JPH07117490B2 - Non-destructive method for determining the taste of fruits and vegetables by near infrared rays - Google Patents

Non-destructive method for determining the taste of fruits and vegetables by near infrared rays

Info

Publication number
JPH07117490B2
JPH07117490B2 JP4074088A JP4074088A JPH07117490B2 JP H07117490 B2 JPH07117490 B2 JP H07117490B2 JP 4074088 A JP4074088 A JP 4074088A JP 4074088 A JP4074088 A JP 4074088A JP H07117490 B2 JPH07117490 B2 JP H07117490B2
Authority
JP
Japan
Prior art keywords
taste
component
content
vegetables
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4074088A
Other languages
Japanese (ja)
Other versions
JPH01216265A (en
Inventor
澄夫 河野
久芳 渡邊
睦夫 岩元
Original Assignee
農林水産省食品総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 農林水産省食品総合研究所長 filed Critical 農林水産省食品総合研究所長
Priority to JP4074088A priority Critical patent/JPH07117490B2/en
Publication of JPH01216265A publication Critical patent/JPH01216265A/en
Publication of JPH07117490B2 publication Critical patent/JPH07117490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は果実,野菜の糖類,有機酸,アミノ酸など化学
成分のバランスによって決まる食味を、近赤外線を用い
て非破壊的に、かつ迅速に判定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses a near infrared ray to nondestructively and rapidly determine the taste determined by the balance of chemical components such as sugars, organic acids and amino acids of fruits and vegetables. Regarding the determination method.

〔従来の技術、発明が解決しようとする課題〕[Prior arts and problems to be solved by the invention]

従来の果実,野菜の化学成分の分析は、細断した組織を
用いて特定の化学成分ごとに決められた方法を用いる、
いわゆる湿式化学分析法により行われてきた。しかし、
この方法は煩雑な操作と時間を要するとともに、測定対
象物を基本的に破壊してしまうため、例えば果実,野菜
の貯蔵試験において同一試料による品質の追跡調査がで
きなかったり、また選果場の特級選別において内容成分
の全数検査ができない等の問題点があった。
Conventional analysis of chemical composition of fruits and vegetables uses a method determined for each specific chemical composition using finely divided tissue,
It has been carried out by the so-called wet chemical analysis method. But,
This method requires complicated operations and time, and basically destroys the object to be measured. Therefore, for example, in the storage test of fruits and vegetables, it is not possible to follow up on the quality of the same sample, There was a problem that 100% inspection of the content components was not possible in the special grade selection.

近年、果実,野菜の成分分析に近赤外線を用いる近赤外
分光法が実用化されつつあるが、穀物を対象に開発され
た技術であるため、測定対象物は粉末状あるいは液状の
ものに限られている。従って、近赤外分光法を果実,野
菜に適用するならば、上記の湿式化学分析法と同様に測
定対象物を破壊しなければならず、上記問題点を解決す
るには至っていない。ましてや、成分分析の結果から果
実や野菜の食味を判定することに関しては従来全く報告
されていない。
In recent years, near-infrared spectroscopy, which uses near-infrared rays for the component analysis of fruits and vegetables, is being put to practical use, but since it is a technique developed for grains, the measurement target is limited to powder or liquid. Has been. Therefore, if the near-infrared spectroscopy is applied to fruits and vegetables, the measurement object must be destroyed as in the above wet chemical analysis method, and the above problems have not been solved. Moreover, there has been no report on determining the taste of fruits and vegetables from the results of component analysis.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで、本発明者らは果実,野菜を破壊せずに近赤外線
を用いて成分を測定し、さらにその測定結果から果実,
野菜の食味を判定する方法について鋭意研究した結果、
多変量解析手法により検量線を作成して利用することに
より目的を達成できることを知見し、本発明に到達し
た。
Therefore, the present inventors measured the components using near-infrared rays without destroying fruits and vegetables,
As a result of earnest research on a method for determining the taste of vegetables,
The inventors have found that the object can be achieved by creating and using a calibration curve by a multivariate analysis method, and arrived at the present invention.

すなわち、本発明は対象の果実又は野菜の近傍から、も
しくは接触した状態で近赤外線を照射して近赤外吸収ス
ペクトルを得、得られた近赤外吸収スペクトルから多変
量解析手法により対象物中のn個の成分含量を推定する
のに適したn個の検量線を求め、成分含量未知の対象物
について前記検量線に採用した波長の吸光度から前記検
量線を用いて各成分含量を算出すると共に、該算出値よ
りn次元空間における別途官能検査によって決定される
最高食味点からの距離を求めて対象物の食味を自動的に
判定することを特徴とする近赤外線による果実・野菜の
食味の非破壊判定法を提供するものである。
That is, the present invention obtains a near-infrared absorption spectrum by irradiating near-infrared rays from the vicinity of a target fruit or vegetable, or in a state of contacting, and in a target object by a multivariate analysis method from the obtained near-infrared absorption spectrum. N calibration curves suitable for estimating the content of n components are obtained, and the content of each component is calculated from the absorbance of the wavelength adopted in the calibration curve for the target of unknown component content using the calibration curve. Along with the calculated value, the taste of the object is automatically determined by obtaining the distance from the highest taste point determined by a separate sensory test in the n-dimensional space. It provides a non-destructive judgment method.

本発明において果実,野菜に特に制限はないが、皮が薄
いものが好ましく、たとえばモモ,リンゴ,ナシ,ミカ
ン,オレンジ,トマト,タマネギなどを挙げることがで
きる。
In the present invention, fruits and vegetables are not particularly limited, but those with thin skin are preferable, and examples thereof include peach, apple, pear, orange, tomato, and onion.

近赤外線とは、可視光線と赤外線の間の波長域にあっ
て、0.7μmから2.5μmまでの波長の電磁波をいう。食
品中の代表的成分の近赤外吸収スペクトルは、それぞれ
の成分に特徴のあるスペクトルである。従って、果実,
野菜の散乱光の近赤外吸収スペクトルも、それぞれの内
容成分に帰属した特徴のあるスペクトルを示す。これ
は、赤外域で生じる特定分子の基準振動の倍音または結
合振動による吸収に由来するものである。複数の成分か
ら成る果実,野菜では、それぞれの成分による吸収が相
互に干渉し、近赤外領域における吸収スペクトルはそれ
ぞれの成分量に比例して影響を受けることから、重回帰
分析などの多変量解析の手法により近赤外吸収スペクト
ルからそれぞれの成分含量を測定することができる。
Near infrared rays are electromagnetic waves in the wavelength range between visible light and infrared rays and having a wavelength of 0.7 μm to 2.5 μm. The near-infrared absorption spectrum of a typical ingredient in food is a spectrum characteristic of each ingredient. Therefore, the fruit,
The near-infrared absorption spectrum of scattered light of vegetables also shows a characteristic spectrum attributed to each content component. This is due to the absorption of the reference vibration of the specific molecule generated in the infrared region by the overtone or the combined vibration. In fruits and vegetables consisting of multiple components, the absorption of each component interferes with each other, and the absorption spectrum in the near infrared region is affected in proportion to the amount of each component. Therefore, multivariate analysis such as multiple regression analysis is performed. The content of each component can be measured from the near infrared absorption spectrum by an analytical method.

本発明では、果実,野菜をそのままの形で近赤外吸収ス
ペクトルを得るために、市販の近赤外分析装置に次のよ
うな工夫を施して近赤外吸収スペクトルを測定する。
In the present invention, in order to obtain the near-infrared absorption spectrum of fruits and vegetables as they are, the near-infrared absorption spectrum is measured by applying the following device to a commercially available near-infrared analyzer.

同軸のグラスファイバーを用いる方法 第1図に示したように、内側が光源につながり、外側が
検出器につながった同軸状グラスファイバーをゴム性の
クッションを介して果実赤道部に密着させて暗箱内で吸
収スペクトルを測定する。
Method of using coaxial glass fiber As shown in Fig. 1, the coaxial glass fiber whose inner side is connected to the light source and whose outer side is connected to the detector is closely attached to the fruit equator through the rubber cushion and placed in the dark box. Measure the absorption spectrum with.

反射法(非積分球方式) 既存の検出器の下部にゴム性のクッションを張り付け、
クッションに果実,野菜を密着させて暗箱内で吸収スペ
クトルを測定する(第2図参照)。
Reflection method (non-integrating sphere method) Attach a rubber cushion to the bottom of the existing detector,
The fruits and vegetables are brought into close contact with the cushion and the absorption spectrum is measured in a dark box (see Fig. 2).

反射法(積分球方式) 第3図に示したように、試料台を上下できる試料室を用
い、果実,野菜を測定部の直下の同じところに位置決め
して吸収スペクトルを測定する。
Reflection Method (Integrating Sphere Method) As shown in FIG. 3, an absorption spectrum is measured by using a sample chamber in which a sample stand can be moved up and down and positioning fruits and vegetables at the same place directly under the measurement unit.

本発明では、まず上記〜のいずれかの方法により複
数検体、好ましくは30検体以上について各成分の近赤外
吸収スペクトルを測定し、得られた測定値をコンピュー
タを用いて多変量解析手段により各成分含量あるいは理
化学的特性を測定するのに最適な波長を決定し、検量線
を作成する。なお、近赤外分光法による成分分析の精度
はこの検量線の精度により決定するので、各成分に適す
る特異的な波長を用いることが大切である。検量線の作
成は次のような手順によって行われる。
In the present invention, first, by measuring the near-infrared absorption spectrum of each component for a plurality of specimens, preferably 30 specimens or more by any of the above-mentioned method, the measured values obtained by a multivariate analysis means using a computer The optimum wavelength for measuring the content of ingredients or physicochemical properties is determined and a calibration curve is prepared. Since the accuracy of component analysis by near infrared spectroscopy is determined by the accuracy of this calibration curve, it is important to use a specific wavelength suitable for each component. The calibration curve is created by the following procedure.

(1) 検体を専用の試料室にセットする。(1) Set the sample in the dedicated sample chamber.

(2) コンピュータからデータの取り込みの指令を入
力し、検体の吸光度をとる。
(2) Input the command of data acquisition from the computer and take the absorbance of the sample.

(3) データ取り込み後別に行う化学分析法で求めら
れる該検体の成分(複数でもよい)含量をコンピュータ
にキーボードより入力する。
(3) The content of the component (s) of the sample, which is obtained by a chemical analysis method separately performed after data acquisition, is input to the computer from the keyboard.

(4) 上記(1)から(3)の操作を複数検体(30検
体以上)について行う。
(4) The above operations (1) to (3) are performed on a plurality of samples (30 samples or more).

(5) 多変量解析の手法により、検量線を検体に含ま
れる各成分ごとに作成する。
(5) A calibration curve is prepared for each component contained in the sample by the method of multivariate analysis.

例えば、大豆の蛋白質含量(CP%)の検量線は次の式で
近似できる。
For example, the calibration curve of protein content (C P %) of soybean can be approximated by the following formula.

CP=K0+K1α+K2α+K3α (1) ここで、αWOは水,脂質,蛋白質に特異的な波
長における吸収の強さであり、Kは比例定数である。こ
こでは化学分析を求めた蛋白質含量と(1)式で推定し
た値の相関係数が最も高くなるように、多変量解析の統
計手法を用いてKの値を決定する。なお、この計算はコ
ンピュータにより自動的に行うことができる。
C P = K 0 + K 1 α W + K 2 α O + K 3 α P (1) where α W , α O and α P are absorption strengths at wavelengths specific to water, lipids and proteins, K is a proportional constant. Here, the value of K is determined by using the statistical method of multivariate analysis so that the correlation coefficient between the protein content obtained by the chemical analysis and the value estimated by the equation (1) becomes the highest. Note that this calculation can be automatically performed by a computer.

検量線を作成した後は、検量線作成時と同様の方法によ
り対象の果実,野菜を各成分に最適の波長で吸光度を測
定し、得られた測定値を検量線と照らし合わせて各成分
(n個)の含量を求めればよい。この方法によれば、果
実,野菜中の複数の成分含量を迅速に測定できる。
After creating the calibration curve, the absorbance was measured at the optimum wavelength for each component of the target fruits and vegetables by the same method as when creating the calibration curve, and the measured values were compared with the calibration curve for each component ( The content of (n pieces) may be calculated. According to this method, the content of a plurality of components in fruits and vegetables can be quickly measured.

次に、本発明では上記の方法で得られたn個の成分の含
量と各成分のバランスによって対象とする果実,野菜の
食味(品質)を判定する。複数の成分から果実,野菜の
食味値を求めるには次のような方法がある。
Next, in the present invention, the taste (quality) of the target fruit or vegetable is determined by the content of the n components obtained by the above method and the balance of each component. The following methods can be used to obtain the taste values of fruits and vegetables from multiple components.

(1) A,B2成分から食味値を求める方法 A成分Ha,B成分Hbを最高食味値100点、A成分La,B成分L
bを最低食味値50点とすると、A成分Sa,B成分Sbの試料
の食味値は次のように算出される。▲▼および▲
▼の距離は となり、S試料の食味値をXとすると、 で算出される。
(1) Method to obtain taste value from A and B2 components A component H a and B component H b have maximum taste value of 100 points, A component L a and B component L
When b is the minimum taste value of 50 points, the taste values of the samples of the A component S a and the B component S b are calculated as follows. ▲ ▼ and ▲
▼ is the distance And the taste value of the S sample is X, It is calculated by.

(2) n成分から食味値を求める方法 C1成分C1H,C2成分C2H,…Cn成分CnHを最高食味値100点、
C1成分C1L,C2成分C2L,…Cn成分CnLを最低食味値とする
と、C1成分C1X,C2成分C2X,…Cn成分CnXの試料の食味値
は次式で算出される。
(2) Method to obtain the taste value from the n component C 1 component C 1H , C 2 component C 2H , ... C n component C nH has the highest taste value of 100 points,
C 1 component C 1L , C 2 component C 2L , ... C n component C nL is the minimum taste value, and the C 1 component C 1X , C 2 component C 2X , ... C n component C nX samples have the following taste values. It is calculated by the formula.

n次空間における最高食味点および最低食味点からの距
離を▲▼,▲▼とすると、それぞれの
値は で表わされる。したがって、試料の食味値をXとする
と、 で算出される。例えば、温州ミカンの食味は酸味と甘味
のバランスによって決まり、pH3.7,Brix13の組合わせの
場合に食味が最もよく、両成分ともこれにより増加して
も減少しても食味は低下する。第4図に示したように、
温州ミカンの食味はpHとBrixの直交平面における最高食
味点からの距離を求めることによって評価することがで
きる。これは、最高食味点からの距離と食味の関係が第
5図に示したように正比例するからである。言いかえれ
ば、n個の成分によって食味が決定される場合、各成分
が各々の軸に相当するn次元空間において最高食味点の
座標が存在し、n個の成分値を近赤外吸収スペクトルか
ら非破壊的に直接求め、それらの値をもとにn次元空間
における最高食味点からの距離をコンピュータを用いて
算出することによって果実,野菜の食味を自動的に判定
するわけである。
If the distances from the highest and lowest tasting points in the nth space are ▲ ▼ and ▲ ▼, the respective values are It is represented by. Therefore, if the taste value of the sample is X, It is calculated by. For example, the taste of Satsuma mandarin is determined by the balance of acidity and sweetness, and the combination of pH 3.7 and Brix 13 has the best taste, and the taste of both components decreases or decreases even if they are increased. As shown in Figure 4,
The taste of Satsuma mandarin can be evaluated by determining the distance from the highest taste point on the orthogonal plane of pH and Brix. This is because the relationship between the distance from the highest taste point and the taste is directly proportional as shown in FIG. In other words, when the taste is determined by n components, the coordinates of the highest taste point exist in the n-dimensional space where each component corresponds to each axis, and the n component values are calculated from the near infrared absorption spectrum. The taste of fruits and vegetables is automatically determined by directly determining nondestructively and calculating the distance from the highest taste point in the n-dimensional space using a computer based on these values.

〔実施例〕〔Example〕

次に、実施例により本発明を説明する。 Next, the present invention will be described with reference to examples.

実施例1 ナシ50個をそのままの形で近赤外吸収スペクトルを測定
した。同時に同試料の全糖,還元糖,Brix,酸を従来の湿
式化学分析法により求めた。測定した近赤外吸収スペク
トルから重回帰分析の手法を用いて各成分含量を推定す
るのに最適な波長を決定し、検量線を作成した。第1表
に、各成分の検量線用選択波長と、その波長の吸光度を
用いて果実内容成分を推定する場合の測定精度を示す。
Example 1 Near infrared absorption spectra of 50 pears were measured as they were. At the same time, total sugar, reducing sugar, Brix, and acid of the same sample were obtained by the conventional wet chemical analysis method. The optimum wavelength for estimating the content of each component was determined from the measured near-infrared absorption spectrum using the method of multiple regression analysis, and a calibration curve was prepared. Table 1 shows the selection wavelengths for the calibration curve of each component and the measurement accuracy when estimating the fruit content component using the absorbance at that wavelength.

次いで、第1表に示した波長を用いてナシ10個の近赤外
吸収スペクトルを測定し、測定値から各成分の含量を求
めた。また、Brix11.6、酸度0.33を最高食味値100点、B
rix9.1,酸度0.17を最低食味値50点として各試料の食味
値も求めた。この結果を第2表に示す。
Then, near infrared absorption spectra of 10 pears were measured using the wavelengths shown in Table 1, and the content of each component was determined from the measured values. Also, Brix 11.6, acidity 0.33, maximum taste value 100 points, B
The taste value of each sample was also determined with rix9.1 and acidity 0.17 as the minimum taste value of 50 points. The results are shown in Table 2.

実施例2 モモ30個をそのままの形で近赤外吸収スペクトルを測定
した。同時に同試料のBrix,酸度を従来の湿式化学分析
法により求め、また硬度(kg)をユニバーサル・ハード
・メータを用いて直径5mmの円筒形の針で赤道部2ケ所
の硬さを測定した平均値として求めた。測定した近赤外
吸収スペクトルから重回帰分析の手法を用いて各成分含
量あるいは理化学的特性を推定するのに最適な波長を決
定し、検量線を作成した。第3表に各成分の検量線用選
択波長とその波長の吸光度を用いて内容成分あるいは理
化学的特性を推定する場合の測定精度を示す。
Example 2 Near infrared absorption spectra of 30 peaches were measured as they were. At the same time, the Brix and acidity of the same sample were obtained by the conventional wet chemical analysis method, and the hardness (kg) was measured by measuring the hardness at two equator parts with a cylindrical needle with a diameter of 5 mm using a universal hard meter. It was calculated as a value. From the measured near-infrared absorption spectrum, the optimum wavelength for estimating the content of each component or the physicochemical properties was determined using the method of multiple regression analysis, and a calibration curve was prepared. Table 3 shows the measurement accuracy when the content component or the physicochemical property is estimated using the selected wavelength for the calibration curve of each component and the absorbance at that wavelength.

次いで、第3表に示した波長を用いてモモ10個の近赤外
吸収スペクトルを測定し、測定値から各成分の含量を求
めた。またBrix15.5,酸度3.78を最高食味値100点、Brix
10.1,酸度1.21を最低食味値50点として各試料の食味値
を求めた。この結果を第4表に示す。
Then, near infrared absorption spectra of 10 peaches were measured using the wavelengths shown in Table 3, and the content of each component was determined from the measured values. Also, Brix 15.5, acidity 3.78, maximum taste value 100 points, Brix
The taste value of each sample was calculated with 10.1 and acidity of 1.21 as the minimum taste value of 50 points. The results are shown in Table 4.

実施例3 トマト40個をそのままの形で近赤外吸収スペクトルを測
定した。同時に同試料のBrix,酸度を従来の湿式化学分
析法により求めた。測定した近赤外吸収スペクトルから
重回帰分析の手法を用いて各成分含量を推定するのに最
適な波長を決定し、検量線を作成した。第5表に各成分
の検量線用選択波長とその波長の吸光度を用いて内容成
分を推定する場合の測定精度を示す。
Example 3 Near infrared absorption spectra of 40 tomatoes were measured as they were. At the same time, Brix and acidity of the same sample were obtained by the conventional wet chemical analysis method. The optimum wavelength for estimating the content of each component was determined from the measured near-infrared absorption spectrum using the method of multiple regression analysis, and a calibration curve was prepared. Table 5 shows the measurement accuracy when the content components are estimated using the selected wavelength for the calibration curve of each component and the absorbance at that wavelength.

次いで、第5表に示した波長を用いてトマト10個の近赤
外吸収スペクトルを測定し、測定値から各成分の含量を
求めた。また、Brix7.3,酸度6.42を最高食味値100点、B
rix3.5,酸度2.08を最高食味値50点として各試料の食味
値を求めた。この結果を第6表に示す。
Next, the near infrared absorption spectra of 10 tomatoes were measured using the wavelengths shown in Table 5, and the content of each component was determined from the measured values. Also, Brix 7.3, acidity 6.42, the highest taste value 100 points, B
The taste value of each sample was determined with rix3.5 and acidity of 2.08 as the maximum taste value of 50 points. The results are shown in Table 6.

〔発明の効果〕 本発明によれば、果実,野菜を破壊することなく迅速に
その食味を判定できるので、同一試料の食味追跡調査
や、全試料の成分調査が可能である。
[Effects of the Invention] According to the present invention, the taste of fruits and vegetables can be quickly determined without destroying them, so that it is possible to trace the taste of the same sample and investigate the components of all samples.

【図面の簡単な説明】[Brief description of drawings]

第1図(1)は同軸のグラスファイバーを用いて近赤外
吸収スペクトルを測定する方法を示し、第1図(2)は
グラスファイバーのa−a′の断面図を示す。第2図は
非積分球方式の反射法を用いた近赤外吸収スペクトルを
測定する方法を示し、第3図は積分球方式の反射法を用
いた近赤外吸収スペクトルを測定する方法を示す。な
お、図中のAは検体,Bは光源,Cは検出器,Dはゴム性クッ
ションを指す。 第4図は温州ミカンのBrix,pHと食味の関係を示し、第
5図は最高食味点からの距離と食味の関係を示すもので
ある。
FIG. 1 (1) shows a method for measuring a near-infrared absorption spectrum by using a coaxial glass fiber, and FIG. 1 (2) shows a sectional view of aa 'of the glass fiber. FIG. 2 shows a method for measuring a near infrared absorption spectrum using a non-integrating sphere reflection method, and FIG. 3 shows a method for measuring a near infrared absorption spectrum using an integrating sphere reflection method. . In the figure, A is a sample, B is a light source, C is a detector, and D is a rubber cushion. FIG. 4 shows the relationship between Brix, pH and taste of Wenshu mandarin orange, and FIG. 5 shows the relationship between the distance from the highest taste point and taste.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−55392(JP,A) 特表 昭60−501268(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Patent Laid-Open No. 49-55392 (JP, A) Special Table 60-501268 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】対象の果実又は野菜の近傍から、もしくは
接触した状態で近赤外線を照射して近赤外吸収スペクト
ルを得、得られた近赤外吸収スペクトルから多変量解析
手法により対象物中のn個の成分含量を推定するのに適
したn個の検量線を求め、成分含量未知の対象物につい
て前記検量線に採用した波長の吸光度から前記検量線を
用いて各成分含量を算出すると共に、該算出値よりn次
元空間における別途官能検査によって決定される最高食
味点からの距離を求めて対象物の食味を自動的に判定す
ることを特徴とする近赤外線による果実・野菜の食味の
非破壊判定法。
1. A near-infrared absorption spectrum is obtained by irradiating near-infrared rays from the vicinity of a target fruit or vegetable or in a state of contact, and the near-infrared absorption spectrum is obtained from the obtained near-infrared absorption spectrum in a target object by a multivariate analysis method. N calibration curves suitable for estimating the content of n components are obtained, and the content of each component is calculated from the absorbance of the wavelength adopted in the calibration curve for the target of unknown component content using the calibration curve. Along with the calculated value, the taste of the object is automatically determined by obtaining the distance from the highest taste point determined by a separate sensory test in the n-dimensional space. Non-destructive judgment method.
JP4074088A 1988-02-25 1988-02-25 Non-destructive method for determining the taste of fruits and vegetables by near infrared rays Expired - Lifetime JPH07117490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074088A JPH07117490B2 (en) 1988-02-25 1988-02-25 Non-destructive method for determining the taste of fruits and vegetables by near infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074088A JPH07117490B2 (en) 1988-02-25 1988-02-25 Non-destructive method for determining the taste of fruits and vegetables by near infrared rays

Publications (2)

Publication Number Publication Date
JPH01216265A JPH01216265A (en) 1989-08-30
JPH07117490B2 true JPH07117490B2 (en) 1995-12-18

Family

ID=12589030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074088A Expired - Lifetime JPH07117490B2 (en) 1988-02-25 1988-02-25 Non-destructive method for determining the taste of fruits and vegetables by near infrared rays

Country Status (1)

Country Link
JP (1) JPH07117490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047369A (en) * 2020-09-11 2022-03-24 Tdk株式会社 Method for making sense-of-taste estimation model, sense-of-taste estimation system, and sense-of-taste estimation program

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2882824B2 (en) * 1989-11-17 1999-04-12 三菱重工業株式会社 Fruit and vegetable ingredient measuring device
US5089701A (en) * 1990-08-06 1992-02-18 The United States Of America As Represented By The Secretary Of Agriculture Nondestructive measurement of soluble solids in fruits having a rind or skin
JPH06249776A (en) * 1992-07-10 1994-09-09 Toyo Noki Kk Detection of root vegetables by use of near-infrared ray
JPH07318429A (en) * 1994-05-20 1995-12-08 Yanmar Agricult Equip Co Ltd Optical rotation angle measuring method
US5708271A (en) * 1994-12-28 1998-01-13 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
US5726750A (en) * 1995-06-29 1998-03-10 Sumitomo Metal Mining Co., Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
US5844678A (en) * 1995-06-29 1998-12-01 Sumitomo Metal Mining Co. Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
FR2775345B1 (en) * 1998-02-26 2000-05-19 Cemagref PROCESS AND PLANT FOR MEASURING THE CONTENT, IN PARTICULAR OF SUGAR, OF FRUITS AND VEGETABLES
JP2002014042A (en) 2000-04-24 2002-01-18 Sumitomo Metal Mining Co Ltd Nondestructive sugar-level measuring apparatus
KR100414186B1 (en) 2001-07-24 2004-01-07 대한민국 the automatic calibration system and for measuring internal qualities of fruits on both side
ES2285961A1 (en) * 2007-05-07 2007-11-16 Universidad Politecnica De Madrid Device for carton box forming machines, presents diverse cavities by terminal angles, where cavities adjust device longitudinally, and device has swinging arm for ceiling of support during packing
JP5441703B2 (en) * 2007-09-21 2014-03-12 サントリーホールディングス株式会社 Visible / Near-Infrared Spectroscopy and Grape Brewing Method
CN110530818B (en) * 2019-09-04 2024-01-05 中国计量大学 Sample vessel for containing cherry products and application of sample vessel in origin tracing
CN114136887B (en) * 2021-12-07 2023-10-20 广东省农业科学院蔬菜研究所 Method for rapidly detecting white gourd taste determining factor malic acid based on near infrared spectrum technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770111A (en) * 1972-05-03 1973-11-06 Fmc Corp Apparatus for sorting fruit according to color

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047369A (en) * 2020-09-11 2022-03-24 Tdk株式会社 Method for making sense-of-taste estimation model, sense-of-taste estimation system, and sense-of-taste estimation program

Also Published As

Publication number Publication date
JPH01216265A (en) 1989-08-30

Similar Documents

Publication Publication Date Title
Wang et al. Development of multi-cultivar models for predicting the soluble solid content and firmness of European pear (Pyrus communis L.) using portable vis–NIR spectroscopy
Correia et al. Portable near infrared spectroscopy applied to quality control of Brazilian coffee
Abasi et al. Dedicated non-destructive devices for food quality measurement: A review
Schmilovitch et al. Determination of mango physiological indices by near-infrared spectrometry
Nicolaï et al. Nondestructive measurement of fruit and vegetable quality
Kiani et al. Fusion of artificial senses as a robust approach to food quality assessment
Giangiacomo et al. Predicting concentrations of individual sugars in dry mixtures by near‐infrared reflectance spectroscopy
Di Natale et al. Outer product analysis of electronic nose and visible spectra: application to the measurement of peach fruit characteristics
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
JPH07117490B2 (en) Non-destructive method for determining the taste of fruits and vegetables by near infrared rays
Jha et al. Authentication of sweetness of mango juice using Fourier transform infrared-attenuated total reflection spectroscopy
Nicolaï et al. Nondestructive evaluation: Detection of external and internal attributes frequently associated with quality and damage
Peng et al. An LCTF-based multispectral imaging system for estimation of apple fruit firmness: Part II. Selection of optimal wavelengths and development of prediction models
Wehling Infrared spectroscopy
Osborne Principles and practice of near infra‐red (NIR) reflectance analysis
Giovenzana et al. Monitoring of fresh-cut Valerianella locusta Laterr. shelf life by electronic nose and VIS–NIR spectroscopy
Hadiwijaya et al. Rapid and non-destructive prediction of total soluble solids of guava fruits at various storage periods using handheld near-infrared instrument
JPH0558735B2 (en)
Rodriguez-Saona et al. Infrared and raman spectroscopy
Mizrach et al. Determination of mango physiological indices by mechanical wave analysis
Delwiche et al. Soluble solids and simple sugars measurement in intact mango using near infrared spectroscopy
Munawar et al. The application of near infrared technology as a rapid and non-destructive method to determine vitamin C content of intact mango fruit.
Aslam et al. A systematic account of food adulteration and recent trends in the non-destructive analysis of food fraud detection
Ferrara et al. The prediction of ripening parameters in Primitivo wine grape cultivar using a portable NIR device
Camps et al. Determination of artemisinin and moisture content of Artemisia annua L. dry powder using a hand-held near infrared spectroscopy device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term