JPH07117113A - Design method for optimum blow molding temperature by blow molding analysis - Google Patents

Design method for optimum blow molding temperature by blow molding analysis

Info

Publication number
JPH07117113A
JPH07117113A JP5263582A JP26358293A JPH07117113A JP H07117113 A JPH07117113 A JP H07117113A JP 5263582 A JP5263582 A JP 5263582A JP 26358293 A JP26358293 A JP 26358293A JP H07117113 A JPH07117113 A JP H07117113A
Authority
JP
Japan
Prior art keywords
blow molding
preform
analysis
parison
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5263582A
Other languages
Japanese (ja)
Inventor
Norihiro Shimizu
紀弘 清水
Toshiaki Matsuki
敏明 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP5263582A priority Critical patent/JPH07117113A/en
Publication of JPH07117113A publication Critical patent/JPH07117113A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/42398Simulation of the blow-moulding process

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To reduce a period of development of products by rnaking analyses while giving a parison, a bottle shape and a blow pressure load with reference to a plurality of blow molding temperatures, finding the functions of molding temperatures to display them on a graph with reference to a maximum thickness or a minimum thickness and evaluating and designing a range of proper molding temperatures before making a mold. CONSTITUTION:Surface temperatures of a preform are varied to five levels of 80, 90, 100, 110 and 120 deg.C, fixed input conditions are applied thereto, the analysis and arithmetic operation of blow molding are successively executed, a maximum value and a minimum value for the wall thickness of the preform are obtained and data on each blow molding temperature are graphed. The characteristic curves of the graph are represented by thetamax=fmax (T) and thetamin=fmin (T). That is, a maximum line and a minimum line of a minimum wall thickness and a maximum wall thickness are set and, in the case where the surface temperatures of the preform are on the axis of abscissa, the surface temperatures of the preform become unsuitable if they exceed or are less than these ranges. Further, the range of an optimum wall thickness is set on the basis of experiences and actual results, and it can be judged that the surface temperatures are in a range of 91 to 108 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、予めプリフォーム又は
パリソン、最終ブロー成形品形状及びブロー圧力条件が
設定されている場合、熱可塑性高分子一次成形体である
プリフォーム又はパリソンから最終成形体をブロー成形
するに際し、高品質、高性能な最終成形体を得るための
ブロー成形温度の適正な範囲をブロー成形解析によって
評価、設計する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a preform or parison, which is a thermoplastic polymer primary molded article, when the preform or parison, the shape of the final blow-molded article and the blow pressure condition are set in advance. The present invention relates to a method for evaluating and designing an appropriate range of a blow molding temperature for obtaining a high quality and high performance final molded article by blow molding analysis.

【0002】[0002]

【従来の技術】プラスチック容器のブロー成形加工にお
ける大変形接触問題を解析(シミュレーション)する場
合、第3図に示すように熱可塑性高分子1次成形体であ
るプリフォーム又はパリソン形状及びブロー成形金型形
状を微小要素に分割してモデル化し、有限要素法等の数
値解析法を使用して、加熱されたプリフォーム又はパリ
ソンの変形計算を行う構造解析、あるいは加熱されたプ
リフォーム又はパリソンの変形計算を行う構造解析と、
加熱されたプリフォーム又はパリソンの変形時に起こる
熱伝導(温度移動)計算を行う熱伝導解析と、加熱され
たプリフォーム又はパリソンが変形して冷却金型に接触
する時に起こるプリフォーム又はパリソン−冷却金型間
の接触伝熱計算を行う接触伝熱解析を連成させて同時に
解くことを特徴とする数値解析法を使用することによっ
て、各要素の変形量を演算することができる。このよう
な大変形接触問題を扱うブロー成形解析方法では、使用
する樹脂の温度依存物性値と、プリフォーム又はパリソ
ンの成形直前の温度分布、及びブロー成形条件(ブロー
エアー圧力荷重の時間変化)を入力して演算する事によ
り、変形完了時間を任意に分割した各時刻におけるプリ
フォームの変形の進行状況、及び肉厚分布を計算により
求めることができる。これらの技術は、本発明者らによ
って、International Journal For Numerical Methods
In Engineering(1991) 等で公開されている。図4に有
限要素モデルにおけるプリフォーム変形の解析進行状況
を示す。又、図5に有限要素モデルにおけるブロー成形
解析を施した肉厚分布解析結果を示す。
2. Description of the Related Art When analyzing (simulating) the large deformation contact problem in blow molding of a plastic container, as shown in FIG. 3, the shape of a preform or parison which is a thermoplastic polymer primary molding and a blow molding metal are used. Structural analysis that calculates the deformation of the heated preform or parison using the numerical analysis method such as the finite element method by dividing the mold shape into minute elements, or the deformation of the heated preform or parison Structural analysis that performs calculations,
Heat conduction analysis that performs heat conduction (temperature transfer) calculation that occurs when a heated preform or parison deforms, and preform or parison-cooling that occurs when the heated preform or parison deforms and contacts the cooling mold. The deformation amount of each element can be calculated by using a numerical analysis method characterized in that contact heat transfer analysis for calculating contact heat transfer between molds is coupled and solved simultaneously. In the blow molding analysis method that deals with such a large deformation contact problem, the temperature-dependent physical property value of the resin used, the temperature distribution of the preform or parison immediately before molding, and the blow molding conditions (time change of blow air pressure load) are used. By inputting and calculating the deformation completion time, the progress of deformation of the preform and the wall thickness distribution at each time obtained by arbitrarily dividing the deformation completion time can be calculated. These techniques are described by the present inventors in the International Journal For Numerical Methods.
Published in In Engineering (1991). FIG. 4 shows the progress of analysis of preform deformation in the finite element model. Further, FIG. 5 shows the result of wall thickness distribution analysis performed by blow molding analysis in the finite element model.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前述した
大変形接触問題を扱うブロー成形解析方法では、いくつ
かの入力条件のうちどの入力条件が適正か、またどのよ
うなブロー成形温度が最良か等を判定する手段は知られ
ておらず、従って演算結果の適否の判定は解析結果と実
際のブロー成形との対比を繰り返す事により得られた経
験的ノウハウに頼らざるを得なかった。このように、従
来の大変形接触問題を扱うブロー成形解析方法は、所望
のプリフォーム又はパリソン、ブロー成形品形状、使用
する樹脂に対して経験的あるいは実験で得られているプ
リフォーム又はパリソンの成形直前の温度分布やブロー
成形条件(ブローエアー圧力荷重の時間変化)等を入力
して、製品肉厚分布の適否を判定することを主な目的と
して使用され、ブロー成形温度の最適設計の適否の評価
については試みられていない。従って、本発明の目的
は、熱可塑性高分子一次成形体であるプリフォーム又は
パリソンのブロー成形解析による、所要のブロー成形ボ
トル、プリフォーム又はパリソン形状に対するブロー成
形温度の適正な範囲を評価、設計する方法を提供するこ
とである。
However, in the blow molding analysis method dealing with the large deformation contact problem described above, which of the several input conditions is appropriate, what blow molding temperature is the best, etc. No means for making a decision is known, and therefore the decision as to whether or not the calculation result is appropriate has to rely on empirical know-how obtained by repeating the comparison between the analysis result and the actual blow molding. As described above, the conventional blow molding analysis method for dealing with the large deformation contact problem is the empirical or experimentally obtained preform or parison of the desired preform or parison, the shape of the blow molded product, and the resin used. It is mainly used to judge the suitability of the product thickness distribution by inputting the temperature distribution just before molding and blow molding conditions (time change of blow air pressure load). No evaluation has been attempted. Therefore, an object of the present invention is to evaluate and design an appropriate range of blow molding temperature for a required blow molding bottle, preform or parison shape by blow molding analysis of a preform or parison which is a thermoplastic polymer primary molding. Is to provide a way to do.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、
(1)プリフォーム又はパリソン、及びブロー成形金型
形状を微小要素に分割し、有限要素法等の数値解析法を
使用して、(A)加熱されたプリフォーム又はパリソン
の変形計算を行う構造解析、又は(B)(a)加熱され
たプリフォーム又はパリソンの変形計算を行う構造解
析、(b)加熱されたプリフォーム又はパリソンの変形
時に起こる熱伝導(温度移動)計算を行う熱伝導解析及
び(c)加熱されたプリフォーム又はパリソンが変形し
て冷却金型に接触する時に起こるプリフォーム又はパリ
ソン−冷却金型間の接触伝熱計算を行う接触伝熱解析を
連成させて同時に解くことを特徴とする数値解析法を使
用し、各要素の変形量を演算することによって、ブロー
成形温度設計におけるブロー成形解析において、(2)
複数のブロー成形温度について固定したプリフォーム又
はパリソン形状、ブロー成形ボトル形状、ブロー圧力荷
重を与えて各要素が金型に完全に接触するまで解析を行
い、得られた変位量計算結果により全要素中の肉厚方向
の最高厚さθmax又は最低厚さθminにつき、各ブ
ロー成形温度Tを変数とした関数 θmax=fmax(T) 及び θmin=fmin(T) として求め、(3)前記関数をグラフィック表示して、
所定のプリフォーム又はパリソン、最終成形品ボトル形
状に対する適正なブロー成形温度の範囲を評価、設計す
ることを特徴とするブロー成形解析による最適ブロー成
形温度の設計方法である。
That is, the present invention is
(1) A structure in which the shape of a preform or parison and a blow molding die are divided into minute elements, and (A) the deformation of the heated preform or parison is calculated by using a numerical analysis method such as the finite element method. Analysis or (B) (a) Structural analysis for performing deformation calculation of a heated preform or parison, (b) Thermal conduction analysis for performing heat conduction (temperature transfer) calculation that occurs during deformation of a heated preform or parison And (c) Simultaneously solve by contact heat transfer analysis that performs contact heat transfer calculation between the preform or parison and the cooling mold that occurs when the heated preform or parison deforms and contacts the cooling mold. In the blow molding analysis in the blow molding temperature design, by calculating the deformation amount of each element by using the numerical analysis method characterized by (2)
Preform or parison shape fixed for multiple blow molding temperatures, blow molding bottle shape, blow pressure load is applied and analysis is performed until each element completely contacts the mold, and all elements are calculated based on the displacement calculation results obtained. For the maximum thickness θmax or the minimum thickness θmin in the inner wall thickness direction, a function with each blow molding temperature T as a variable is obtained as θmax = fmax (T) and θmin = fmin (T), and (3) the function is graphically represented. Display,
It is a method of designing an optimum blow molding temperature by blow molding analysis characterized by evaluating and designing an appropriate range of blow molding temperature for a given preform or parison and final molded product bottle shape.

【0005】さらに、前記の設計方法において、任意の
要素の肉厚方向厚さθに限界値として最大値θmax及
び最小値θminを設け、前記関数を評価して適正なブ
ロー成形温度の範囲を評価、設計することを特徴とする
ブロー成形解析による最適ブロー成形温度の設計方法の
提供を目的とするものである。
Further, in the above design method, the maximum value θmax and the minimum value θmin are set as the limit values in the thickness direction thickness θ of an arbitrary element, and the above function is evaluated to evaluate an appropriate range of the blow molding temperature. It is an object of the present invention to provide a method for designing an optimum blow molding temperature by a blow molding analysis characterized by designing.

【0006】[0006]

【作用】本発明に係わるブロー成形解析による最適ブロ
ー成形温度の設計方法によれば、熱可塑性高分子一次成
形体であるプリフォーム又はパリソンの大変形接触問題
を扱うブロー成形解析によって、複数のブロー成形温度
に対するプリフォーム形状モデルの微小分割された各要
素の成形完了時の変形状態が演算によりそれぞれ得ら
れ、全要素中の肉厚方向の最高厚さ又は最低厚さにつ
き、各ブロー成形温度を変数とした関数として求め、こ
の関数をディスプレイ装置にグラフィック表示して、所
定のプリフォーム又はパリソン、最終成形品ボトル形状
に対する適正なブロー成形温度の範囲を評価、設計する
ことができる。この場合、任意の要素の肉厚方向厚さに
限界値として最大値及び最小値を設定し、最終成形品ボ
トルに対する要求性能(耐圧強度、圧縮強度等)及び最
適肉厚分布を考慮した適正なブロー成形温度の範囲を評
価、設計することができる。
According to the method for designing the optimum blow molding temperature by the blow molding analysis according to the present invention, a plurality of blow moldings are analyzed by the blow molding analysis which deals with the large deformation contact problem of the preform or parison which is the thermoplastic polymer primary molding. Deformation state of each minutely divided element of the preform shape model with respect to the molding temperature at the completion of molding is obtained by calculation, and each blow molding temperature is calculated for the maximum or minimum thickness in the thickness direction of all elements. It is possible to obtain a function as a variable, display this function graphically on a display device, and evaluate and design an appropriate range of blow molding temperature for a predetermined preform, parison, or final molded product bottle shape. In this case, the maximum and minimum values are set as the limit values for the thickness direction thickness of an arbitrary element, and the appropriate performance is considered in consideration of the required performance (pressure resistance strength, compression strength, etc.) and the optimum wall thickness distribution for the final molded product bottle. Blow molding temperature range can be evaluated and designed.

【0007】[0007]

【実施例】【Example】

実施例1 本発明に係わる、ブロー成形解析による最適ブロー成形
温度の設計方法を、図面を参照しながら説明する。本発
明において、所定の成形品の形状モデルについて熱可塑
性高分子一次成形体であるプリフォーム又はパリソンの
ブロー成形解析を行う手順は、従来のシミュレーション
と同じである。すなわち、第3図に示すように、ブロー
金型内の樹脂変形(ブロー成形)解析を行うためブロー
成形金型及びプリフォーム又はパリソンの形状モデルの
要素分割を行い(図示例は4角形4節点要素を用いてい
るが、4角形8節点あるいは9節点要素他を用いる場合
もある)、有限要素法を適用する。そして、プリフォー
ム内壁に予め設定した最適ブロー圧力を入力し、金型は
変形しない剛体として定義し、またプリフォームの口頚
部分は上下方向に変位しない様に拘束条件を施し、構造
解析-熱伝導解析-接触伝熱解析完全連成解析によるブロ
ー成形解析に移行する。
Example 1 A method for designing an optimum blow molding temperature by blow molding analysis according to the present invention will be described with reference to the drawings. In the present invention, the procedure for performing blow molding analysis of a preform or parison that is a thermoplastic polymer primary molded body for a shape model of a predetermined molded article is the same as in the conventional simulation. That is, as shown in FIG. 3, in order to analyze the resin deformation (blow molding) in the blow mold, element division of the shape model of the blow mold and the preform or parison is performed (the illustrated example is a quadrilateral 4-node). Elements are used, but a quadrangle 8-node or 9-node element may also be used), and the finite element method is applied. Then, a preset optimum blow pressure is input to the inner wall of the preform, the mold is defined as a rigid body that does not deform, and the mouth and neck of the preform is constrained so that it does not move in the vertical direction. Conduction analysis-Contact heat transfer analysis Move to blow molding analysis by complete coupled analysis.

【0008】尚、本実施例のブロー成形解析は、二軸延
伸ブロー成形という現象を取り扱うものである。その特
徴はストレッチ棒でプリフォームを押し上げながらブロ
ー成形し、この際プリフォームからボトルへの拡大倍率
は、軸方向拡大倍率と周方向拡大倍率との掛け合わせに
より得られ、面方向で10倍以上の超大変形となる点で
ある。図2の1はプリフォーム、2が冷却金型、3がス
トレッチ棒である。ストレッチ棒は圧縮エアー駆動式で
あり成形開始はこの棒がプリフォームを押し上げること
から始まり、その後ブローエアーが1と3の隙間から流
出し、軸方向、周方向へのプリフォームの拡大変形が進
み、金型に接触して冷却固化され、最終成形品であるボ
トル形状となる。シミュレーションのための固定入力条
件は、プリフォーム又はパリソン、ブロー成形品金型形
状、使用する樹脂の温度依存性物性データ、及びブロー
圧力、ストレッチ圧力の荷重時刻歴変化である。ブロー
成形温度設計は、ブロー成形品の最適肉厚分布を得るた
めのパラメータである。
The blow molding analysis of this embodiment deals with the phenomenon of biaxial stretch blow molding. Its characteristic is blow molding while pushing up the preform with a stretch rod. At this time, the expansion ratio from the preform to the bottle is obtained by multiplying the axial expansion ratio and the circumferential expansion ratio, and is 10 times or more in the plane direction. It is a point that becomes a super large deformation of. In FIG. 2, 1 is a preform, 2 is a cooling mold, and 3 is a stretch rod. The stretch rod is driven by compressed air, and the molding starts when this rod pushes up the preform, then blow air flows out from the gap between 1 and 3, and the preform expands and deforms in the axial and circumferential directions. Then, it is cooled and solidified by coming into contact with the mold to form the final molded product in the form of a bottle. Fixed input conditions for the simulation are preform or parison, mold shape of blow-molded product, temperature-dependent physical property data of resin to be used, and change of blow pressure and stretch pressure in load time history. The blow molding temperature design is a parameter for obtaining the optimum wall thickness distribution of the blow molded product.

【0009】解析の対象となる形状は、図3に示したよ
うにプリフォームの口部を除いた部分及び金型である。
1種類のプリフォーム及びブロー成形金型形状に対し、
プリフォーム表面温度を80、90、100、110、
120℃の5種に変量し、前記固定入力条件を施し、順
次ブロー成形解析演算を実行し、得られた結果の全要素
に関する肉厚方向の厚みの中で最大値及び最小値を取り
出し、その各ブロー成形温度におけるデータとする。こ
の手順を繰り返して求めたデータをグラフ化すれば、全
要素に関する肉厚方向の厚みの中での最大値及び最小値
をパラメータとして横軸がプリフォーム表面温度、縦軸
が1要素の厚さとなる図1に示す特性曲線図が得られ
る。
The shapes to be analyzed are the portion excluding the mouth of the preform and the mold as shown in FIG.
For one type of preform and blow molding die shape,
Preform surface temperature of 80, 90, 100, 110,
Variable to 5 kinds of 120 ° C., the fixed input condition is applied, the blow molding analysis calculation is sequentially executed, and the maximum value and the minimum value in the thickness direction of all the elements of the obtained results are extracted, The data is for each blow molding temperature. If the data obtained by repeating this procedure is graphed, the horizontal axis represents the preform surface temperature and the vertical axis represents the thickness of one element with the maximum and minimum values in the thickness direction of all elements as parameters. The characteristic curve diagram shown in FIG. 1 is obtained.

【0010】次に、図2に示す特性曲線を数式化すれば
下式が得られる。
Next, the following equation can be obtained by formulating the characteristic curve shown in FIG.

【0011】θmax=fmax(T) 及び θmin=fmin(T)Θmax = fmax (T) and θmin = fmin (T)

【0012】評価の基準値として図1のように最終製品
に対する要求性能を考慮した1要素に対する最低肉厚、
最高肉厚(図中MAX、MINライン)を設定し、プリ
フォーム表面温度を横軸にとった場合、この範囲を超え
る又は未満のプリフォーム表面温度であれば、その成形
温度は製品構造に対して不適であると判定できる。ある
一定の厚さの限界値に満たない場合、又は超える場合
は、製品に対する要求性能すなわちガスロス性、クリー
プ変形性、耐ストレスクラック性、耐熱性、耐衝撃性、
圧縮強度、耐圧強度などが、それぞれの要求範囲を満足
しなくなり製品としての価値を失ってしまう。従って、
充填物(飲料水等)の種類あるいはプリフォーム又はパ
リソン、最終成形品ボトル形状によって、図1のように
最適肉厚の幅は、これまでに蓄積された経験あるいは実
績から設定されることが一般的である。図1では、製品
の要求性能を満たすプリフォーム表面温度は91から1
08℃の範囲であると判断できる。
As a reference value for evaluation, the minimum wall thickness for one element considering the required performance for the final product as shown in FIG.
When the maximum wall thickness (MAX, MIN line in the figure) is set and the preform surface temperature is taken on the horizontal axis, if the preform surface temperature is above or below this range, the molding temperature will be relative to the product structure. Can be determined to be unsuitable. If the thickness does not reach or exceeds a certain limit value, the required performance for the product, namely gas loss, creep deformability, stress crack resistance, heat resistance, impact resistance,
Compressive strength, compressive strength, etc. do not satisfy the respective required ranges, and the value as a product is lost. Therefore,
Depending on the type of filling (drinking water, etc.), preform or parison, and bottle shape of the final molded product, the optimum thickness range is generally set from the experience or experience accumulated so far, as shown in Fig. 1. Target. In Fig. 1, the preform surface temperature that satisfies the required performance of the product is 91 to 1
It can be judged to be in the range of 08 ° C.

【0013】従って、本評価方法は成形条件(ブロー圧
力・ストレッチ圧力経時変化)やプリフォーム又はパリ
ソン、最終成形品ボトル形状を固定入力値とした場合
に、プリフォーム表面温度の絶対的評価ができるもので
あり、最適なブロー成形品肉厚分布を得るためのブロー
成形温度設計を支援する手段として極めて重要である。
Therefore, this evaluation method allows absolute evaluation of the preform surface temperature when the molding conditions (change of blow pressure / stretch pressure with time), preform or parison, and final molded product bottle shape are fixed input values. It is extremely important as a means for supporting the blow molding temperature design for obtaining the optimum blow molding product thickness distribution.

【0014】[0014]

【発明の効果】本発明によれば、ブロー成形解析を用い
る事によって、要求されたプリフォーム又はパリソン、
ブロー成形品形状、あるいは成形条件(ストレッチ圧
力、ブロー圧力)に対し、より高品質な成形品を得るた
めの最適なブロー成形温度設計を簡単なグラフィック表
示によって支援することができる。従ってこのシミュレ
ーション及び評価方法を利用することにより、ユーザー
のニーズ(プリフォーム、ブロー成形品の最適設計)に
応じたブロー成形温度の最適設計が金型製作をする前に
予測できる。すなわち、従来の試行錯誤を繰り返しなが
ら行われてきた設計から製品開発までの期間が大幅に短
縮され、また金型製作などの開発費用の削減にもつなが
る。
INDUSTRIAL APPLICABILITY According to the present invention, the required preform or parison, by using the blow molding analysis,
It is possible to support the optimum blow molding temperature design to obtain a higher quality molded product by a simple graphic display, depending on the shape of the blow molded product or the molding conditions (stretch pressure, blow pressure). Therefore, by using this simulation and evaluation method, the optimum design of the blow molding temperature according to the user's needs (the optimum design of the preform and the blow molded product) can be predicted before making the mold. That is, the period from design to product development, which has been performed by repeating conventional trial and error, is significantly shortened, and it also leads to reduction in development costs such as mold manufacturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】ブロー成形解析による最適ブロー成形温度の設
計方法を示すもので、プリフォーム表面温度に対して1
要素の肉厚方向厚さの最大値、最小値をデータとしたグ
ラフ図である。
FIG. 1 shows a method of designing an optimum blow molding temperature by a blow molding analysis.
It is a graph chart which made the maximum value and the minimum value of the thickness direction thickness of an element into data.

【図2】高分子一次成形体であるプリフォーム、ブロー
成形金型、及びストレッチ棒の形状を示す平面図であ
る。
FIG. 2 is a plan view showing the shapes of a preform which is a polymer primary molded body, a blow molding die, and a stretch rod.

【図3】プリフォーム、ブロー金型の有限要素メッシュ
図である。
FIG. 3 is a finite element mesh diagram of a preform and a blow mold.

【図4】図3に示す形状モデルにおけるプリフォーム変
形の解析進行状況を示す図である。(1)が成形解析の
初期設定状態を示し、(2)〜(6)と進行し、(7)
が成形解析の終了状態を示す。
FIG. 4 is a diagram showing the progress of analysis of preform deformation in the shape model shown in FIG. 3; (1) shows the initial setting state of the molding analysis, proceeds from (2) to (6), and (7)
Indicates the end state of the molding analysis.

【図5】図3に示す形状モデルにおけるブロー成形解析
を施した肉厚分布解析結果である。計算値が解析結果を
示し、実験結果が実験にてブロー成形した結果を示す。
5 is a wall thickness distribution analysis result obtained by performing a blow molding analysis on the shape model shown in FIG. The calculated value shows the analysis result, and the experimental result shows the result of blow molding in the experiment.

【符号の説明】[Explanation of symbols]

1 プリフォーム 2 ブロー成形(冷却)金型 3 ストレッチ棒 4 プリフォームメッシュ 5 ブロー成形(冷却)金型メッシュ 1 Preform 2 Blow Molding (Cooling) Mold 3 Stretch Rod 4 Preform Mesh 5 Blow Molding (Cooling) Mold Mesh

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (1)プリフォーム又はパリソン、及び
ブロー成形金型形状を微小要素に分割し、有限要素法等
の数値解析法を使用して、(A)加熱されたプリフォー
ム又はパリソンの変形計算を行う構造解析、又は(B)
(a)加熱されたプリフォーム又はパリソンの変形計算
を行う構造解析、(b)加熱されたプリフォーム又はパ
リソンの変形時に起こる熱伝導(温度移動)計算を行う
熱伝導解析及び(c)加熱されたプリフォーム又はパリ
ソンが変形して冷却金型に接触する時に起こるプリフォ
ーム又はパリソン−冷却金型間の接触伝熱計算を行う接
触伝熱解析を連成させて同時に解くことを特徴とする数
値解析法を使用し、各要素の変形量を演算することによ
って、ブロー成形温度設計におけるブロー成形解析にお
いて、(2)複数のブロー成形温度について固定したプ
リフォーム又はパリソン形状、ブロー成形ボトル形状、
ブロー圧力荷重を与えて各要素が金型に完全に接触する
まで解析を行い、得られた変位量計算結果により全要素
中の肉厚方向の最高厚さθmax又は最低厚さθmin
につき、各ブロー成形温度Tを変数とした関数 θmax=fmax(T) 及び θmin=fmin(T) として求め、(3)前記関数をグラフィック表示して、
所定のプリフォーム又はパリソン、最終成形品ボトル形
状に対する適正なブロー成形温度の範囲を評価、設計す
ることを特徴とするブロー成形解析による最適ブロー成
形温度の設計方法。
(1) A preform or parison and a blow molding die shape are divided into minute elements, and a numerical analysis method such as a finite element method is used to (A) heat the preform or parison. Structural analysis for deformation calculation, or (B)
(A) Structural analysis for calculating deformation of the heated preform or parison, (b) Thermal conduction analysis for calculating heat conduction (temperature transfer) that occurs during deformation of the heated preform or parison, and (c) Heating. Numerical values characterized by simultaneous contact heat transfer analysis that performs contact heat transfer calculation between preform or parison-cooling mold that occurs when the preform or parison deforms and contacts the cooling mold By using the analysis method to calculate the amount of deformation of each element, in blow molding analysis in blow molding temperature design, (2) fixed preform or parison shape for a plurality of blow molding temperatures, blow molding bottle shape,
Analysis is performed until a blow pressure load is applied to each element until it completely contacts the die, and the maximum amount of displacement θmax or the minimum thickness θmin in all elements is calculated according to the displacement calculation results obtained.
For each of the blow molding temperatures T, the functions θmax = fmax (T) and θmin = fmin (T) are obtained, and (3) the function is graphically displayed.
A method for designing an optimum blow molding temperature by blow molding analysis, characterized by evaluating and designing an appropriate range of blow molding temperature for a given preform, parison, or final molded product bottle shape.
【請求項2】 特許請求の範囲第1項記載のブロー成形
解析による最適ブロー成形温度の設計方法において、任
意の要素の肉厚方向厚さθに限界値として最大値θma
x及び最小値θminを設け、前記関数を評価して適正
なブロー成形温度の範囲を評価、設計することを特徴と
するブロー成形解析による最適ブロー成形温度の設計方
法。
2. In the method for designing an optimum blow molding temperature by blow molding analysis according to claim 1, the maximum value θma as a limit value for the thickness direction thickness θ of an arbitrary element.
A method for designing an optimum blow molding temperature by blow molding analysis, wherein x and a minimum value θmin are provided, and the function is evaluated to evaluate and design an appropriate range of blow molding temperature.
JP5263582A 1993-10-21 1993-10-21 Design method for optimum blow molding temperature by blow molding analysis Pending JPH07117113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5263582A JPH07117113A (en) 1993-10-21 1993-10-21 Design method for optimum blow molding temperature by blow molding analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263582A JPH07117113A (en) 1993-10-21 1993-10-21 Design method for optimum blow molding temperature by blow molding analysis

Publications (1)

Publication Number Publication Date
JPH07117113A true JPH07117113A (en) 1995-05-09

Family

ID=17391560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263582A Pending JPH07117113A (en) 1993-10-21 1993-10-21 Design method for optimum blow molding temperature by blow molding analysis

Country Status (1)

Country Link
JP (1) JPH07117113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037823A1 (en) * 1996-04-11 1997-10-16 Kao Corporation Mold designing method and apparatus
JP2006513074A (en) * 2003-01-21 2006-04-20 プラスティック テクノロジーズ インコーポレイテッド Apparatus and method for forming a virtual prototype of a blow molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037823A1 (en) * 1996-04-11 1997-10-16 Kao Corporation Mold designing method and apparatus
US6304794B1 (en) 1996-04-11 2001-10-16 Naohide Nishimine Method for designing a metal mold
JP2006513074A (en) * 2003-01-21 2006-04-20 プラスティック テクノロジーズ インコーポレイテッド Apparatus and method for forming a virtual prototype of a blow molded article

Similar Documents

Publication Publication Date Title
EP0844057B1 (en) Mold designing method and apparatus
Yang et al. A non‐isothermal finite element model for injection stretch‐blow molding of PET bottles with parametric studies
Laroche et al. Integrated numerical modeling of the blow molding process
KR970000927B1 (en) Evaluation method of flow analysis on molding of a molten material
CN106573407B (en) For controlling the control method for being used for the method for container of blowing plastic material
Ghoreishy et al. Three-dimensional finite element modeling of rubber curing process
CN105451965B (en) Manufacture the method for container with handles, the device of manufacture container with handles and container with handles
Yang et al. Coupled temperature–displacement modelling of injection stretch-blow moulding of PET bottles using Buckley model
JPH07117113A (en) Design method for optimum blow molding temperature by blow molding analysis
JPH07112481A (en) Planning of shape of blow molded bottle by blow molding analysis
KR20010088405A (en) Method and apparatus for designing molds, extruder dies and cores
JPH07108595A (en) Planning of shape of preform or parison by blow molding analysis
Bagherzadeh et al. Parameter study of stretch—blow moulding process of polyethylene terephthalate bottles using finite element simulation
US20080036107A1 (en) Unit process for thermoforming complicated forms
JP3233980B2 (en) Blow molding molding control system and molding control method
CN116629062A (en) Method, system, computer equipment and storage medium for evaluating die temperature balance
JP2955509B2 (en) Mold design method and apparatus
Nitnara et al. Simulation-Based Optimization of Injection Molding Process Parameters for Minimizing Warpage by ANN and GA
Battini et al. Experimental characterisation and modelling of polyethylene terephthalate preform for injection stretch blow moulding
Nixon et al. Assessing the stretch-blow moulding FE simulation of PET over a large process window
JP4704933B2 (en) Metal member forming method
JP2003320577A (en) Numeral value analyzing method and device for blow- molding material behavior
Hopmann et al. Minimisation of warpage for injection moulded parts with reversed thermal mould design
Harms et al. Finite element modelling of the inflation process in blow moulding
JP3597508B2 (en) Preform design method and apparatus