JPH0711583B2 - Optical object recognition device - Google Patents

Optical object recognition device

Info

Publication number
JPH0711583B2
JPH0711583B2 JP62022247A JP2224787A JPH0711583B2 JP H0711583 B2 JPH0711583 B2 JP H0711583B2 JP 62022247 A JP62022247 A JP 62022247A JP 2224787 A JP2224787 A JP 2224787A JP H0711583 B2 JPH0711583 B2 JP H0711583B2
Authority
JP
Japan
Prior art keywords
light
image
slit
projection
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62022247A
Other languages
Japanese (ja)
Other versions
JPS63188789A (en
Inventor
忍 徳島
和彦 深澤
雅昭 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62022247A priority Critical patent/JPH0711583B2/en
Publication of JPS63188789A publication Critical patent/JPS63188789A/en
Publication of JPH0711583B2 publication Critical patent/JPH0711583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ウエハ等の薄い物体による発光器からの光ビ
ームの遮断を受光器で検出して物体を認識する光学式物
体認識装置に関する。
Description: TECHNICAL FIELD The present invention relates to an optical object recognition device that recognizes an object by detecting interruption of a light beam from a light emitter by a thin object such as a wafer with a light receiver.

(従来技術) 従来、半導体露光装置等においては、カセットに収納さ
れた複数枚のウェハの中から1枚を取り出して露光ステ
ージ上にセットする場合、カセット内の取出し対象とな
るウェハを検出するため光学式の物体認識装置を用いる
ようにしている。
(Prior Art) Conventionally, in a semiconductor exposure apparatus or the like, when one of a plurality of wafers stored in a cassette is taken out and set on an exposure stage, the wafer to be taken out of the cassette is detected. An optical object recognition device is used.

第6図は従来の光学式物体認識装置の概略を示したもの
で、発光器1に所定間隔を於いて受光器2を対向配置
し、発光器1より発光された光ビーム3を受光器2に入
射し、ウェハ等の光軸に直交する方向に微小な物体4が
光ビーム3を遮ったときに受光器2に対する光ビーム3
の遮断を検出して物体4を認識るようにしている。
FIG. 6 shows the outline of a conventional optical object recognizing device, in which a light receiver 2 is arranged opposite to a light emitter 1 at a predetermined interval, and a light beam 3 emitted from the light emitter 1 is received by the light receiver 2. When a small object 4 impinges on the light beam 3 in a direction orthogonal to the optical axis of a wafer or the like,
Is detected so that the object 4 is recognized.

ところで、このような従来の光学式物体認識装置におけ
る発光器1の光源としては光ビーム3の径を小さくでき
ることから半導体レーザーまたはレーザを使用すること
が多い。
By the way, a semiconductor laser or a laser is often used as the light source of the light emitter 1 in such a conventional optical object recognition device because the diameter of the light beam 3 can be made small.

(発明が解決しようとする問題点) しかしながら、このような従来のレーザビームによる物
体認識にあっては、レーザビームの径より小さい物体を
認識する場合に分解能の高い受光量の変化が得られず、
精度の高い微小物体の認識ができないという問題があつ
た。
(Problems to be Solved by the Invention) However, in such conventional object recognition by a laser beam, when recognizing an object smaller than the diameter of the laser beam, a high resolution change of the received light amount cannot be obtained. ,
There was a problem that it was not possible to recognize minute objects with high accuracy.

例えば半導体レーザにあっては発光面はだ円形になるこ
とが知られており、このようなレーザビームにあつて
は、検出対象とするウェハが光軸に直交する方向で0.6m
m程度と薄い物体であることから、レーザビームの径よ
り物体が小さくなり、レーザビームを物体が横切っても
受光器に対するレーザビームを完全に遮ることができ
ず、そのためレーザビームに対する物体の光軸に直交す
る方向の変位に対し例えば第7図に示すような受光量の
変化となり、この受光量の変化からは物体の位置を正確
に割り出すことがことができない。
For example, it is known that the emission surface of semiconductor lasers is elliptical.For such laser beams, the wafer to be detected is 0.6 m in the direction orthogonal to the optical axis.
Since it is a thin object such as about m, the object becomes smaller than the diameter of the laser beam, and even if the object crosses the laser beam, the laser beam to the photoreceiver cannot be completely blocked. For example, the amount of received light changes as shown in FIG. 7 with respect to the displacement in the direction orthogonal to, and the position of the object cannot be accurately determined from the change in the amount of received light.

一方、発光器の光源としてLEDを使用することも考えら
れるが、LEDの発光輝度の分布は光軸方向に最大輝度を
もった放射状の分布となるため、光ビームの平行縮小化
が困難であり、特に発光器と受光器との距離が長い場合
には光ビームが拡散し、光軸に直交する方向に微小なウ
ェハ等の物体を認識してその位置を正確に割り出すこと
は困難である。
On the other hand, it may be possible to use LEDs as the light source of the light emitter, but since the distribution of the LED emission brightness is a radial distribution with maximum brightness in the optical axis direction, it is difficult to reduce the parallelization of the light beam. Particularly, when the distance between the light emitter and the light receiver is long, the light beam is diffused, and it is difficult to recognize an object such as a minute wafer in the direction orthogonal to the optical axis and accurately determine its position.

(問題点を解決するための手段) 本発明は、このような従来の問題点に鑑みてなされたも
ので、光軸に直交する方向で微小なウェハ等の物体が光
ビームを横切った時の光量の変化から高い分解能をもっ
て微小物体を確実に認識することができる光学式物体認
識装置を提供することを目的とする。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned conventional problems. When the object such as a minute wafer crosses the light beam in a direction orthogonal to the optical axis, An object of the present invention is to provide an optical object recognition device capable of reliably recognizing a minute object with high resolution from a change in light amount.

この目的を達成するため本発明にあっては、発光器に、
レーザ又はLED等の光源に続いて光源からの光束をスリ
ット状又はスポット状の投影像に変換する投影板、投影
像の光束を物体検出位置又はその近傍に集光して前記投
影像を結像させる第1の結像レンズを設け、一方、受光
器には、物体検出位置又はその近傍に結像された投影像
を受光素子に再結像させる第2の結像レンズを設けるよ
うにしたものである。
In order to achieve this object, in the present invention, the light emitting device,
A projection plate that converts a light beam from a light source such as a laser or an LED into a slit-shaped or spot-shaped projected image following the light source, and forms the projected image by focusing the light beam of the projected image at or near the object detection position. A first imaging lens is provided, while the light receiving device is provided with a second imaging lens for re-imaging the projection image formed at or near the object detection position on the light receiving element. Is.

(作用) このような本発明の構成によれば、レーザ又はLED等の
光源からの光束は投影板のスリット開口又はピンホール
による投影像に変換され、第1の結像レンズにより物体
検出位置又はその近傍の空間にスリット像又はピンホー
ル像として結像される。
(Operation) According to such a configuration of the present invention, a light flux from a light source such as a laser or an LED is converted into a projection image by a slit opening or a pinhole of the projection plate, and the first imaging lens is used to detect an object detection position or It is imaged as a slit image or a pinhole image in the space near it.

この物体検出位置またはその近傍に結像された発光器か
らのスリット像又はピンホール像は、ウェハ等の光軸に
直交する方向で微小な物体に対し充分に小さな空間像と
して結像することができるため、物体が光軸を直交する
方向に横切ると、受光器の第2の結合レンズによる受光
素子の再結合像は完全に遮断され、分解能の高い急峻な
受光量の変化を得ることができる。
The slit image or pinhole image from the light emitter formed at or near the object detection position can be formed as a sufficiently small aerial image for a minute object in the direction orthogonal to the optical axis of the wafer or the like. Therefore, when the object crosses the optical axis in a direction orthogonal to each other, the recombined image of the light receiving element by the second coupling lens of the light receiver is completely blocked, and a sharp change in the amount of received light with high resolution can be obtained. .

(実施例) 第1図は本発明の基本構成を示した説明図である。(Embodiment) FIG. 1 is an explanatory diagram showing the basic configuration of the present invention.

第1図に於いて、5は発光器であり、発光器5により発
光された光は微小物体8の検出位置又はその近傍となる
像点6に集光され、後の説明で明らかにするように、発
光器5からの例えばスリット像を像点6の空間に結像す
るようになる。発光器5より所定距離離れた位置には受
光器7が対向配置され、受光器7は像点6に結像された
スリット像を内蔵した受光素子の受光面に再結像させる
ようになる。
In FIG. 1, reference numeral 5 denotes a light emitter, and the light emitted by the light emitter 5 is condensed at an image point 6 which is at the detection position of the minute object 8 or in the vicinity thereof, as will be described later. Then, for example, a slit image from the light emitter 5 is formed in the space of the image point 6. A light receiver 7 is arranged opposite to the light emitter 5 at a predetermined distance, and the light receiver 7 re-images the slit image formed at the image point 6 on the light receiving surface of the light receiving element having the built-in slit image.

第2図は第1図の発光器5及び受光器7の具体的な実施
例を示した説明図である。
FIG. 2 is an explanatory view showing a concrete embodiment of the light emitter 5 and the light receiver 7 of FIG.

第2図に於いて、まず発光器5はLED又は半導体レーザ
等の発光素子9を有し、発光素子9からの光はコンデン
サレンズ10で集光されて投影板11に照射される。投影板
11は、この実施例にあっては紙面に直交する方向に長辺
をもったスリット開口部11aを有し、コンデンサレンズ1
0で集光された発光素子9からの光の照明でスリット開
口11aで定まる投影スリット像を作り出す。
In FIG. 2, the light emitting device 5 has a light emitting element 9 such as an LED or a semiconductor laser, and the light from the light emitting element 9 is condensed by the condenser lens 10 and irradiated on the projection plate 11. Projection board
In this embodiment, 11 has a slit opening 11a having a long side in a direction orthogonal to the paper surface, and the condenser lens 1
The projection slit image defined by the slit opening 11a is created by illuminating the light from the light emitting element 9 condensed at 0.

投影板11に続いては開口絞り12が設けられ、開口絞り12
で規制された投影板11からのスリット光束を第1の結像
レンズ13に入射している。第1の結像レンズ13は開口絞
り12を介して得られた投影板11からの投影スリット像を
焦点距離fで定まる像点6の空間に結像するようにな
る。
An aperture stop 12 is provided following the projection plate 11, and the aperture stop 12
The slit light flux from the projection plate 11 regulated by the above is incident on the first imaging lens 13. The first image forming lens 13 forms an image of the projection slit image from the projection plate 11 obtained through the aperture stop 12 in the space of the image point 6 determined by the focal length f.

一方、受光器7には発光器5の第1の結像レンズ13によ
り像点6に結像された投影スリット像を受光素子16の受
光面に再結像させる第2の結像レンズ14を有し、第2の
結像レンズ14と受光素子16との間には微小物体8が像点
6若しくはその近傍に位置したときに生ずる反射光の受
光素子16への入射を阻止するための反射光遮蔽スリット
15が配置されている。
On the other hand, the light receiving device 7 is provided with a second imaging lens 14 for re-imaging the projection slit image formed at the image point 6 by the first imaging lens 13 of the light emitting device 5 on the light receiving surface of the light receiving element 16. Between the second imaging lens 14 and the light receiving element 16, reflection is provided to prevent the reflected light generated when the minute object 8 is located at or near the image point 6 from entering the light receiving element 16. Light blocking slit
15 are arranged.

次に第2図の実施例の作用を説明する。Next, the operation of the embodiment shown in FIG. 2 will be described.

まず発光器5にあっては、LED又は半導体レーザ等の発
光素子9からの光をコンデンサレンズ10で集光して投影
板11のスリット開口部11aを照明しており、このコンデ
ンサレンズ10による照明で投影板11のスリット開口部11
aの透過光束として得られた投影スリット像は開口絞り1
2で光束が規制された後、第1の結像レンズ13に入射
し、第1の結像レンズ13によって像点6に投影スリット
像を結像させる。この像点6に結像される投影スリット
像の大きさは、第1の結像レンズ13の配置位置、レンズ
の焦点距離fにより決定され、十分に微小なスリット
像、即ち像点6に於いて紙面に直交する向に長辺をも
ち、光軸に直交する方向で例えば2μ程度と微小な大き
さをもった投影スリット像を結像することができる。
First, in the light emitter 5, the light from the light emitting element 9 such as an LED or a semiconductor laser is condensed by the condenser lens 10 to illuminate the slit opening 11a of the projection plate 11. With the slit opening 11 of the projection plate 11
The projected slit image obtained as the transmitted light flux of a is the aperture stop 1
After the light flux is regulated by 2, the light enters the first image forming lens 13 and forms a projection slit image at the image point 6 by the first image forming lens 13. The size of the projection slit image formed on the image point 6 is determined by the arrangement position of the first image forming lens 13 and the focal length f of the lens, and at the sufficiently small slit image, that is, the image point 6. In addition, it is possible to form a projection slit image having a long side in the direction orthogonal to the paper surface and having a minute size of, for example, about 2 μ in the direction orthogonal to the optical axis.

このため投影スリット像が結像される像点6若しくはそ
の近傍に対し光軸に直交する方向から微小なウェハ等の
微小物体8が矢印Aで示すように横切ったとき、像点6
に於けるスリット像は2μ程度と極く小さいことから、
微小物体8が例えばウェハ等のように0.6mm程度の微小
な厚さであったとしても、像点6又はその近傍を矢印A
のように横切ると像点6に結像された投影スリット像の
受光器7への入射は完全に遮られ、第2の結像レンズ14
による受光素子16への投影スリット像の再結像が遮断さ
れるようになる。
Therefore, when a minute object 8 such as a minute wafer crosses the image point 6 where the projection slit image is formed or the vicinity thereof in the direction orthogonal to the optical axis, as shown by an arrow A, the image point 6
Since the slit image in is as small as about 2μ,
Even if the minute object 8 has a minute thickness of about 0.6 mm, such as a wafer, the image point 6 or its vicinity is indicated by an arrow A.
, The projection slit image formed at the image point 6 is completely blocked from entering the light receiver 7, and the second image forming lens 14
The re-imaging of the projected slit image on the light receiving element 16 due to is blocked.

即ち、微小物体8の矢印A方向の変位に対する受光素子
16の受光出力は、微小物体8の光軸に直交する方向の大
きさをBとすると、第3図に示すように、微小物体8の
像点6への進入と抜け出しで急峻な光量変化が得られ、
この光量変化を受けた発光素子16の受光出力から微小物
体8の通過若しくは位置を高い分解能をもって割り出す
ことができる。
That is, the light receiving element with respect to the displacement of the minute object 8 in the direction of arrow A
Assuming that the size of the light receiving output of 16 in the direction orthogonal to the optical axis of the minute object 8 is B, as shown in FIG. 3, there is a sharp change in the amount of light when the minute object 8 enters and leaves the image point 6. Obtained,
The passage or position of the minute object 8 can be determined with high resolution from the received light output of the light emitting element 16 that has received this change in the amount of light.

次に発光器5に設けた開口絞り12の作用を説明する。Next, the operation of the aperture stop 12 provided in the light emitter 5 will be described.

今、第4図に示すように、光軸方向にそれ程長くない微
小物体8を検出する場合には、図示のように開口絞り12
による投影板11からの光束の規制を行なっていなくて
も、微小物体8の変位に対し第3図に示したような急峻
な光量変化を得ることができる。
Now, as shown in FIG. 4, when detecting a minute object 8 that is not so long in the optical axis direction, as shown in FIG.
Even if the light flux from the projection plate 11 is not regulated by, the sharp change in the light amount as shown in FIG. 3 can be obtained with respect to the displacement of the minute object 8.

これに対し第4図に示すように、光軸方向に長い物体17
を検出する場合、開口絞り12による光束の規制を行って
いなかった時には、第1の結像レンズ13による像点6に
投影スリット像を結像するための光束は、破線18で示す
ようになる。この破線18で示す像点6への結像状態で光
軸方向に長い物体17が矢印A方向に横切ると、図示のよ
うに物体17が像点6に近づく段階で光軸方向の長さによ
り像点6を通過した受光器への光束を物体17の端部で遮
り、斜線部19で示すように受光器への光束は徐々に遮ら
れることとなる。このため第3図に示すような急峻な光
量変化が得られない。
On the other hand, as shown in FIG.
In the case of detecting, when the light flux is not regulated by the aperture stop 12, the light flux for forming the projection slit image on the image point 6 by the first imaging lens 13 is as shown by the broken line 18. . When an object 17 long in the optical axis direction crosses in the direction of the arrow A in the image formation state on the image point 6 indicated by the broken line 18, as shown in the figure, the object 17 approaches the image point 6 and the length in the optical axis direction causes The light flux passing through the image point 6 to the light receiver is blocked at the end of the object 17, and the light flux to the light receiver is gradually blocked as indicated by the shaded area 19. For this reason, a steep change in the amount of light as shown in FIG. 3 cannot be obtained.

そこで光軸方向に長い物体17の検出に際しては、図示の
ように開口絞り12を絞ることにより、第1の結像レンズ
13の開口径NAを小さくする。このように開口絞り12を絞
り込んで第1の結像レンズ13の開口径NAを小さくした場
合には、実線20で示すような光束の集光による投影スリ
ット像が像点6に結像され、像点6からの光束も開口絞
り12に依存して充分に狭まり、矢印Aのように光軸方向
に長い物体17が像点6に近づいても、斜線部19で示すよ
うな段階的な光量変化を起こさず、物体17が像点6若し
くはその近傍に近づいたときの光束の遮断で第3図に示
すような急峻な光量変化を得ることができる。
Therefore, when detecting the object 17 that is long in the optical axis direction, the aperture stop 12 is narrowed down as shown in the drawing, so that the first imaging lens
Reduce the opening diameter NA of 13. In this way, when the aperture stop 12 is narrowed down and the aperture diameter NA of the first imaging lens 13 is reduced, a projection slit image formed by focusing the light flux as shown by the solid line 20 is formed at the image point 6, The light flux from the image point 6 is also sufficiently narrowed depending on the aperture stop 12, and even if an object 17 which is long in the optical axis direction approaches the image point 6 as shown by the arrow A, the gradual amount of light as shown by the shaded portion 19 A sharp change in light quantity as shown in FIG. 3 can be obtained by blocking the light flux when the object 17 approaches the image point 6 or its vicinity without causing any change.

このため検出物体として、光軸方向に短い物体の代わり
に長い物体を検出するような場合には、第4図に示すよ
うに光軸方向に長い物体17に合わせて予め開口絞り12を
適切な絞り状態に調整しておくことが望ましい。
Therefore, when a long object is detected as the detection object instead of the short object in the optical axis direction, as shown in FIG. It is desirable to adjust the aperture.

更に発光器5の光源となる発光素子9として、例えば半
導体レーザを使用した場合には、半導体レーザの発光面
は楕円形状を持ち、且つ周囲温度等の影響を受けて発光
面の楕円形状が長軸方向に大きく変動する。そこで、投
影板11の開口スリット部11aの長辺を半導体レーザの楕
円発光面の短軸方向となるように設定することで、半導
体レーザの楕円発光面が変動しても、この発光面の形状
変更に影響されることなく安定した投影スリット像を作
り出すことができる。
Further, when a semiconductor laser, for example, is used as the light emitting element 9 serving as the light source of the light emitting device 5, the light emitting surface of the semiconductor laser has an elliptical shape, and the elliptical shape of the light emitting surface is long due to the influence of ambient temperature and the like. It fluctuates greatly in the axial direction. Therefore, by setting the long side of the opening slit portion 11a of the projection plate 11 so as to be in the minor axis direction of the elliptic emission surface of the semiconductor laser, even if the elliptical emission surface of the semiconductor laser changes, the shape of this emission surface It is possible to create a stable projected slit image without being affected by changes.

尚、上記の実施例は投影板11にスリット開口部11aを設
けて像点6に投影スリット像を結像させる場合を例に取
るものであったが、投影板11にピンホールを設け、この
ピンホールによるスポット像を像点6に結像させるよう
にしてもよい。
In the above embodiment, the slit opening 11a is provided in the projection plate 11 to form a projected slit image on the image point 6, but the projection plate 11 is provided with a pinhole. A spot image formed by a pinhole may be formed on the image point 6.

(発明の効果) 以上説明してきたように本発明によれば、レーザ又はLE
D等の光源からの光でスリット状又はスポット状の開口
部を設けた投影板を照明して投影像を作り出し、投影板
からの投影スリット像を第1のレンズによる物体検出位
置又はその近傍に結像し、一方、受光器にあっては、物
体検出位置又はその近傍に結像された発光器による投影
像を受光素子に再結像させる第2の結像レンズを設ける
ようにしたため、光軸に直交する方向に微小な物体であ
っても、発光器による投影像の結像空間若しくはその近
傍を微小物体が横切ることで、結像された投影像の受光
器への入射を確実に遮ぎって微小物体の変位に対する急
峻な光量変化を得ることができ、ウェハ等の厚みの薄い
物体であっても急峻な光量変化によって得られる分解能
の高い受光出力から正確に物体位置を認識して、物体の
位置は勿論のこと物体の大きさも同時に割り出すことが
できる。
As described above, according to the present invention, the laser or LE
Light from a light source such as D illuminates a projection plate provided with slit-shaped or spot-shaped openings to create a projected image, and the projected slit image from the projection plate is placed at or near the object detection position by the first lens. On the other hand, the light receiver is provided with a second imaging lens for re-imaging the projected image by the light emitter formed at or near the object detection position on the light receiving element. Even if a minute object is perpendicular to the axis, the minute object crosses the image formation space of the projected image by the light emitter or its vicinity, so that the projected image is prevented from entering the light receiver. In short, it is possible to obtain a sharp light amount change with respect to the displacement of a minute object, and accurately recognize the object position from the light receiving output with high resolution obtained by the abrupt light amount change even for thin objects such as wafers, Not to mention the position of the object You can determine the size of your body at the same time.

尚、実施例特有の効果として、光軸に直交する方向で微
小であると同時に光軸方向に長い物体であっても、発光
器に設けた開口絞りにより投影板から集光レンズに対す
る光束を規制することで、物体の光軸方向の大きさに影
響されることなく、急峻な光量変化をもって光軸方向に
長い物体であっても正確に検出することができる。
As an effect peculiar to the embodiment, even if the object is minute in the direction perpendicular to the optical axis and is long in the optical axis direction at the same time, the light flux from the projection plate to the condenser lens is regulated by the aperture stop provided in the light emitter. By doing so, an object long in the optical axis direction can be accurately detected with a sharp change in the light amount without being affected by the size of the object in the optical axis direction.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の基本構成を示した説明図、第2図は本
発明の具体的な実施例を示した説明図、第3図は本発明
で得られる微小物体の光軸を横切る変位に対する光量変
化を示した特性図、第4,5図は開口絞りの機能を示した
説明図、第6図は従来例を示した説明図、第7図は従来
例における光量変化を示した特性図である。 5:発光器 6:像点(結像位置) 7:受光器 8:微小物体 9:発光素子 10:コンデンサレンズ 11:投影板 12:開口絞り 13:第1の結像レンズ 14:第2の結像レンズ 15:反射光遮蔽スリット 16:受光素子 17:光軸方向に長い物体
FIG. 1 is an explanatory view showing the basic structure of the present invention, FIG. 2 is an explanatory view showing a concrete embodiment of the present invention, and FIG. 3 is a displacement of the minute object obtained by the present invention across the optical axis. FIG. 4 is an explanatory view showing the function of the aperture stop, FIG. 6 is an explanatory view showing a conventional example, and FIG. 7 is a characteristic showing a light amount change in the conventional example. It is a figure. 5: Light emitting device 6: Image point (imaging position) 7: Light receiving device 8: Small object 9: Light emitting element 10: Condenser lens 11: Projection plate 12: Aperture stop 13: First imaging lens 14: Second Imaging lens 15: Reflected light shielding slit 16: Light receiving element 17: Object long in the optical axis direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発光器と受光器を所定間隔を置いて対向配
置し、該発光器と受光器の間に、該発光器が発する光の
光軸に直交する方向の寸法が微小な物体を配置し、該物
体による発光器からの光の遮断を受光器で検出して前記
物体を認識する光学式物体認識装置に於いて、 前記発光器に、光源からの光束をスリット状又はスポッ
ト状の投影像に変換する投影板と、該投影板から得られ
た投影像の光束を集光して物体検出位置又はその近傍の
空間に前記投影像を結像させる第1の結像手段とを設
け、 前記受光器に、前記物体検出位置又はその近傍の空間に
結像された投影像を受光素子に再結像させる第2の結像
手段を設けたことを特徴とする光学式物体認識装置。
1. A light-emitting device and a light-receiving device are arranged to face each other with a predetermined distance, and an object having a minute dimension in a direction orthogonal to an optical axis of light emitted from the light-emitting device is disposed between the light-emitting device and the light-receiving device. In the optical object recognition device which is arranged and recognizes the object by detecting the blocking of the light from the light emitter by the object by the light receiver, the light emitter has a slit-shaped or spot-shaped light beam from the light source. A projection plate for converting the projection image and a first image forming means for condensing the light flux of the projection image obtained from the projection plate to form the projection image in a space at or near the object detection position are provided. An optical object recognizing device, characterized in that the light receiver is provided with a second image forming means for re-forming a projected image formed in a space at or near the object detection position on a light receiving element.
JP62022247A 1987-02-02 1987-02-02 Optical object recognition device Expired - Lifetime JPH0711583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62022247A JPH0711583B2 (en) 1987-02-02 1987-02-02 Optical object recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62022247A JPH0711583B2 (en) 1987-02-02 1987-02-02 Optical object recognition device

Publications (2)

Publication Number Publication Date
JPS63188789A JPS63188789A (en) 1988-08-04
JPH0711583B2 true JPH0711583B2 (en) 1995-02-08

Family

ID=12077462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62022247A Expired - Lifetime JPH0711583B2 (en) 1987-02-02 1987-02-02 Optical object recognition device

Country Status (1)

Country Link
JP (1) JPH0711583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277990A (en) * 1990-02-20 1991-12-09 Fuji Electric Co Ltd Photoelectric switch for detecting minute matter
JP2010080492A (en) * 2008-09-24 2010-04-08 Pulstec Industrial Co Ltd Photointerrupter

Also Published As

Publication number Publication date
JPS63188789A (en) 1988-08-04

Similar Documents

Publication Publication Date Title
US4177379A (en) Back-scattered electron detector for use in an electron microscope or electron beam exposure system to detect back-scattered electrons
US5909284A (en) Method and system for measuring an inner diameter of a hole formed in an object
US4621890A (en) Optical apparatus including two afocal systems
JP2004117161A (en) Optical displacement sensor
JP4303120B2 (en) Mapping sensor for semiconductor wafer carrier
JPH0711583B2 (en) Optical object recognition device
JPS6315739B2 (en)
JP2000294825A (en) Head of photodetector
JPH09287931A (en) Distance measuring method and distance sensor
US6864964B2 (en) Optical distance measuring device
JP2002286414A (en) Optical displacement meter
JP2003083723A (en) Three-dimensional shape measuring optical system
US4839685A (en) Light receiving element for a rangefinder
JPH0552517A (en) Speckle displacement meter
JP3297968B2 (en) Limited reflection type photoelectric sensor
JPH11201719A (en) Position measuring device and laser beam machining device
JPH0473130B2 (en)
JPH07146115A (en) Optical sensor
JP2757541B2 (en) Focus detection device and observation device having the same
JPH05346532A (en) Automatic focusing device of microscope and dark-field microscope
JPH06331732A (en) Optical distance sensor
JPH109950A (en) Reflective detection device for object
JPH04145311A (en) Height measuring device
JP2576716Y2 (en) Emitter for auto focus
JP2569442B2 (en) Alignment device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term