JPH07117138B2 - Continuously variable transmission - Google Patents

Continuously variable transmission

Info

Publication number
JPH07117138B2
JPH07117138B2 JP27674990A JP27674990A JPH07117138B2 JP H07117138 B2 JPH07117138 B2 JP H07117138B2 JP 27674990 A JP27674990 A JP 27674990A JP 27674990 A JP27674990 A JP 27674990A JP H07117138 B2 JPH07117138 B2 JP H07117138B2
Authority
JP
Japan
Prior art keywords
ring
cam
disc
circular
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27674990A
Other languages
Japanese (ja)
Other versions
JPH04151055A (en
Inventor
淳平 大中
Original Assignee
淳平 大中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淳平 大中 filed Critical 淳平 大中
Priority to JP27674990A priority Critical patent/JPH07117138B2/en
Publication of JPH04151055A publication Critical patent/JPH04151055A/en
Publication of JPH07117138B2 publication Critical patent/JPH07117138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Description

【発明の詳細な説明】 (発明の目的) 本発明は噛合伝動による簡潔な機構で無段階に変速でき
る機械式の無段変速機を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) The present invention provides a mechanical continuously variable transmission capable of continuously shifting gears with a simple mechanism by meshing transmission.

(産業上の利用分野) この発明は小型軽量化を必要とする自転車等にも利用で
き、又生産機械や自動車、船舶等々の重機類、又更に風
力や潮力、波力等の刻々変化の激しい自然からのエネル
ギー抽出発電装置等にも有効に活用できる無段変速機に
関するものである。
(Industrial field of application) The present invention can be applied to bicycles and the like that require downsizing and weight reduction, and heavy machinery such as production machines, automobiles, ships, etc., as well as wind power, tidal power, wave power, etc. The present invention relates to a continuously variable transmission that can be effectively used for energy extraction power generation equipment from intense nature.

(従来の技術) 摩擦伝動式(Traction Drive)とベルトプーリ式無段変
速機を除き、簡潔と軽量小型化を目的とする従来の無段
変速機としては米国特許第4810235号と第4832660号、第
4878883号及び第4961719号等の公報に開示されている。
これらは何れもがベルト又はチエン巻掛け伝動において
駆動側又は被動側に数個の滑車分節又は小径のスプロケ
ットを数個、同心円上に配設し、この相似円の直径を拡
縮させる手段による変速機構のものである。
(Prior Art) U.S. Pat. Nos. 4810235 and 4832660 are known as conventional continuously variable transmissions for the purpose of simplicity and weight reduction, except for friction drive type (Traction Drive) and belt pulley type continuously variable transmissions. First
It is disclosed in gazettes such as 4878883 and 4961719.
Each of these is a transmission mechanism in which several pulley segments or several small-diameter sprockets are arranged concentrically on the driving side or the driven side in belt or chain winding transmission, and the diameter of this similar circle is expanded or contracted. belongs to.

(発明が解決しようとする問題点) 然し乍らこれらは構造上、変速比の変動幅、即ち変速倍
率を大きくできない事と同時に出力側の回転角速度に於
ける脈動が不可避となる問題が併含されている。この脈
動は仮に6個の滑車分節を配設した前記第4810235号を
例に挙げると軸心と二つの滑車分節によって形成される
正三角形の高さとその一辺の長さとの寸法差が交互に回
転される円の半径となって作用する。
(Problems to be solved by the invention) However, because of the structure, these problems include the problem that the fluctuation range of the gear ratio, that is, the gear ratio cannot be increased, and at the same time, the pulsation in the rotational angular velocity on the output side is inevitable. There is. For example, in the case of No. 4810235 in which six pulley segments are arranged, this pulsation is caused by rotation of the dimensional difference between the height of a regular triangle formed by the shaft center and the two pulley segments and the length of one side thereof. It acts as the radius of the circle.

即ち、これはSine60度、1対0、86602の数値の脈動が
変速全域で発生する。尚、これらの個数を8又は10と増
加設定すると脈動幅は暫減できるが、構造上これと反比
例して直径を縮少させる限界が制約され、従って変速倍
率は低下する。
That is, this means that a pulsation with a numerical value of Sine 60 degrees, 1: 0, and 86602 occurs in the entire shift range. Although the pulsation width can be temporarily reduced by increasing the number of these elements to 8 or 10, the limit to reduce the diameter in inverse proportion to this is restricted due to the structure, and thus the gear ratio is reduced.

(問題点を解決するための手段) 本発明は位相を等間角方向に成形した複数のカムを入力
軸に設け、これらのカムと同数の円板にカム径に合わせ
た直径線状のスリットを設け、各スリットの半径域内に
各カムを嵌め合わせる。又これら円板を回転自在に装填
した円環を回転自在に保持する操作枠を設け、この操作
枠を出力軸と同心に枢支する。これによって円板中心を
入力軸が通る円弧線状に円環が昇降できるようにセット
する。更に、各円板外周に設けたラチエット歯による一
方クラッチを円環内に装填し、この円環外周と出力軸に
各々固定したスプロケットに巻掛けたチエンにより噛合
伝動状に構成する。
(Means for Solving Problems) According to the present invention, a plurality of cams whose phases are formed in the equiangular angular direction are provided on the input shaft, and the same number of discs as these cams are provided with slits each having a diameter line corresponding to the cam diameter. And fit each cam within the radius of each slit. An operation frame for rotatably holding an annular ring in which these discs are rotatably mounted is provided, and the operation frame is pivotally supported concentrically with the output shaft. As a result, the circular ring is set so that it can be moved up and down in a circular arc line passing through the input shaft. Further, a one-side clutch having ratchet teeth provided on the outer circumference of each disk is loaded in the annulus, and a meshing transmission is constituted by the outer circumference of the annulus and the chain wound around sprockets fixed to the output shaft.

(作用) 本発明は上記の構成により、入力軸カムの転動による摩
擦分力の押圧力を円板スリットの両内壁へ伝え、この連
続作用で所定角度の往復回転を円板に生じさせる。更に
一方クラッチの作用と複数円板の交互回転によって円環
を連続回転させる。この円環外周のスプロケットと出力
軸のスプロケットに巻掛けたチエンによって出力軸に回
転伝動する。又、変速は操作枠の昇降調整手段により、
円板スリットの半径領域内に於けるカムとの相対位置を
変換して円板の往復回転角度を拡縮する。この操作によ
って無段階に変速ができる。
(Operation) With the above-described structure, the present invention transmits the pressing force of the friction component force due to the rolling of the input shaft cam to both inner walls of the disc slit, and the continuous action causes the disc to reciprocally rotate at a predetermined angle. Further, the action of the one-sided clutch and the alternate rotation of the plurality of discs cause the annulus to rotate continuously. Rotation is transmitted to the output shaft by the chain wound around the sprocket on the outer circumference of the ring and the sprocket on the output shaft. In addition, the gear shifting is performed by the elevating and lowering adjusting means of the operation frame
The reciprocal rotation angle of the disk is expanded or reduced by converting the relative position with the cam within the radius area of the disk slit. By this operation, the speed can be changed steplessly.

更には入力軸に非円形カムを設ける手段で完全に脈動の
無い回転を出力軸に伝動できる正合性が得られる。又、
更に円形カムを入力軸に設け、自転車等に活用する場
合、ペダルの脚力駆動に於ける上下死点附近で負荷を軽
減させ、有効駆動域では効果的に加速できる為、人間工
学上脚力を最適に利用できる。
Further, by providing a non-circular cam on the input shaft, it is possible to obtain the correctness by which the rotation free of pulsation can be transmitted to the output shaft. or,
Furthermore, when a circular cam is installed on the input shaft and it is used for a bicycle, etc., the load is reduced near the top and bottom dead center in pedal leg force drive, and it is possible to accelerate effectively in the effective drive range, so ergonomic leg force is optimal. Available for

(実施例) 始めに第1図から第4図の図面に従って操作枠と円環及
び、この中の円板の組込み状態を説明する。第1図中13
と14は板状のサポートで前面の13は内部を表わすため両
脚部を除き破断されている。
(Embodiment) First, the operating frame, the ring, and the assembled state of the disk therein will be described with reference to the drawings in FIGS. 1 to 4. 13 in Fig. 1
Numerals 14 and 14 are plate-like supports, and 13 on the front surface is an internal part, which is broken except for both legs.

入力軸1には一体に成形した非円形カム3と4が設けら
れ、この入力軸は円板中心から出力軸心までの間隔寸法
に等しい位置にベアリングにより両サポートへ軸付けさ
れている。又、これら非円形カムの厚みは後述するスラ
イダー7、8の幅と等しく設定されている。
The input shaft 1 is provided with integrally formed non-circular cams 3 and 4, and the input shaft is attached to both supports by bearings at a position equal to the distance from the center of the disk to the output shaft center. The thickness of these non-circular cams is set equal to the width of sliders 7 and 8 which will be described later.

円板5と6は同一寸法と形状で、中心を通る直径線状の
広幅のスリットが設けられ、この左右とそれら上下に広
い窓が開設されている。これらの目的は可及的に軽くし
て慣性損失を小さくするためである。又、第1図と第2
図のとおり円板外周には一方クラッチとして作用させる
ラチエット歯5Tが設けられ、この歯の両側肩部は円板を
回転自在に保持する鍔付きの回転輪に密接して円環内へ
嵌合されている。これらの回転輪23、24、25、23B、24
B、25B、23C、24C、25Cは第2図のように中央が小径に
切削されラチエット歯5Tとは無接触である。又、これら
の回転輪は円環22へ小径のベアリングを介して軸付けさ
れ第1図のとおり相互は等間隔に配設されている。
The circular plates 5 and 6 have the same size and shape, and are provided with wide slits having a diameter line passing through the center, and wide windows are opened on the left and right sides and above and below them. Their purpose is to reduce the inertial loss by making it as light as possible. Also, Fig. 1 and 2
As shown in the figure, the ratchet teeth 5T that act as a one-way clutch are provided on the outer circumference of the disc, and the shoulders on both sides of these teeth are closely fitted to the rotary wheel with a collar that holds the disc rotatably and fit inside the ring. Has been done. These rotating wheels 23, 24, 25, 23B, 24
B, 25B, 23C, 24C and 25C are cut to have a small diameter in the center as shown in FIG. 2 and are not in contact with the ratchet teeth 5T. Further, these rotating wheels are axially attached to the annular ring 22 through a bearing having a small diameter and are arranged at equal intervals as shown in FIG.

尚、円板6もこれらの関連部材及び、後述する一方クラ
ッチ、円板スリット内のスライダー、リニアベアリング
等々を含め全部が同一であり、円板5の関係部品と並行
状に配設されている。
It should be noted that the disk 6 is the same in all, including these related members, one-side clutch, slider in the disk slit, linear bearing, etc., which will be described later, and is arranged in parallel with the related parts of the disk 5. .

円環22は操作枠15、16の大径円孔内周に設けたアンギュ
ラーコンタクトベアリング21で回転自在に嵌合保持され
ている。又、同時にこの操作枠15と16は七本のスタッド
20a、20b、20c…20gとこれらの締結ねじにて平行一本に
固定されている。更に円環外周の断面中央にスプロケッ
ト18が固定され、これと出力軸2に固定された小径のス
プロケット19とに巻掛けたチエン30によって歯合伝動状
態である。
The circular ring 22 is rotatably fitted and held by an angular contact bearing 21 provided on the inner circumference of the large-diameter circular holes of the operation frames 15 and 16. At the same time, the operating frames 15 and 16 have seven studs.
20a, 20b, 20c ... 20g and these fastening screws are fixed in parallel to each other. Further, a sprocket 18 is fixed at the center of the cross-section of the outer circumference of the ring, and a chain 30 is wound around the sprocket 19 and a small-diameter sprocket 19 fixed to the output shaft 2.

前記サポート13、14の両内壁に沿って操作枠15、16の組
合せが出力軸の軸受けを兼ねサポートへ固定されている
スリーブ17及び後面サポート14のスリーブにより枢支さ
れ、後述する変換操作に於いて円板中心が入力軸心を通
る円弧状に昇降できるように組み込まれている。
A combination of operation frames 15 and 16 along both inner walls of the supports 13 and 14 is pivotally supported by a sleeve 17 fixed to the support that also serves as a bearing of the output shaft and a sleeve of the rear surface support 14, and is used in the conversion operation described later. The center of the disk can be moved up and down in an arc shape that passes through the input axis.

一方クラッチ機構は第1図のように前記円環の三等分位
置にある回転輪23、23B、23Cとこれらに各々隣接して円
環に軸付けしたラチエット爪と、これら回転輪に巻着さ
れた作動環で構成されている。尚、これらは全部同形部
品で、各ラチエット爪も全て時計方向に向き、又同時に
円板6の関係部品も全て同一で円板5とは並行状であ
る。従って円板5に係わる回転輪23とラチエット爪27を
代表として説明する。
On the other hand, the clutch mechanism is, as shown in FIG. 1, rotating wheels 23, 23B and 23C located at three equal positions of the ring, a ratchet pawl that is adjacent to each of these wheels, and is wound around these rotating wheels. It is composed of a working ring. It should be noted that these are all the same shape parts, all the ratchet pawls are all directed in the clockwise direction, and at the same time, all related parts of the disk 6 are also the same and are parallel to the disk 5. Therefore, the rotary wheel 23 and the ratchet pawl 27 related to the disc 5 will be described as a representative.

ラチエット爪に作用する作動環26は第3図と第4図のと
おり回転輪23の小径部に巻着され、隣接して円環に軸付
けされたラチエット爪27の頭部横U字状内へ、作動環の
切り口両端から連続して一体に成形された直線状の両腕
が嵌挿されている。この作動環の材質は一定の弾性を有
し耐摩耗性と自己潤滑性に優れたナイロン系のエンジニ
アリングプラスチックで成形されている。
As shown in FIGS. 3 and 4, the operating ring 26 acting on the ratchet pawl is wound around the small diameter portion of the rotary wheel 23, and the head of the ratchet pawl 27 adjacent to and axially attached to the circular ring is in the horizontal U-shape. The two linear arms that are continuously and integrally formed are fitted and inserted from both ends of the cut end of the operating ring. The material of this operating ring is formed of nylon-based engineering plastic that has a certain elasticity and is excellent in wear resistance and self-lubrication.

これらは円板の回転に即応して第3図のように円板が反
時計方向へ回転中は回転輪23が時計方向へ回わされ、作
動環の両腕はラチエット爪横U字状の広範内にあり図中
X幅となり回転輪の小径部と作動環は軽く滑り乍らラチ
エット爪頭部を円環内壁へ押し当てる。従って、ラチエ
ット爪と歯5Tは隔離状態を保たれる。又、第4図のよう
に円板が時計方向へ回転し始めると同時に回転輪23は反
時計方向に回わされ作動環の両腕はラチエット爪頭部を
円板方向へ押すと同時にこの両腕は爪頭部横U字状の内
幅、即ち図中Y幅へと急減され、従って回転輪の小径部
と作動環の摩擦は急増して爪は強く確実にラチエット歯
5Tへ噛込ませる。この作用で円板と円環は一体化されて
円環を同時に時計方向へ回転させる。又、再度反転の際
は第3図のとおり爪と歯が隔離される。又、これらラチ
エット爪と作動環は23、23B、23Cの回転輪に各々付属し
て各円板に各々三組が設けられ、同時に三個のラチエッ
ト爪が働く。この同時作用を円滑にするため円板のラチ
エット歯の歯数は三の倍数に設定されている。この機能
は円板から円環への伝動強度と耐久性を一個の爪の三倍
として働かせる効果がある。
In response to the rotation of the disc, these rotate the rotating wheel 23 in the clockwise direction while the disc rotates counterclockwise as shown in FIG. 3, so that both arms of the operating ring have a ratchet claw horizontal U-shape. Within a wide range, the width is X in the figure, and the small diameter part of the rotary wheel and the operating ring slide lightly and press the ratchet pawl head against the inner wall of the ring. Therefore, the ratchet claw and the tooth 5T are kept isolated. Further, as shown in FIG. 4, when the disc starts to rotate in the clockwise direction, the rotary wheel 23 is rotated counterclockwise so that both arms of the operating ring push the ratchet pawl head in the disc direction at the same time. The arm is sharply reduced to the inner width of the U-shaped side of the nail head, that is, the Y-width in the figure. Therefore, the friction between the small diameter portion of the rotating wheel and the operating ring sharply increases and the nail is strong and surely ratchet teeth.
Bite into 5T. This action causes the disc and the annulus to be integrated so that the annulus rotates simultaneously in the clockwise direction. When reversing again, the nail and the tooth are separated as shown in FIG. Also, these ratchet pawls and actuating rings are attached to the rotary wheels 23, 23B, and 23C respectively, and three sets are provided on each disc, and at the same time, three ratchet pawls work. To facilitate this simultaneous action, the number of ratchet teeth on the disc is set to a multiple of three. This function has the effect of making the transmission strength and durability from the disk to the ring triple that of one claw.

次に非円形カムの回転に伴なう作用を円板スリットに与
える摩擦分力の摩擦を除去するベアリングの転動に変換
する装置部品について説明する。第1図と第5図のよう
に円板スリット左右内壁へチャンネル型のスライダー
7、8によってリニアベアリング9、10(平形保持器付
針状ころ)を密接状態に抱着している。又、これらスラ
イダーの上端に11、下端に12の薄い鋼板のブリッジが表
裏両面より螺着固定されて両スライダーは平行に連継さ
れている。更に第5図のように両スライダーの各チャン
ネル内側の長手方向に設けた細溝内へ摺動子7B、7Cが挿
入されている。これら摺動子は前述の作動環26と同一材
質で作られ円板の厚み方向へ、ゆるやかな波形に成形さ
れているので適当な強さで弾設され、常にスライダーと
リニアベアリングの自重による下降を可及的に弱い摺動
摩擦によって予防している。
Next, a description will be given of a device component that converts the action of rotation of the non-circular cam into the rolling motion of the bearing that removes the friction of the friction component force applied to the disc slit. As shown in FIG. 1 and FIG. 5, linear bearings 9 and 10 (needle rollers with a flat cage) are closely attached to the left and right inner walls of the disk slit by channel type sliders 7 and 8. In addition, 11 sliders at the upper end and 12 thin steel plate bridges at the lower end of these sliders are screwed and fixed from both front and back surfaces, and both sliders are connected in parallel. Further, as shown in FIG. 5, the sliders 7B and 7C are inserted in the narrow grooves provided in the longitudinal direction inside the channels of both sliders. These sliders are made of the same material as the above-mentioned operating ring 26 and are formed in a gentle corrugation in the thickness direction of the disc, so they are elastically mounted with appropriate strength, and always descend by the weight of the slider and linear bearing. Is prevented by a sliding friction as weak as possible.

又、両スライダーの左右対向幅は非円形カムの直径より
0.002mm以下の極く微小クリアランスを加算して設定さ
れ、入力軸の回転中は常に左右の何れかのスライダーに
カムが接触作用する。尚、第5図中9Hはリニアベアリン
グの針状ころの軸で保持器に挿入されている。又、後述
する変速操作の際に機能させるため円板スリット下部に
対向の突起29Lと29Rが設けられスライダーの下行位置を
限定制止する。尚、上行時にはスリット外端で制止でき
る。
Also, the width of both sliders facing each other from the diameter of the non-circular cam is
It is set by adding a very small clearance of 0.002 mm or less, and the cam always contacts one of the left and right sliders while the input shaft is rotating. In addition, 9H in FIG. 5 is a shaft of a needle roller of a linear bearing and is inserted in the cage. Further, opposing projections 29L and 29R are provided at the lower part of the disk slit to function during a gear shift operation described later to limit the descending position of the slider. It should be noted that when going up, it can be stopped at the outer edge of the slit.

前記操作枠の相互固定用スタッド中20aに後述する変速
操作用のワイヤーが固定され、この上向側は第10図のよ
うに両サポート右側脚上部に軸付けした二条溝を備えた
二本掛けプーリー35へ引張状で時計方向に半回転巻き着
けた位置にこの28U端が固定され、下向側ワイヤー28Dは
両サポート脚下部に軸付けされたプーリー36に巻掛けた
後、引張状で二本掛けプーリー35に反時計方向へ半回転
を巻き着けた位置にこの一端が固定されている。更に操
作用のレバー37が前記二本掛けプーリーの固定され、こ
のプーリーは両サポートとの接触面で適当な摩擦状態で
保たれ、又、必要に応じ手動による操作は自在にできる
ように調整されている。
A wire for gear shift operation, which will be described later, is fixed to the mutual fixing stud 20a of the operation frame, and the upward side of this is a double hook provided with a double groove groove axially attached to the right leg of both supports as shown in FIG. The 28U end is fixed at a position where it is wound around the pulley 35 in a clockwise direction by half a turn in a clockwise direction, and the downward wire 28D is wound around the pulley 36 axially attached to the lower portions of both support legs and then wound in a tension mode. This one end is fixed to a position where the main hanging pulley 35 is wound a half turn counterclockwise. Further, an operating lever 37 is fixed to the two-hanging pulley, and the pulley is kept in an appropriate friction state at the contact surface with both supports, and is adjusted so that manual operation can be freely performed if necessary. ing.

次に第6図を併わせて運転と作用、及び変速操作を説明
する。
Next, the operation and action, and the gear shift operation will be described with reference to FIG.

今、第1図の姿勢から入力軸1が時計方向へ回転し始め
るとカム3はスライダー7を押し乍ら円板5を時計方向
へ、同時にカム4は円板6の左側スライダーを押し乍ら
この円板を反時計方向へ回わす。これらと同時にスライ
ダー7はニアベアリング9を転動させ、カム3もスライ
ダー接触面上を転動する。従ってリニアベアリング9と
スライダー7は下降し乍ら円板5を回転させ、第6図中
点線で表わす位置に到達した時点でスライダー下端が前
記の突起29L、29Rへ同時に当接する。この回転の間は前
述の回転輪23、23B、23Cとこれらの各ラチエット爪が第
4図の姿勢を保ち、円板5と円環22は合体されて共に時
計方向へ回転する。又、この間円板6は反時計方向へ回
転され、従って回転輪は時計方向へ回わされるため、こ
れらのラチエット爪は第3図の姿勢を保ちラチエット歯
からの隔離が保たれ円板6と円環は絶縁状態で空転され
る。
When the input shaft 1 starts to rotate clockwise from the posture shown in FIG. 1, the cam 3 pushes the slider 7 to push the disc 5 clockwise, and at the same time, the cam 4 pushes the left slider of the disc 6 to push. Turn this disc counterclockwise. At the same time, the slider 7 rolls the near bearing 9, and the cam 3 rolls on the slider contact surface. Therefore, the linear bearing 9 and the slider 7 descend and rotate the disk 5, and when the slider 5 reaches the position shown by the dotted line in FIG. 6, the lower end of the slider simultaneously contacts the projections 29L and 29R. During this rotation, the rotating wheels 23, 23B, 23C and their respective ratchet pawls maintain the posture shown in FIG. 4, and the disc 5 and the ring 22 are united and both rotate clockwise. Further, during this period, the disc 6 is rotated counterclockwise, and therefore the rotating wheel is rotated clockwise, so that these ratchet pawls maintain the posture shown in FIG. 3 and are kept isolated from the ratchet teeth. And the ring are idled in an insulated state.

更に、カム3が前記第6図の点線姿勢の死点を通過して
実線位置に到達する間は前述と反対に円板へ作用し、即
ちカム3は円板5を反時計方向へ、カム4は円板6を時
計方向へ回転させる。従って、カム3はスライダーを上
昇させ乍ら、同時にカム4はスライダーを下降させ乍
ら、円板6の三個のラチエット爪は第4図の姿勢を保ち
円環を連続して時計方向へ伝動回転する。
Further, while the cam 3 passes through the dead point of the dotted line posture of FIG. 6 and reaches the solid line position, it acts on the disk in the opposite manner to the above, that is, the cam 3 moves the disk 5 counterclockwise, 4 rotates the disc 6 clockwise. Therefore, while the cam 3 raises the slider, and the cam 4 lowers the slider at the same time, the three ratchet pawls of the disc 6 keep the posture shown in FIG. 4 and continuously transmit the ring clockwise. Rotate.

このように円板5と6が交互に往復回転を繰り返し乍ら
円環22を時計方向へ連続回転させ、スプロケット18と19
及びこれらに巻掛けたチエン30によって出力軸2へ回転
を伝動する。
In this way, the disks 5 and 6 alternately repeat the reciprocating rotation, and the circular ring 22 is continuously rotated clockwise, so that the sprockets 18 and 19 are rotated.
Also, the rotation is transmitted to the output shaft 2 by the chain 30 wound around them.

従って、両非円形カムの各円板への回転分力作用は全て
リニアベアリングの転動とこれに伴なうスライダーの昇
降により摩擦を除去できるため摩耗や発熱、及びエネル
ギー損失を完全に予防できる。次に変速操作について説
明する。
Therefore, since all the rotational force components acting on the discs of both the non-circular cams can be removed by the rolling of the linear bearing and the accompanying lifting and lowering of the slider, wear, heat generation, and energy loss can be completely prevented. . Next, the shift operation will be described.

今仮に前記第10図のレバー37を反時計方向へ上げて行く
と、これに固定の滑車35が回わりワイヤー28Dが巻込ま
れ同時に28Uが戻され、操作枠15、16は出力軸心を基点
として下降され入力軸は円板スリットの外周方向へ移動
されて行く。従って、両カムのスライダーへの作用接点
が円板半径の大きい位置へ移行されるため、円板5、6
の往復回転角度が徐々に縮小され、従って出力軸へは高
トルク低速回転の伝動となって行く。更にレバー37を図
の直立位置迄上げると最低速度となる。又、反対にレバ
ーを下げて行くと滑車35によりワイヤー28Uが巻込ま
れ、28Dが戻され、操作枠は上昇して入力軸がスリット
中を円板中心方向へ移動されて行く。従って両カムのス
ライダーへの作用接点が円板半径の小さい位置へ移行さ
れるため、円板5、6の往復回転角度が拡大され、従っ
て出力軸へ高速回転を伝動する。更にレバー37を限界迄
倒すと入力軸は円板中心に最接近され円板の往復回転角
度が最大となって入力軸の一定速度で出力軸へは最高速
度を伝動する。尚、これら変速操作が入力軸の停止中に
行なわれた場合、例えば低速より高速域への変速操作中
にはスライダーは予分に下降されるが前述の突起29L、2
9Rにより下降位置が制限確保され、又、反対の場合はス
リット外辺で止められる。次に入力軸と円板の回転に於
ける一定比例と等速精度の正合性について第6図を参照
して説明する。非円形カム3の回転により図のとおり、
そのスライダーへの作用点が常に円板の同一半径Rに連
続作用し、且つ又、このカムが実線位置より点線位置に
至る180度を回転する間、円板はα角度回わされ、この
カムの各20度毎の円板への伝動回転角度も図のとおり完
全に等しく、従って一定の比例で入力軸より出力軸へ伝
動回転ができる。従って、変速全域中、何れかの任意所
定の変速位置で等速回転精度が発揮できる。この要因は
非円形カムの円板スリットへの作用点が常に同一半径R
へ作用することにある。
Now, if the lever 37 of FIG. 10 is raised in the counterclockwise direction, the fixed pulley 35 will rotate around it and the wire 28D will be wound therein, and 28U will be returned at the same time, and the operation frames 15 and 16 will be based on the output shaft center. And the input shaft is moved toward the outer circumference of the disc slit. Therefore, since the working contact points of both cams on the slider are moved to a position where the disc radius is large, the discs 5, 6
The reciprocating rotation angle of is gradually reduced, so that high torque and low speed rotation is transmitted to the output shaft. When the lever 37 is further raised to the upright position in the figure, the minimum speed is reached. On the contrary, when the lever is lowered, the wire 28U is wound by the pulley 35, 28D is returned, the operation frame is raised, and the input shaft is moved in the slit toward the center of the disk. Therefore, the contact points of the two cams on the slider are moved to the positions where the disc radius is small, so that the reciprocating rotation angle of the discs 5 and 6 is enlarged, so that high speed rotation is transmitted to the output shaft. Further, when the lever 37 is tilted to the limit, the input shaft comes closest to the center of the disk, and the reciprocal rotation angle of the disk becomes maximum, so that the maximum speed is transmitted to the output shaft at a constant speed of the input shaft. If these gear shifting operations are performed while the input shaft is stopped, for example, during a gear shifting operation from a low speed to a high speed range, the slider is lowered for a predetermined amount, but the aforementioned protrusions 29L, 2
The 9R secures a limited descent position, and in the opposite case, it is stopped at the outside of the slit. Next, the constant proportionality in the rotation of the input shaft and the disc and the correctness of the constant velocity accuracy will be described with reference to FIG. Rotation of the non-circular cam 3 causes
The point of action on the slider always acts continuously on the same radius R of the disk, and while the cam rotates 180 degrees from the solid line position to the dotted line position, the disk is rotated by an α angle, and this cam As shown in the figure, the transmission rotation angles to the disk for every 20 degrees are completely equal, and therefore the transmission rotation from the input shaft to the output shaft can be performed in a fixed proportion. Therefore, constant speed rotation accuracy can be exhibited at any given shift position during the entire shift range. The reason for this is that the point of action of the non-circular cam on the disc slit is always the same radius R
To act on.

又、この非円形カムはシンメトリーであるので、長期の
運転で損傷等を生じた際、3と4を反転して組み替えが
でき、右半周と左半周を交換して二倍の寿命に活用でき
る効果もある。
In addition, since this non-circular cam is symmetric, it can be reassembled by reversing 3 and 4 when damage or the like occurs during long-term operation, and can be used for double the life by exchanging the right half circle and the left half circle. There is also an effect.

次に、入力軸を円形カム軸にすることで自転車等の入力
駆動用に利用する場合について説明する。第7図に示す
とおり非円形カムと円形カム31を重ね合わせると概ね相
似形状であるが下半左右にはマイナスゾーン34が、上半
左右にはプラスゾーン33が生じる。然し、この無段変速
機を入力駆動に利用する場合は、むしろ円形カムの方が
より人間工学上有効に機能させることができる。即ち、
非円形カムと円形カムの円板への作用から伝動される出
力軸の回転角度は第9図の解析した線形グラフのとおり
で、実線で示す円形カムと点線で示す非円形カムを比較
すると、前記第6図中左右両死点付近で円形カムでは円
板への回転速度が低下する。然しこれらの低下を補って
90度、及び270度付近が最も良く加速される。又、全体
が上向きである。
Next, a case will be described in which the input shaft is a circular cam shaft and is used for input driving of a bicycle or the like. As shown in FIG. 7, when the non-circular cam and the circular cam 31 are overlapped with each other, they have substantially similar shapes, but a minus zone 34 is formed in the lower half left and right, and a plus zone 33 is generated in the upper half left and right. However, when this continuously variable transmission is used for input drive, the circular cam can function more effectively in terms of ergonomics. That is,
The rotation angle of the output shaft transmitted from the action of the non-circular cam and the circular cam on the disc is as shown in the linear graph analyzed in FIG. 9. When comparing the circular cam shown by the solid line and the non-circular cam shown by the dotted line, In the circular cam in the vicinity of the left and right dead centers in FIG. 6, the rotational speed of the circular disk is reduced. But to compensate for these declines
The best acceleration is near 90 and 270 degrees. Also, the whole is upward.

故に、入力軸を自転車のペダルクランク軸としてペダル
の上下死点をカムの両死点と合致させ、ペダルの踏込み
易い有効駆動域をカムの上記加速域に合わせることでペ
ダルの難駆動域である上下通過に際し低速高トルクを出
力でき人間工学上の視点からも合理的に駆動機能を発揮
できる。
Therefore, using the input shaft as the pedal crankshaft of the bicycle, the upper and lower dead points of the pedal are matched with the both dead points of the cam, and the effective drive range where the pedal is easily depressed is matched with the acceleration range of the cam, which is the difficult drive range of the pedal. It can output low speed and high torque when passing up and down, and can reasonably demonstrate the drive function from an ergonomic point of view.

第8図のように、この円形カムを入力軸に設ける場合に
は薄型のベアリング32をカム31に圧入し直接ベアリング
の外周を円板スリットに密接させて押圧分力作用を働か
せることができる。
As shown in FIG. 8, when this circular cam is provided on the input shaft, a thin bearing 32 can be press-fitted into the cam 31 and the outer periphery of the bearing can be directly brought into close contact with the disc slit to exert a pressing force component.

従って前者のスライダー、リニアベアリング、摺動子、
及びスリット内の突起等も不用となり製作費も低減でき
る。
Therefore, the former slider, linear bearing, slider,
Also, since the protrusions in the slit are unnecessary, the manufacturing cost can be reduced.

第11図は従来の自転車へ組込んだ本発明変速機である。
これには前述のベアリングを圧入した円形カムを一体に
成形した入力軸を直接ペダルクランク軸として車体フレ
ームの軸受けに装填されている。又、操作枠は前者第1
図と異なる姿勢に組込まれ円板スリットは上下逆に倒置
し、スリットの下半径中でカムが作用する。
FIG. 11 shows the transmission of the present invention incorporated in a conventional bicycle.
An input shaft integrally formed with the circular cam into which the above-mentioned bearing is press-fitted is directly mounted on a bearing of the vehicle body frame as a pedal crankshaft. The operation frame is the first
The disc slit is installed in a posture different from that shown in the figure, and the disc slit is inverted upside down, and the cam acts in the lower radius of the slit.

(尚、第1図の非円形カムを入力軸に設けた実施例を以
降は前者と言う。) このように組込む理由は単に路面より可及的に高くし砂
塵による汚損を避けるためである。従って作用、機能、
及び回転方向等々は全く前者と同一である。只、異なる
点は操作枠の変速昇降が反対になることである。
(Note that the embodiment in which the non-circular cam shown in FIG. 1 is provided on the input shaft is hereinafter referred to as the former.) The reason for incorporating in this way is simply to make it as high as possible above the road surface and to avoid contamination by dust. Therefore, the function,
The rotation direction and the like are exactly the same as the former. However, the only difference is that the shifting of the operating frame is reversed.

この操作枠39は図のように自転車後輪車軸に嵌めたスリ
ーブへ枢支され、フレームのチエンステイに固定された
摺動スタッド42b及び最前縁を横断面がコの字状の摺動
ホルダー42によって自転車フレームとは平行に保持され
ている。又、この操作枠は前縁を除いて全周がチエンカ
バーを兼ねて密封されている。又、後輪のスプロケット
は最小歯数のものが取付けられている。
The operation frame 39 is pivotally supported by a sleeve fitted to the rear axle of the bicycle as shown in the figure, and a sliding stud 42b fixed to the chain stay of the frame and a sliding holder 42 having a U-shaped cross section at the foremost edge. It is held parallel to the bicycle frame. Further, the entire periphery of this operation frame except the front edge is also sealed so as to also serve as a chain cover. Further, the sprocket for the rear wheel has the smallest number of teeth.

更に、摺動ホルダー42は操作枠の平行保持を確実にする
ためフレームのダウンチューブ49に締結され、更に上延
長部がトップチューブ46に固定されている。又、この操
作枠のスタッド20aに前者と同じ操作用ワイヤーが固定
され、上方に引張されたワイヤー50Uは摺動ホルダー中
程に軸付けした滑車46に掛けられ更にトップチューブ46
に固定の台へ軸付けされている二本掛け滑車43に半回転
以上時計方向へ巻き着けた位置にこの50U端が固定され
ている。又、反対側のワイヤー50Dは摺動ホルダー下端
に軸付けされている滑車45に巻掛けられ、上方へ引張さ
れてダウンチューブ49へ固定された軸に軸付けした滑車
44に掛けられ更に前記の二本掛け滑車43に反時計方向へ
半回転以上巻き着けた位置にこの50D端が固定されてい
る。この二本掛け滑車43には操作用のレバー47が固定さ
れ、この滑車の取付け台とは適当な摩擦状態を保つ様に
調整されている。
Further, the sliding holder 42 is fastened to the down tube 49 of the frame to ensure the parallel holding of the operation frame, and the upper extension is fixed to the top tube 46. Also, the same operation wire as the former is fixed to the stud 20a of this operation frame, and the wire 50U pulled upward is hung on the pulley 46 axially mounted in the middle of the slide holder and further the top tube 46
The 50U end is fixed at a position where it is wound in a clockwise direction for more than half a turn on a two-ply pulley 43 which is axially attached to a fixed table. The wire 50D on the opposite side is wound around a pulley 45 which is attached to the lower end of the slide holder and is pulled upward and fixed to the down tube 49.
The 50D end is fixed at a position where it is hung on 44 and wound around the above-mentioned two-ply pulley 43 by more than half a turn in the counterclockwise direction. An operating lever 47 is fixed to the two-ply pulley 43, and is adjusted so as to maintain an appropriate frictional state with the mount of the pulley.

次に運転と変速操作を説明する。Next, driving and shifting operation will be described.

今、走行スタートのためサドルにまたがり、操作用レバ
ー47を前方に倒すと、ワイヤーで連継されている操作枠
39は上昇され低速になって楽にペダルを踏み回わすこと
ができる。仮に第11図の姿勢からペダルを90度回転させ
た時点ではカムと円板は第12図の位置関係になる。尚、
この図中22′は円環の内円であり、且つ又、円環内の一
方クラッチは前者と完全に同一である為に、説明を省略
する。
Now, when you straddle the saddle to start running and tilt the operating lever 47 forward, the operating frame connected by wires
The 39 is raised and slows down so you can easily pedal. If the pedal is rotated 90 degrees from the posture shown in FIG. 11, the cam and the disk have the positional relationship shown in FIG. still,
In the figure, 22 'is the inner circle of the ring, and since one clutch in the ring is completely the same as the former, the explanation is omitted.

この時はペダルクランク41Rが真下に、左のクランク41L
が真上にあり、この付近が最も脚力を発揮し難い難駆動
域である。然し、カム31と38は同時に死点位置に来るよ
うセットされている為、第9図のグラフで前述したとお
り、これらの位置をピークとして前後付近を含めてペダ
ルの駆動負荷が軽くなるため極めて通過させ易くなる。
この効果は俗称のオーバルギヤー(OVAL)効果と同様に
機能する。
At this time, pedal crank 41R is directly below, left crank 41L
Is right above, and the area around this is the difficult drive range where it is most difficult to exert leg strength. However, since the cams 31 and 38 are set so as to come to the dead center position at the same time, as mentioned above in the graph of FIG. It will be easier to pass.
This effect works similarly to the commonly known Oval Gear (OVAL) effect.

更に、次の180度のペダル回転で41Lが真下へ41Rが真上
へ入れ替り、この間にはカム38が円板6を回転し、従っ
て円環をZ角度駆動する。即ち、両ペダルの一回転で円
環はZ角度の二倍が伝動回転され、円環スプロケットと
チエンにより同時に後輪スプロケットを駆動する。
Further, at the next 180-degree pedal rotation, 41L is switched right down and 41R is switched right up, while the cam 38 rotates the disk 6 and thus drives the ring by the Z angle. That is, one rotation of both pedals causes the circular ring to be transmitted and rotated by twice the Z angle, and the rear wheel sprocket is simultaneously driven by the circular ring sprocket and the chain.

殊に発走時には、このように低速高トルクで後輪を駆動
できるため非常に楽で確実な発走ができる。一旦走り出
すと楽に加速でき、今、走り乍ら操作用レバー47を徐々
に手前に引くとワイヤー50Dが滑車43に巻込まれ、50Uは
滑車より戻されて操作枠39は下降して行く、今、仮に高
速域の或る位置へ調節すると第13図のとおりになる。こ
の時には入力軸40は円板の中心に近づき、カム31と38の
円板スリット内壁に接触作用する相対位置が変換されて
いるため、180度のペダル駆動ではカム38の位置からカ
ム31の位置までに作用したカム31によって円板5bがW角
度回転され、同時に同角度、円環を時計方向へ伝動回転
させる。次の180度のペダル駆動ではカム38によって円
板6bがW角度回転させ、同時に同角度続けて円環を時計
方向へ伝動回転させる。即ち、ペダルの一回転でW角度
の二倍円環を回転させる。
In particular, at the time of starting, the rear wheels can be driven with a low speed and a high torque in this way, so that a very easy and reliable starting can be performed. Once you start running, you can accelerate easily, and now when you gradually pull the operating lever 47 forward, the wire 50D is caught in the pulley 43, 50U is returned from the pulley and the operation frame 39 descends. If it is adjusted to a certain position in the high speed range, it will be as shown in FIG. At this time, the input shaft 40 approaches the center of the disc, and the relative position where the cams 31 and 38 come into contact with the inner walls of the disc slit is changed. The disk 5b is rotated by the W angle by the cam 31 that has acted up to the above, and at the same time, the circular ring is transmitted in the clockwise direction by the same angle. In the next 180 degree pedal drive, the disk 6b is rotated by W angle by the cam 38, and at the same time, the disk 6b is continuously rotated by the same angle to rotate the ring clockwise. That is, one rotation of the pedal rotates the double ring of the W angle.

又、図のようにカム38は死点を通過し円板駆動の初期に
入っているが、カム31は死点前の駆動終期である。この
ように高速域では両カムの死点通過時に時間差51A、51B
を生じるが、円板への駆動リレーは重複によって、より
円滑に継続回転できペダルの上下通過時の負荷軽減効果
も前紀と同じである。即ち、何れかの円板の回転速度の
速い方が円環を駆動するようになる。
Further, as shown in the figure, the cam 38 has passed the dead center and is in the initial stage of disk drive, but the cam 31 is at the end of drive before the dead center. In this way, in the high speed range, the time difference 51A, 51B when passing the dead center of both cams
However, due to the overlapping of the drive relays to the disk, the rotation can be continued more smoothly, and the load reduction effect when the pedal passes vertically is the same as in the previous period. That is, one of the discs having a higher rotational speed drives the annulus.

今、前記レバー47を最高速位置迄、手前に引くと、操作
枠は更に下降されて入力軸が円板中心へ最接近されカム
による円板回転角度が前記W角よりも増大される。この
最高速位置では前記のW角は約120度である。然し尚、
これ以上の出力回転を要求される場合には入力軸をより
強い材質で造り、直径を小さく設定し、入力軸とカムと
の偏心寸法を増大することで更に出力回転角度は拡大で
きる。
Now, when the lever 47 is pulled to the maximum speed position, the operating frame is further lowered, the input shaft is closest to the center of the disc, and the disc rotation angle by the cam is increased more than the W angle. At this maximum speed position, the W angle is about 120 degrees. However,
When a higher output rotation is required, the output rotation angle can be further expanded by making the input shaft from a stronger material, setting the diameter smaller, and increasing the eccentric dimension between the input shaft and the cam.

仮に高速操作位置で走行中、不意に交通信号や踏切り等
で一旦停止された場合にもペダルクランクを第11図に示
す方向で止めると操作レバーにより一挙に最低速位置ま
で変速が円滑にできる。この際には左右のペダルは逆で
も不問である。
Even if the vehicle is suddenly stopped due to a traffic signal or a railroad crossing while running at a high speed operation position, the pedal lever can be stopped in the direction shown in FIG. In this case, the left and right pedals can be reversed.

このように走行中と停止中を問わず変速操作が自由にで
き、例えば踏切り横断時に加速不足のため蛇行すること
による転倒事故等も予防できる。又急な登坂にも低速高
トルクの駆動効果が発揮できる。
In this way, the shift operation can be freely performed regardless of whether the vehicle is running or stopped, and for example, a fall accident due to meandering due to insufficient acceleration when crossing a railroad crossing can be prevented. In addition, the driving effect of low speed and high torque can be exhibited even on a steep climb.

更に、生産機械や重機類に適用する目的に合わせて、前
者を強化できる。例えば三個の非円形カムを入力軸に設
け位相を120度毎にし円板を三枚組込む、か又は四個の
カムを90度毎の位相で入力軸に設け円板を四枚組込むこ
ともでき、更に据着け容積の許容によってはラチエット
歯、爪等を充分な強度を確保できる厚さに設定すること
も容易に可能である。
Furthermore, the former can be strengthened according to the purpose of application to production machines and heavy equipment. For example, three non-circular cams can be installed on the input shaft and the phase can be set every 120 degrees to install three discs, or four cams can be installed on the input shaft at 90-degree phases and four discs can be installed. Further, it is possible to easily set the thickness of the ratchet teeth, the claws, etc. to a sufficient strength depending on the installation volume.

尚、更に入力軸と出力軸の軸間を、より短縮する必要が
ある場合は、スプロケット18、19に替えて両方を歯車に
して歯車伝動とすることで容易に解決できる。
If it is necessary to further reduce the distance between the input shaft and the output shaft, it is possible to easily solve the problem by using both of the sprockets 18 and 19 as gears for gear transmission.

尚又、本発明は全体に扁平形状に構成でき、各部材の材
質を厳選することで小型軽量化も容易であり自転車用と
しては比較的安価に提供できる等々の効果がある。
Further, the present invention can be constructed in a flat shape as a whole, and by carefully selecting the material of each member, it is easy to reduce the size and weight, and it is possible to provide the bicycle at a relatively low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の要部破断を表わす側面図、第2
図は第1図中線A〜Bの断面図、第3図及び第4図はラ
チエット爪と作動環の作用説明図、第5図は第1図中線
C〜Dの断面図、第6図は非円形カムによる円板の回転
作用分解説明図、第7図は円形カムと非円形カムの対比
説明図、第8図は円形カムにベアリングを圧入した軸断
面より見た側面図、第9図は円形カムと非円形カムによ
る円板より出力軸への回転角速度を示す対比線グラフ、
第10図は第1図中の操作用ワイヤーの変速操作装置の側
面図、第11図は自転車に組込んだ本発明の側面図、第12
図は低速伝動でのカムと円板の作用説明図、第13図は高
速域伝動でのカムと円板の作用説明図である。 1…入力軸、2…出力軸、3、4…非円形カム、5、6
…円板、7、8…スライダー、9、10…リニアベアリン
グ、13、14…サポート、15、16…操作枠、22…円環、27
…ラチエット爪、30…チエン、28U、28D…操作用ワイヤ
ー、31、38…円形カム、5b、6b…円板、39…操作枠、50
U、50D…操作用ワイヤー、41R、41L…ペダルクランク、
42…摺動ホルダー、43…二本掛け滑車、40…入力軸。
FIG. 1 is a side view showing a fracture of an essential part of an embodiment of the present invention, and FIG.
1 is a sectional view taken along the line A-B in FIG. 1, FIGS. 3 and 4 are explanatory views of the action of a ratchet pawl and an operating ring, and FIG. 5 is a sectional view taken along the line C-D in FIG. Fig. 7 is an exploded view for explaining the rotation action of the disc by the non-circular cam. Fig. 7 is an explanatory diagram for comparing the circular cam and the non-circular cam. Fig. 8 is a side view seen from the axial cross section where the bearing is press-fitted into the circular cam. Fig. 9 is a contrast line graph showing the rotational angular velocity from the disc to the output shaft by the circular cam and the non-circular cam,
FIG. 10 is a side view of the gear shift operating device for the operating wire in FIG. 1, FIG. 11 is a side view of the present invention incorporated into a bicycle, and FIG.
FIG. 13 is a diagram for explaining the action of the cam and the disc during low speed transmission, and FIG. 13 is a diagram for explaining the action of the cam and the disc during high speed transmission. 1 ... Input shaft, 2 ... Output shaft, 3, 4 ... Non-circular cam, 5, 6
… Disk, 7, 8… Slider, 9, 10… Linear bearing, 13, 14… Support, 15, 16… Operating frame, 22… Ring, 27
... ratchet claw, 30 ... chain, 28U, 28D ... operation wire, 31, 38 ... circular cam, 5b, 6b ... disk, 39 ... operation frame, 50
U, 50D ... operation wire, 41R, 41L ... pedal crank,
42 ... Sliding holder, 43 ... Two pulleys, 40 ... Input shaft.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】出力軸と同心にサポートへ枢支した操作枠
内へ回転自在に嵌合した円環と、該円環内へ回転自在に
装填した直径線状のスリットを設けた複数の円板と、該
円板と円環の間に設けた一方クラッチと、複数のカムを
設けた入力軸を該円板スリットの半径域内へ直角横断状
に軸付けし各カムを該各スリット内壁に対接せしめ、該
円環外周と出力軸に固定したスプロケットとチエン又は
歯車等の噛合伝動により成る無段変速機。
1. A plurality of circles provided with a circular ring rotatably fitted in an operating frame which is pivotally supported by a support concentrically with an output shaft, and a diametrically linear slit rotatably mounted in the circular ring. A plate, a clutch provided between the disc and the ring, and an input shaft provided with a plurality of cams are axially crossed at right angles within the radius of the disc slit, and each cam is attached to the inner wall of each slit. A continuously variable transmission formed by meshing transmission of a sprocket fixed to the outer circumference of the annular ring and the output shaft by facing each other and a chain or a gear.
【請求項2】入力軸のカムが非円形カム(3)であるこ
とを特徴とする特許請求の範囲第1項記載の無段変速
機。
2. The continuously variable transmission according to claim 1, wherein the cam of the input shaft is a non-circular cam (3).
【請求項3】入力軸のカムが円形カム(31)であること
を特徴とする特許請求の範囲第1項記載の無段変速機。
3. The continuously variable transmission according to claim 1, wherein the cam of the input shaft is a circular cam (31).
【請求項4】外周にラチエット歯を設けた円板と、切り
口の両方に腕を設けた作動環を環着し該円板に密接従動
回転する回転輪と、頭部を横U字状に形成したラチエッ
ト爪とを円環に軸付けし該作動環の両腕を該ラチエット
爪頭部横U字状内へ挿入して成る一方クラッチを備えた
特許請求の範囲第1項記載の無段変速機。
4. A disk having ratchet teeth on its outer circumference, a rotary wheel having an operating ring provided with arms at both cut edges and closely rotating with the disk, and a head having a horizontal U-shape. The continuously variable clutch according to claim 1, further comprising a one-way clutch formed by axially coupling the formed ratchet pawl to an annular ring and inserting both arms of the operating ring into a lateral U-shape of the ratchet pawl head. transmission.
【請求項5】特許請求の範囲第4項記載の作動環を環着
した回転輪とラチエット爪の複数組を等角間隔に円環へ
軸付けし該組数の倍数に設定したラチエット歯を設けた
円板とにより成る一方クラッチを備えた特許請求の範囲
第1項記載の無段変速機。
5. A ratchet tooth having a plurality of sets of a rotary wheel and a ratchet pawl attached to the operating ring according to claim 4, which are axially equiangularly set on a ring and set to a multiple of the number of sets. The continuously variable transmission according to claim 1, further comprising a one-way clutch including a disc provided.
JP27674990A 1990-10-15 1990-10-15 Continuously variable transmission Expired - Lifetime JPH07117138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27674990A JPH07117138B2 (en) 1990-10-15 1990-10-15 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27674990A JPH07117138B2 (en) 1990-10-15 1990-10-15 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH04151055A JPH04151055A (en) 1992-05-25
JPH07117138B2 true JPH07117138B2 (en) 1995-12-18

Family

ID=17573809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27674990A Expired - Lifetime JPH07117138B2 (en) 1990-10-15 1990-10-15 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH07117138B2 (en)

Also Published As

Publication number Publication date
JPH04151055A (en) 1992-05-25

Similar Documents

Publication Publication Date Title
US5566590A (en) Crank device
JP4524191B2 (en) Rotor controlled transmission
EP0199600A2 (en) A pedal mechanism for a bicycle having the pedal crank radially movable thereon
CN1633568A (en) Continuously variable transmission
JPH06263080A (en) Transmission for bicycle
JPH07117138B2 (en) Continuously variable transmission
US10876609B2 (en) Continuously-variable planetary transmission
CN1048252A (en) Ball gear
WO2005088165A2 (en) Drive for (semi-)continuous drives having an endless belt
CN2299964Y (en) Automatic infinitely-variable gearing
JPS63120950A (en) Continuously variable transmission
CN111498003B (en) Parallel double-toothed disc for stepless speed change bicycle
JPH1170889A (en) Pedaling mechanism for bicycle
JP2001519506A (en) Transmission with steplessly adjustable conversion ratio
CN209079551U (en) A kind of hollow wheel hub, wheel, Bicycles and Motorcycles
SU889977A1 (en) Chain transmission
JPS61115789A (en) Infinitely variable gear
JPH0689827B2 (en) Continuously variable transmission
RU2015748C1 (en) Planetary vibration exciter
CN1124829A (en) Eccentric angle speed-change variable drive
JPH03272351A (en) Continuously variable automatic transmission
CN2043689U (en) Chain and gear drive
JPH0721303B2 (en) Power transmission mechanism
JPS61115792A (en) Reverse input permissible device for infinitely variable gear
JPS62225482A (en) Transmission for bicycle