permeates the reaction layer, but does not permeate the gas diffusion layer, but only the gas generated by the reaction or the supply gas diffuses and permeates the gas diffusion layer.

(発明が解決しようとする問題点) ところで、上記従来のガス拡散電極は、反応層中の親水
部と撥水部が塊状に分散した状態にあるので、電解液の
浸透する通路面積やガスが拡散する通路面積が狭く、従
って電解液とガスの接触面積が小さくて電極の単位面積
当たりの流せる電流或いは取り出せる電流が小さいもの
である。
(Problems to be Solved by the Invention) By the way, in the conventional gas diffusion electrode described above, since the hydrophilic part and the water repellent part in the reaction layer are dispersed in a lump form, the passage area and gas through which the electrolytic solution permeates The diffusing passage area is narrow, and therefore the contact area between the electrolyte and the gas is small, so that the current that can be passed or taken out per unit area of the electrode is small.

そこで本発明は、電解液とガスの接触面積が大きく、短
時間に反応が進行して、電極反応効率の高いガス拡散電
極を提供せんとするものである。
Therefore, the present invention is intended to provide a gas diffusion electrode having a large contact area between an electrolytic solution and a gas, a reaction progressing in a short time, and a high electrode reaction efficiency.

(問題点を解決するための手段) 上記問題点を解決するための本発明のガス拡散電極は、
微細な親水部と撥水部が、層厚方向に繊維状となってそ
の両端が両面に露出した状態でランダムに分散された反
応層より成るものである。
(Means for Solving Problems) The gas diffusion electrode of the present invention for solving the above problems is
The fine hydrophilic part and the water-repellent part are formed of a reaction layer which is fibrous in the layer thickness direction and is randomly dispersed with both ends exposed on both sides.

(作用) 上記の如く本発明のガス拡散電極は、厚さ方向に微細な
親水部および/又は撥水部が繊維状にランダムに分散さ
れているので、燃料電池等に使用した場合、電解液が浸
透する通路面積及びガスが拡散する通路面積が極めて大
きい。従って電解液とガスとの接触面積が大きくて、反
応が活発に行われる。
(Operation) As described above, in the gas diffusion electrode of the present invention, fine hydrophilic parts and / or water repellent parts are randomly dispersed in a fibrous shape in the thickness direction. The passage area through which the gas permeates and the passage area through which the gas diffuses are extremely large. Therefore, the contact area between the electrolytic solution and the gas is large, and the reaction is actively performed.

(実施例) 本発明のガス拡散電極の実施例を第1、2図によって説
明すると、ガス拡散電極1は、太さが平均2μの親水部
2と親水部3が層厚方向に繊維状となって両面に露出し
た状態でランダムに分散された反応層4より成るもので
あり、親水部2は親水性カーボンブラックとポリ四弗化
エチレンより成り、撥水部3は撥水性カーボンブラック
とポリ四弗化エチレンより成るものである。
(Example) An example of the gas diffusion electrode of the present invention will be described with reference to FIGS. 1 and 2. In the gas diffusion electrode 1, the hydrophilic portion 2 and the hydrophilic portion 3 having an average thickness of 2 μ are formed in a fibrous shape in the layer thickness direction. And the hydrophilic part 2 is composed of hydrophilic carbon black and polytetrafluoroethylene, and the water-repellent part 3 is composed of water-repellent carbon black and poly. It is composed of tetrafluoroethylene.

このガス拡散電極1を作るには2つの方法がある。その
1つを第3図a乃至dによって説明する。平均粒径390
Åの親水性カーボンブラックと平均粒径0.3μのポリ四
弗化エチレン粉末と水とを7.5:2.5:40の割合で混合して
延性を付与した後押出して線径1mmの親水性線材を500本
作り、一方平均粒径420Åの撥水性カーボンブラックと
平均粒径0.3μのポリ四弗化エチレン粉末と水とを7:3:4
0の割合で混合して延性を付与した後押出して線径1mmの
撥水性線材お500本作る。次に第3図aに示す如く撥水
性線材5を500本と撥水性線材6を500本混ぜて束ねる。
次いでこれを押出して第3図bに示す如く線径1mmの反
応層用線材7を作る。次にこの反応層用線材7を第3図
cに示す如く約1200本束ねて圧着し、縦100mm、横100mm
の断面角形の反応層条材8を作る。次いでこの反応層用
条材8を第3図d示す如く厚さ0.2mmにスライスして反
応層素材9を作る。然る後この反応層素材9を280℃180
分間加熱して乾燥し、溶媒である水を除去して、第1、
2図に示す反応層4より成るガス拡散電極1を作る。
There are two methods for making this gas diffusion electrode 1. One of them will be described with reference to FIGS. Average particle size 390
Å Hydrophilic carbon black, polytetrafluoroethylene powder with an average particle size of 0.3μ and water were mixed at a ratio of 7.5: 2.5: 40 to give ductility, and then extruded to obtain a hydrophilic wire rod having a diameter of 1 mm of 500 On the other hand, water-repellent carbon black with an average particle size of 420Å, polytetrafluoroethylene powder with an average particle size of 0.3μ, and water were made at 7: 3: 4.
It is mixed at a ratio of 0 to give ductility and then extruded to make 500 water-repellent wires with a wire diameter of 1 mm. Next, as shown in FIG. 3a, 500 water-repellent wires 5 and 500 water-repellent wires 6 are mixed and bundled.
Next, this is extruded to form a reaction layer wire 7 having a wire diameter of 1 mm as shown in FIG. 3b. Next, as shown in FIG. 3c, about 1200 wire bundles for the reaction layer are bundled and crimped, and the length is 100 mm and the width is 100 mm.
A reaction layer strip 8 having a rectangular cross section is produced. Then, the reaction layer strip 8 is sliced to a thickness of 0.2 mm as shown in FIG. After that, the reaction layer material 9 is 280 ° C 180
Heat for 1 minute to dry, remove water as solvent,
A gas diffusion electrode 1 composed of the reaction layer 4 shown in FIG. 2 is produced.

次にガス拡散電極1を作る方法の他の1つを第4図a乃
至cよって説明する。平均粒径390Åの親水性カーボン
ブラックと平均粒径420Åの撥水性カーボンブラックと
平均粒径0.3μのポリ四弗化エチレン粉末とソルベント
ナフサを6:4:4:50の割合で混合して延性を付与した後押
出して第4図aに示す如く線径1mmの反応層溶線材7′
を作る。次にこの反応層用線材7′を第4図bに示す如
く約1200本束ねて圧着し、縦100mm、横100mmの断面角形
の反応層用条材8′を作る。次いでこの反応層用条材
8′を第4図cに示す如く厚さ0.2mmにスライスして反
応層素材9′を作る。然る後この反応層用素材9′を28
0℃、180分間加熱して乾燥し、溶媒であるソルベントナ
フサを除去して、第1、2図に示す反応層4より成るガ
ス拡散電極1を作る。
Next, another method for manufacturing the gas diffusion electrode 1 will be described with reference to FIGS. Mixing hydrophilic carbon black with an average particle size of 390Å, water repellent carbon black with an average particle size of 420Å, polytetrafluoroethylene powder with an average particle size of 0.3μ and solvent naphtha at a ratio of 6: 4: 4: 50 And then extruded, as shown in Fig. 4a, the reaction layer wire 7'having a wire diameter of 1 mm.
make. Next, as shown in FIG. 4b, about 1200 pieces of the reaction layer wires 7'are bundled and crimped to form a reaction layer strip 8'having a rectangular cross section of 100 mm in length and 100 mm in width. Next, this reaction layer strip 8'is sliced to a thickness of 0.2 mm as shown in FIG. After that, this reaction layer material 9'is made into 28
The mixture is heated at 0 ° C. for 180 minutes to be dried, the solvent naphtha as a solvent is removed, and the gas diffusion electrode 1 composed of the reaction layer 4 shown in FIGS.

上記の2つのいずれかの方法によって作った反応層4よ
り成るガス拡散電極1も厚さ方向に微細な親水部2と撥
水部3が繊維状となってその両端が両面に露出した状態
でランダムに分散されているので、例えば燃料電等に使
用した場合、電解液が浸透する通路面積は極めて大き
く、またガスの拡散する通路面積も極めて大きい。従っ
て電解液とガスの接触面積が大きく、反応が活発に行わ
れる。
The gas diffusion electrode 1 formed of the reaction layer 4 formed by either of the above two methods also has a fine hydrophilic portion 2 and a water repellent portion 3 in the thickness direction which are fibrous and both ends thereof are exposed on both sides. Since they are dispersed at random, the passage area through which the electrolytic solution permeates and the passage area through which the gas diffuses are also extremely large when used for, for example, fuel cell. Therefore, the contact area between the electrolytic solution and the gas is large, and the reaction is actively performed.

尚、上記実施例のガス拡電極1は、反応層4のみより成
るが、必要に応じて親水部2に白金等の触媒を担持させ
ても良いものであり、また反応層4の一面にガス拡散層
を設けても良いものであり、さらに反応層4に集電材を
取付けても良いものである。
Although the gas expansion electrode 1 of the above embodiment is composed of only the reaction layer 4, a catalyst such as platinum may be supported on the hydrophilic portion 2 if necessary, and a gas may be provided on one surface of the reaction layer 4. A diffusion layer may be provided, and a current collector may be attached to the reaction layer 4.

また上記実施例では、親水性カーボンブラック、撥水性
カーボンブラック、ポリ四弗化エチレン、ソルベントナ
フサを同時に混合しているが、親水性カーボンブラッ
ク、ポリ四弗化エチレン粉末、ソルベントナフサの混合
を別々に行い乾燥、粉砕後ソルベントナフサに混合する
ようにしてもよいものである。
Further, in the above example, hydrophilic carbon black, water repellent carbon black, polytetrafluoroethylene, and solvent naphtha were mixed at the same time, but hydrophilic carbon black, polytetrafluoroethylene powder, and solvent naphtha were mixed separately. Alternatively, it may be dried, pulverized and then mixed with the solvent naphtha.

さらに上記実施例では、素材を押出しで加工し束ねて反
応層用条材を作っているが、圧延にて加工し重ね合わせ
て反応層用条材を作るようにしてもよいものである。
Further, in the above-mentioned embodiment, the material for extrusion is processed and bundled to form the reaction layer strip, but it may be processed by rolling and laminated to form the reaction layer strip.

(発明の効果) 以上の説明で判るように本発明のガス拡散電極は、電解
液が浸透する通路面積が極めて大きく、またガスが拡散
する通路面積が極めて大きいので、電解液とガスの接触
面積が大きくて、各々の反応が活発に行われ、短時間に
反応が完了する。従って、電解反応効率が高く、電極の
単位面積当たりの流せる電流及び取り出せる電流が極め
て大きいという効果がある。
(Effects of the Invention) As can be seen from the above description, the gas diffusion electrode of the present invention has an extremely large passage area through which the electrolytic solution permeates, and an extremely large passage area through which the gas diffuses. Is large, each reaction is actively carried out, and the reaction is completed in a short time. Therefore, the electrolytic reaction efficiency is high, and the current that can be passed and the current that can be taken out per unit area of the electrode are extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のガス拡散電極の斜視図、第2図は一部
拡大斜視図、第3図a乃至dは本発明のガス拡散電極を
作る一方向の工程を示す図、第4図a乃至cは本発明の
ガス拡散電極を作る他の方法の工程を示す図である。 1……ガス拡散電極、2……親水部、3……撥水部、4
……反応層。
FIG. 1 is a perspective view of a gas diffusion electrode of the present invention, FIG. 2 is a partially enlarged perspective view, and FIGS. 3A to 3D are diagrams showing a unidirectional process for producing the gas diffusion electrode of the present invention, and FIG. FIGS. 3A to 3C are diagrams showing steps of another method for producing the gas diffusion electrode of the present invention. 1 ... Gas diffusion electrode, 2 ... Hydrophilic part, 3 ... Water repellent part, 4
…… Reaction layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】微細な親水部および/又は撥水部が層厚方
向に繊維状になってその両端が両面に露出した状態でラ
ンダムに分散された反応層より成るガス拡散電極。
1. A gas diffusion electrode comprising a reaction layer in which fine hydrophilic portions and / or water repellent portions are fibrous in the layer thickness direction and are randomly dispersed with both ends exposed on both sides.
JP61076891A 1986-03-07 1986-04-03 Gas diffusion electrode Expired - Lifetime JPH07118322B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61076891A JPH07118322B2 (en) 1986-04-03 1986-04-03 Gas diffusion electrode
DE87830085T DE3786943T2 (en) 1986-03-07 1987-03-05 Gas permeable electrode.
EP87830085A EP0241432B1 (en) 1986-03-07 1987-03-05 Gas permeable electrode
US07/356,612 US4931168A (en) 1986-03-07 1989-05-23 Gas permeable electrode
US07/716,810 US5266177A (en) 1986-03-07 1991-06-17 Process for preparing reaction layer of gas permeable electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61076891A JPH07118322B2 (en) 1986-04-03 1986-04-03 Gas diffusion electrode

Publications (2)

Publication Number Publication Date
JPS62232863A JPS62232863A (en) 1987-10-13
JPH07118322B2 true JPH07118322B2 (en) 1995-12-18

Family

ID=13618264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61076891A Expired - Lifetime JPH07118322B2 (en) 1986-03-07 1986-04-03 Gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH07118322B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632557B1 (en) * 1999-10-26 2003-10-14 The Gillette Company Cathodes for metal air electrochemical cells

Also Published As

Publication number Publication date
JPS62232863A (en) 1987-10-13

Similar Documents

Publication Publication Date Title
US3442715A (en) Method of making diffusion membrane electrodes from visco elastic dough
DE10297187B4 (en) An electrode catalyst layer, a process for producing the same, and a gas diffusion electrode comprising an electrode catalyst layer, a membrane / electrode assembly comprising an electrode catalyst layer, and a solid polymer type fuel cell comprising an electrode catalyst layer
US6592934B2 (en) Gas diffusion electrode, solid polymer electrolyte membrane, process for the production thereof and solid polymer electrolyte fuel cell
DE60213271T2 (en) SEPARATOR FOR FUEL CELL AND METHOD FOR THE PRODUCTION THEREOF
DE3835336A1 (en) COMPOSIT ELECTRODE FOR USE IN ELECTROCHEMICAL CELLS
JPS627662B2 (en)
JPH10189012A (en) Electrode for fuel cell and power generation layer, and its manufacture
DE7738098U1 (en) ELECTROCHEMICAL CELL
JPH10223233A (en) Electrode for fuel cell, and electrode electrolyte film joint body
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JPH07118322B2 (en) Gas diffusion electrode
US3793085A (en) Gas diffusion electrode for cells
Vogel et al. Gas diffusion and electrolyte penetration in porous gas diffusion electrodes
JP3249227B2 (en) Manufacturing method of gas diffusion electrode
JP2948376B2 (en) Method for producing reaction film and method for producing electrochemical cell
JPH0665036B2 (en) Gas diffusion electrode and manufacturing method thereof
JPS62208554A (en) Gas diffusion electrode and its manufacture
DE10036981A1 (en) Fuel cell with a solid polymer as an electrolyte
DE10218857B4 (en) Layer system for a gas diffusion electrode, method for its production and use of the layer system
JP2892679B2 (en) Electrodes for fuel cells
JP3229025B2 (en) Gas diffusion electrode manufacturing method
US3558365A (en) Method of preparing thin catalyst-silver electrodes
JPS60133661A (en) Manufacture of electrode for fuel cell
JP3107245B2 (en) Manufacturing method of gas diffusion electrode
JPH07282814A (en) Manufacture of gas diffusion electrode