JPH07115116A - Thick film measuring method - Google Patents

Thick film measuring method

Info

Publication number
JPH07115116A
JPH07115116A JP25973493A JP25973493A JPH07115116A JP H07115116 A JPH07115116 A JP H07115116A JP 25973493 A JP25973493 A JP 25973493A JP 25973493 A JP25973493 A JP 25973493A JP H07115116 A JPH07115116 A JP H07115116A
Authority
JP
Japan
Prior art keywords
thin film
film thickness
sheet resistance
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25973493A
Other languages
Japanese (ja)
Inventor
Masato Kanazawa
正人 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP25973493A priority Critical patent/JPH07115116A/en
Publication of JPH07115116A publication Critical patent/JPH07115116A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method with which the thickness of a conductor thin film can be measured precisely in a semiconductor manufacturing method. CONSTITUTION:A plurality of types of samples of conductive thin films of different thickness are formed covering the region, requiring measurement of film thickness, on a semiconductor substrate in accordance with the requirement of the manufacturing process of a semiconductor device. The sheet resistance R of the conductive thin films is measured by a four-probe measuring method, and the thickness of each conductive thin film is measured in advance. The constants A, B and C are computed by the following formula (T=1000t). R=A+ BT+CT<2>. The sheet resistance of the part, where film thickness is required to recognize, is measured and film thickness is computed from the obtained value R.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、従来より時間や手間が
かかることなく、さらにより精度の高い導伝体薄膜の膜
厚測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a more accurate method for measuring the thickness of a conductive thin film, which requires less time and labor than before.

【0002】[0002]

【従来の技術】導伝体薄膜の膜厚測定方法に試料を非破
壊で測定する方法として、シート抵抗を測定して膜厚に
換算する方法が広く用いられている。
2. Description of the Related Art As a method of nondestructively measuring a sample, a method of measuring a sheet resistance and converting it into a film thickness is widely used as a method of measuring a film thickness of a conductive thin film.

【0003】一方、直接的な試料破壊の方法として、探
針による段差測定、電子顕微鏡観察等により導伝体薄膜
の膜厚を測定するものがある。段差測定では、表面の平
滑な試料に被測定導伝体薄膜の段差を形成して行う。す
なわち、まず表面の平滑な試料面に被測定導伝体薄膜を
形成した後、被測定導伝体薄膜上にエッチングマスクパ
ターンを形成する。次に、エッチングマスクパターンを
マスクとして被測定導伝体薄膜のみを適当な酸あるいは
アルカリ溶液によりエッチング除去し、さらにエッチン
グマスクパターンのみを除去し、この段差を測定する。
したがって、この場合は被測定導伝体薄膜は破壊され
る。また、膜厚測定には被測定導伝体薄膜の段差形成の
ための時間が必要となり、膜厚測定を瞬時に行うことは
不可能である。
On the other hand, as a direct sample destruction method, there is a method of measuring the film thickness of the conductor thin film by measuring a step with a probe or observing with an electron microscope. In the step measurement, the step of the conductor thin film to be measured is formed on the sample having a smooth surface. That is, first, a conductor thin film to be measured is formed on a sample surface having a smooth surface, and then an etching mask pattern is formed on the conductor thin film to be measured. Next, using the etching mask pattern as a mask, only the conductor thin film to be measured is removed by etching with an appropriate acid or alkali solution, and only the etching mask pattern is removed, and this step difference is measured.
Therefore, in this case, the measured conductor thin film is destroyed. Further, the film thickness measurement requires time for forming a step of the conductor thin film to be measured, and it is impossible to instantaneously measure the film thickness.

【0004】また、電子顕微鏡観察による方法では、被
測定導伝体薄膜を表面の平滑な試料面に形成し、璧開し
た試料断面を電子顕微鏡により観察する。これによって
被測定導伝体薄膜の膜厚を測定することができる。ただ
し、この場合、測定前に電子顕微鏡像の倍率を精密に校
正しておく必要がある。したがって、この場合でも被測
定導伝体薄膜は破壊される。また、膜厚測定を瞬時に行
うことは不可能である。
Further, in the method based on electron microscope observation, a conductor thin film to be measured is formed on a smooth sample surface, and the sample cross section that has been opened is observed by an electron microscope. Thereby, the thickness of the measured conductor thin film can be measured. However, in this case, it is necessary to precisely calibrate the magnification of the electron microscope image before the measurement. Therefore, even in this case, the measured conductor thin film is destroyed. In addition, it is impossible to measure the film thickness instantaneously.

【0005】一方、半導体装置の製造工程において、通
常素子間を接続するために用いられる配線には導伝体薄
膜が用いられる。半導体装置の性能、信頼性、歩留りに
問題がないよう、意図した膜厚の導伝体薄膜が形成され
ているかどうかを製造工程中において確認するために、
配線に用いる導伝体薄膜の膜厚を、半導体装置の製造工
程中において確認する必要がある。意図した膜厚の導伝
体薄膜が形成されているかどうかの確認を怠った場合、
意図した膜厚から外れた場合には不良となるべきもので
も半導体装置の製造が継続する。したがって、膨大な設
計と異なる半導体装置の製造が継続され、膨大な不良品
を生み出す。半導体装置の製造工程においては、製造工
程中に都度、形成した導伝体薄膜の膜厚を半導体装置の
製造時間を遅らすことなく瞬時に、正確に求めることが
重要である。
On the other hand, in the manufacturing process of a semiconductor device, a conductor thin film is usually used for wiring used for connecting elements. In order to confirm during the manufacturing process whether or not the conductor thin film of the intended thickness is formed so that there is no problem with the performance, reliability, and yield of the semiconductor device,
It is necessary to confirm the film thickness of the conductor thin film used for wiring during the manufacturing process of the semiconductor device. If you fail to confirm whether the conductor thin film of the intended thickness is formed,
If the film thickness deviates from the intended film thickness, semiconductor devices continue to be manufactured even if they should be defective. Therefore, manufacturing of semiconductor devices different from enormous designs is continued, resulting in enormous defective products. In the manufacturing process of a semiconductor device, it is important to obtain the film thickness of the conductive thin film formed in each manufacturing process instantly and accurately without delaying the manufacturing time of the semiconductor device.

【0006】半導体装置の製造工程において一般に用い
られている導伝体薄膜の膜厚の測定方法は、導伝体薄膜
のシート抵抗を測定して、膜厚に変換する方法である。
導伝体薄膜のシート抵抗の測定は、4探針測定法により
測定試料を非破壊で容易に実現できる。4探針測定法
は、等間隔に並べた4本の導伝体の針を被測定試料面に
接触させ、両端の2針に定電流を流し、中央の2針で電
圧を測定してシート抵抗を求めるという方法である。4
探針測定法によれば、被測定導伝体薄膜を非破壊でシー
ト抵抗の測定が可能であり、また特に測定のために試料
の加工や工夫の必要もなく容易に、また瞬時に測定がで
きる。
A method of measuring the film thickness of the conductive thin film, which is generally used in the manufacturing process of semiconductor devices, is a method of measuring the sheet resistance of the conductive thin film and converting it into the film thickness.
The measurement of the sheet resistance of the conductor thin film can be easily realized nondestructively by the four-point probe measurement method. In the 4-probe measurement method, four conductor needles arranged at equal intervals are brought into contact with the surface of the sample to be measured, a constant current is applied to the two needles at both ends, and the voltage is measured with the two needles in the center. It is a method of obtaining resistance. Four
According to the probe measurement method, it is possible to measure the sheet resistance of the conductor to be measured non-destructively, and it is particularly easy and instantaneous to perform measurement without the need to process or devise the sample. it can.

【0007】シート抵抗と導伝体薄膜の膜厚との間には
一般に以下の関係がある。シート抵抗をRS、被測定導
伝体薄膜の比抵抗(抵抗率)をρ、被測定導伝体薄膜の
膜厚をtとすると、 ρ=RS×t …………………………(1) となる。したがって、あらかじめ被測定導伝体薄膜の比
抵抗ρを(1)式から、シート抵抗の測定と直接的な試
料破壊の方法である段差測定、電子顕微鏡観察等による
導伝体薄膜の膜厚の測定により求めておくことにより、
シート抵抗の測定から容易に導伝体薄膜の膜厚の測定が
可能である。
The following relationship generally exists between the sheet resistance and the film thickness of the conductor thin film. If the sheet resistance is R S , the resistivity (resistivity) of the measured conductor thin film is ρ, and the film thickness of the measured conductor thin film is t, then ρ = R S × t ………………………… … (1). Therefore, the specific resistance ρ of the conductor thin film to be measured can be calculated in advance from the formula (1) by measuring the sheet resistance and measuring the step difference, which is a direct sample destruction method, and measuring the film thickness of the conductor thin film by electron microscope observation. By obtaining by measurement,
It is possible to easily measure the film thickness of the conductor thin film by measuring the sheet resistance.

【0008】[0008]

【発明が解決しようとする課題】従来の技術にもとづい
た導伝体薄膜の膜厚測定方法の問題点について説明す
る。(1)式による従来の導伝体薄膜の膜厚測定方法で
は、被測定導伝体薄膜の比抵抗ρは定数として取り扱
う。しかしながら、比抵抗ρは本来物質固有の値を持つ
ものではあるが、薄膜の場合には導伝体薄膜の膜厚に対
して以下の(2)式により比抵抗が変化する。
The problems of the method for measuring the film thickness of the conductor thin film based on the conventional technique will be described. In the conventional method for measuring the film thickness of the conductive thin film by the formula (1), the specific resistance ρ of the measured conductive thin film is treated as a constant. However, although the specific resistance ρ originally has a value peculiar to the substance, in the case of a thin film, the specific resistance changes with respect to the film thickness of the conductive thin film according to the following equation (2).

【0009】 ρ=ρB+ρi+ρG+ρSURF …………………………(2) ここで、ρBは物質固有(バルク)の比抵抗、ρiは薄膜
中の不純物散乱による比抵抗、ρGは薄膜の結晶粒界散
乱による比抵抗、ρSURFは薄膜の表面散乱による比抵抗
である。この中で、結晶粒界散乱は、薄膜を構成する結
晶粒の粒径が電子の平均自由工程より小さくなったとき
顕著になり、比抵抗を高める。また、表面散乱は薄膜の
膜厚が電子の平均自由工程より薄くなったとき、顕著に
なり、比抵抗を高める。したがって、導伝体薄膜の比抵
抗は、その形成条件に依存した結晶粒の成長状態、不純
物の混入状態、膜厚により変化することがわかる。すな
わち、導伝体薄膜の比抵抗は膜厚が薄くなるほど高くな
り、一定の値をとらない。このように、(1)式のPを
定数として取り扱った場合には、誤差を生じることがわ
かる。
Ρ = ρ B + ρ i + ρ G + ρ SURF (2) where ρ B is the specific resistivity of the substance (bulk), and ρ i is the impurity scattering in the thin film. Resistivity, ρ G is the resistivity due to grain boundary scattering of the thin film, and ρ SURF is the resistivity due to surface scattering of the thin film. Among them, the crystal grain boundary scattering becomes remarkable when the grain size of the crystal grains forming the thin film becomes smaller than the mean free path of electrons, thereby increasing the specific resistance. Further, surface scattering becomes remarkable when the film thickness of the thin film becomes thinner than the mean free path of electrons, and the specific resistance is increased. Therefore, it can be seen that the specific resistance of the conductor thin film changes depending on the growth state of crystal grains, the mixing state of impurities, and the film thickness depending on the forming conditions. That is, the specific resistance of the conductor thin film increases as the film thickness decreases, and does not take a constant value. As described above, it is understood that an error occurs when P in equation (1) is treated as a constant.

【0010】一般に、半導体装置の製造工程において、
素子間を接続するための配線には導伝体薄膜が用いられ
ているが、その導伝体薄膜の膜厚は通常数十nmから1
μm前後で用いられる。たとえば膜厚1μmの導伝体薄
膜が用いられる場合、半導体装置の製造工程において、
膜厚(1±0.1)μm程度の範囲で導伝体薄膜が形成
されているかどうかで管理される。このような場合に
(1)式にもとづいて導伝体薄膜の膜厚を測定しようと
すると、導伝体薄膜の膜厚が正確に1μmであるときの
比抵抗を用いてシート抵抗から膜厚に換算する方法を用
いる。すなわち、導伝体薄膜の膜厚が0.9〜1.1μm
の範囲で比抵抗が変化しないものとして、シート抵抗か
ら膜厚を求めることになる。ところが、導伝体薄膜の比
抵抗は導伝体薄膜の膜厚により逐次変化するので、形成
した導伝体薄膜の膜厚が狙いどうりの1μmである場合
には問題はないが、1μmから少しでもずれていた場合
には比抵抗も変化しているので正確な膜厚を求めること
ができない。また、形成した導伝体薄膜の実際の膜厚に
対応した比抵抗を用いると正確に膜厚を測定することが
できるが、形成した導伝体薄膜の未知の膜厚を測定する
ことが目的であるので、形成した導伝体薄膜の実際の膜
厚に対応した比抵抗をあらかじめ予測し設定することは
不可能である。
Generally, in the process of manufacturing a semiconductor device,
A conductor thin film is used for wiring for connecting the elements, and the film thickness of the conductor thin film is usually several tens nm to 1 nm.
Used around μm. For example, when a conductor thin film having a film thickness of 1 μm is used, in the manufacturing process of a semiconductor device,
It is controlled by whether or not the conductor thin film is formed in the range of the film thickness (1 ± 0.1) μm. In such a case, when it is attempted to measure the film thickness of the conductor thin film based on the equation (1), the specific resistance when the film thickness of the conductor thin film is exactly 1 μm is used to calculate the film thickness from the sheet resistance. Use the method of converting to. That is, the film thickness of the conductor thin film is 0.9 to 1.1 μm.
Assuming that the specific resistance does not change within the range, the film thickness is obtained from the sheet resistance. However, since the specific resistance of the conductor thin film changes sequentially depending on the film thickness of the conductor thin film, there is no problem if the thickness of the formed conductor thin film is 1 μm as desired, but from 1 μm If there is a slight deviation, the specific resistance is also changing, so an accurate film thickness cannot be obtained. In addition, although the film thickness can be accurately measured by using the specific resistance corresponding to the actual film thickness of the formed conductor thin film, the purpose is to measure the unknown film thickness of the formed conductor thin film. Therefore, it is impossible to predict and set the specific resistance corresponding to the actual film thickness of the formed conductor thin film in advance.

【0011】半導体装置の製造工程において、素子間を
接続するために用いられる配線は導伝体薄膜が用いられ
ているが、通常半導体装置の製造工程中の個々の工程に
より導伝体薄膜の種類は同じでも意図して膜厚を変える
場合がある。たとえば、半導体装置において素子間を接
続するために多層配線を形成した場合には、その第1層
目配線の膜厚と第2層目配線の膜厚は異なったものが用
いられる。一般的には、多層配線の段差を緩和するため
に、第1層目配線の膜厚は第2層目配線の膜厚より薄く
する。すなわち、半導体装置の製造工程において、同一
導伝体薄膜でも2種類以上の異なる膜厚についての膜厚
測定を実施する必要がある。
In the manufacturing process of a semiconductor device, a conductor thin film is used for the wiring used for connecting the elements. Usually, a conductor thin film is formed according to each step in the manufacturing process of the semiconductor device. Even if they are the same, the film thickness may be changed intentionally. For example, when a multilayer wiring is formed for connecting elements in a semiconductor device, the first layer wiring and the second layer wiring having different thicknesses are used. Generally, the film thickness of the first layer wiring is made smaller than the film thickness of the second layer wiring in order to reduce the step difference of the multilayer wiring. That is, in the manufacturing process of a semiconductor device, it is necessary to measure the film thickness of two or more different film thicknesses even for the same conductive thin film.

【0012】製造工程上たとえば5種類の膜厚t1
2,t3,t4,t5の導伝体薄膜を用いる場合を例にと
ると、5種類の膜厚に対して膜厚t3での比抵抗ρ3のみ
で、シート抵抗の測定から(1)式により膜厚に変換す
ると、図5に示すように膜厚t 1,t2,t4,t5では誤
差を生じ正確な膜厚測定ができないことがわかる。ここ
で図2中の黒塗りの点は4探針測定法によるシート抵抗
の測定結果R1,R2,R 3,R4,R5と、試料破壊の方
法であるが、直接的な膜厚測定方法である段差測定によ
り導伝体薄膜の膜厚t1,t2,t3,t4,t5を測定し
た結果を、横軸を導伝体薄膜の膜厚、縦軸をシート抵抗
としてプロットしたものである。また、黒塗りの測定点
を結ぶ曲線は、従来の技術により4探針測定法によるシ
ート抵抗の測定から、比抵抗ρ3(=R3×t3)をもと
に、(1)式により導伝体薄膜の膜厚に変換したときの
結果である。
In the manufacturing process, for example, five kinds of film thickness t1
t2, T3, TFour, TFiveTaking the case of using the conductor thin film of
Then, for five types of film thickness, the film thickness t3Resistivity at3only
Then, from the measurement of the sheet resistance, it is converted into the film thickness by the equation (1).
Then, as shown in FIG. 1, T2, TFour, TFiveSo wrong
It can be seen that there is a difference and accurate film thickness measurement cannot be performed. here
The black dots in Fig. 2 are the sheet resistance measured by the 4-probe method.
Measurement result R1, R2, R 3, RFour, RFiveAnd those who destroy the sample
However, it is a direct method of film thickness measurement
The thickness t of the conductive thin film1, T2, T3, TFour, TFiveTo measure
The horizontal axis shows the film thickness of the conductor thin film, and the vertical axis shows the sheet resistance.
Is plotted as. Also, the black measurement points
The curve that connects the
From the measured resistance, the specific resistance ρ3(= R3× t3)
Then, when converted to the film thickness of the conductor thin film by the formula (1),
The result.

【0013】(1)式では比抵抗ρ、膜厚t、シート抵
抗Rsがすべて定数として取り扱うことができないの
で、図5では比抵抗ρ3、シート抵抗R3のときのみ正確
な膜厚t3を求めることができるが、それ以外は従来の
導伝体薄膜の膜厚測定方法では正確な膜厚測定ができな
い。さらに精度を上げるために膜厚t1,t2,t3
4,t5に対して比抵抗ρ1,ρ2,ρ3,ρ4,ρ5を導
出しておきシート抵抗の測定値から(1)式を用いて膜
厚に変換しても、図6に示すように誤差は図5より小さ
くなるものの膜厚t1,t2,t3,t4,t5以外の膜厚
の導伝体薄膜は正確な膜厚測定ができないことがわか
る。
Since the specific resistance ρ, the film thickness t, and the sheet resistance R s cannot all be treated as constants in the equation (1), the accurate film thickness t is obtained only for the specific resistance ρ 3 and the sheet resistance R 3 in FIG. Although 3 can be obtained, other than that, accurate film thickness measurement cannot be performed by the conventional film thickness measurement method for a conductor thin film. In order to further improve the accuracy, the film thicknesses t 1 , t 2 , t 3 ,
Even if specific resistances ρ 1 , ρ 2 , ρ 3 , ρ 4 , and ρ 5 are derived for t 4 and t 5 and converted from the measured sheet resistance value to the film thickness using the equation (1), As shown in FIG. 6, although the error is smaller than that in FIG. 5, it can be seen that the conductive film having a film thickness other than the film thicknesses t 1 , t 2 , t 3 , t 4 , and t 5 cannot be accurately measured. .

【0014】本発明の目的は、シート抵抗の測定から膜
厚を測定する導伝体薄膜の膜厚測定方法において、シー
ト抵抗と膜厚の関係式(近似式)を導出し、関係式を用
いてシート抵抗の測定から膜厚に変換することにある。
さらにシート抵抗と膜厚の関係式を導出することによ
り、導伝体薄膜の膜厚により比抵抗が変化することによ
る膜厚誤差を生じないようにすることにある。さらに、
半導体装置の製造工程における導伝体薄膜の膜厚測定に
おいて、従来の技術より誤差が少なくより正確な導伝体
薄膜の膜厚測定方法を提供することにある。
An object of the present invention is to derive a relational expression (approximate equation) between the sheet resistance and the film thickness in the method for measuring the film thickness of a conductor thin film by measuring the film resistance and to use the relational expression. It is to convert the sheet resistance to the film thickness.
Further, by deriving the relational expression between the sheet resistance and the film thickness, the film thickness error due to the change in the specific resistance depending on the film thickness of the conductor thin film is prevented. further,
An object of the present invention is to provide a more accurate method for measuring a film thickness of a conductive thin film, which has less error than the conventional technique in measuring the film thickness of the conductive thin film in the manufacturing process of a semiconductor device.

【0015】[0015]

【課題を解決するための手段】n種の膜厚の導伝体薄膜
のシート抵抗Rnを測定する工程と、導伝体薄膜の膜厚
nを測定する工程と、シート抵抗Rnと膜厚tnから3
種類の定数A,B,Cを導出する工程を備え、導伝体薄
膜のシート抵抗の測定値Rと前記3種類の定数A,B,
Cから導伝体薄膜の膜厚を導出することを特徴とする導
伝体薄膜の膜厚測定方法。
Means for Solving the Problems A step of measuring a sheet resistance R n of a conductor thin film having n kinds of film thicknesses, a step of measuring a film thickness t n of a conductor thin film, and a sheet resistance R n Film thickness t n to 3
The method includes a step of deriving the constants A, B, C of the types, and the measured value R of the sheet resistance of the conductor thin film and the constants A, B, 3 of the three types.
A method for measuring the thickness of a conductor thin film, which comprises deriving the film thickness of the conductor thin film from C.

【0016】[0016]

【作用】上記本発明の導伝体薄膜の膜厚測定方法では、
半導体装置の製造工程で使用される導伝体薄膜の製造装
置で形成した導伝体薄膜を基に3種類の定数A,B,C
を求めるので、使用条件に応じた校正が可能となり、膜
厚測定の誤差を少なくできる。
In the method for measuring the thickness of the conductor thin film of the present invention,
Three types of constants A, B, C based on the conductor thin film formed by the conductor thin film manufacturing apparatus used in the semiconductor device manufacturing process.
Therefore, it is possible to calibrate according to the usage conditions, and it is possible to reduce the error in film thickness measurement.

【0017】また、導伝体薄膜のシート抵抗を導伝体薄
膜の膜厚の逆数の2次式で近似するので、非常に精度の
よい近似ができ、誤差を少なくできる。したがって、導
伝体薄膜のシート抵抗の測定から精度よく導伝体薄膜の
膜厚測定ができる。
Further, since the sheet resistance of the conductor thin film is approximated by a quadratic expression which is the reciprocal of the film thickness of the conductor thin film, very accurate approximation can be performed and error can be reduced. Therefore, the film thickness of the conductor thin film can be accurately measured by measuring the sheet resistance of the conductor thin film.

【0018】[0018]

【実施例】図1は本発明の実施例におけるシート抵抗の
測定から膜厚を測定する、導伝体薄膜の膜厚測定方法を
示す概念図である。本発明の実施例における導伝体薄膜
の膜厚測定方法は、シート抵抗Rsを測定する工程と、
三つの定数A,B,Cを導出する工程と、シート抵抗の
測定結果Rsと定数A,B,Cから膜厚tを導出する工
程と、膜厚tとシート抵抗Rsを出力する工程を備え
る。
EXAMPLE FIG. 1 is a conceptual diagram showing a method for measuring the film thickness of a conductive thin film, which measures the film thickness from the measurement of the sheet resistance in the example of the present invention. A method for measuring a film thickness of a conductor thin film according to an embodiment of the present invention includes a step of measuring a sheet resistance R s ,
A step of deriving the three constants A, B, C, a step of deriving the film thickness t from the sheet resistance measurement result R s and the constants A, B, C, and a step of outputting the film thickness t and the sheet resistance R s. Equipped with.

【0019】以下に、本発明の実施例の個々の工程につ
いて図面を参照しながら説明する。実施例では導伝体薄
膜としてチタン薄膜を例にとり、4探針測定法等による
シート抵抗の測定結果からその膜厚に変換するための方
法について説明する。本実施例では、従来の技術の
(1)式に代わり、 t=F(Rs) …………………………(3) なるシート抵抗の関数により、膜厚とシート抵抗の関係
式を導出する。
The individual steps of the embodiment of the present invention will be described below with reference to the drawings. In the examples, a titanium thin film is used as an example of the conductor thin film, and a method for converting the sheet resistance measurement result by the 4-probe measurement method or the like into the film thickness will be described. In the present embodiment, the relationship between the film thickness and the sheet resistance is changed by the function of the sheet resistance of t = F (R s ) ... (3) instead of the conventional equation (1). Derive the formula.

【0020】まず三つの定数A,B,Cの導出方法につ
いて説明する。膜厚測定が必要な膜厚範囲を覆うよう
に、数点について膜厚の異なるチタン薄膜の試料を作製
する。ここでは、チタン薄膜は、表面に絶縁体を形成し
た表面の平滑な半導体基板上に、DCマグネトロンスパ
ッタ法で形成する。試料は5種類の膜厚とし、それらの
膜厚は、DCマグネトロンスパッタ法において、ガス圧
力や投入電力を一定とし、スパッタ時間を5種類に異な
らせることで得た。
First, a method of deriving the three constants A, B and C will be described. Samples of titanium thin films having different film thicknesses at several points are prepared so as to cover the film thickness range where film thickness measurement is required. Here, the titanium thin film is formed by a DC magnetron sputtering method on a semiconductor substrate having a smooth surface with an insulator formed on the surface. The samples were made into 5 kinds of film thickness, and those film thicknesses were obtained in the DC magnetron sputtering method by making the gas pressure and the input power constant and making the sputtering time different to 5 kinds.

【0021】ここで、チタン薄膜は膜厚測定が必要な半
導体装置の製造工程に準じて作製する。半導体の製造工
程で現実に使用される導伝体薄膜の製造装置によりチタ
ン薄膜を形成することにより、導伝体薄膜の形成装置、
形成条件に応じて、三つの定数A,B,Cの導出が可能
になる。すなわち、シート抵抗から膜厚を測定する場合
に、その測定精度を上げることができる。
Here, the titanium thin film is manufactured according to the manufacturing process of a semiconductor device which requires film thickness measurement. An apparatus for forming a conductive thin film by forming a titanium thin film by a conductive thin film manufacturing apparatus that is actually used in a semiconductor manufacturing process,
It is possible to derive the three constants A, B, and C according to the forming conditions. That is, when measuring the film thickness from the sheet resistance, the measurement accuracy can be improved.

【0022】一般に導伝体薄膜はその形成方法や形成条
件、すなわち真空蒸着法、スパッタ法、メッキ法等の形
成方法、形成装置の真空度、薄膜の形成速度、薄膜形成
時の基板温度、薄膜形成材料の不純物濃度、形成装置の
清浄度、薄膜を形成する基板の清浄度や材料等の状態
等、種々の条件によって変化する。つまり、それらの条
件によって形成された導伝体薄膜の比抵抗を決定する、
薄膜中の不純物濃度や結晶粒の大きさ等が変化するから
である。半導体装置の製造工程においてスパッタ法によ
り形成したチタン薄膜の膜厚を測定するために、たとえ
ばここで真空蒸着法により形成したチタン薄膜を用いて
も、スパッタ法により形成したチタン薄膜の正確な膜厚
測定を行うことはできない。
In general, a conductive thin film is formed by a forming method and forming conditions, that is, a forming method such as a vacuum deposition method, a sputtering method, a plating method, a vacuum degree of a forming apparatus, a thin film forming speed, a substrate temperature at the time of forming a thin film, a thin film. It changes depending on various conditions such as the impurity concentration of the forming material, the cleanliness of the forming apparatus, the cleanliness of the substrate on which the thin film is formed, the state of materials, and the like. That is, the specific resistance of the conductor thin film formed by these conditions is determined,
This is because the impurity concentration in the thin film, the size of crystal grains, and the like change. In order to measure the film thickness of a titanium thin film formed by the sputtering method in the manufacturing process of a semiconductor device, for example, even if a titanium thin film formed by the vacuum deposition method is used here, the accurate film thickness of the titanium thin film formed by the sputtering method It is not possible to make measurements.

【0023】5種類のチタン薄膜は4探針測定法等によ
りそれぞれシート抵抗R1,R2,R 3,R4,R5を測定
する。引き続き5種類のチタン薄膜の正確な膜厚t1
2,t3,t4,t5を測定する。膜厚の測定には段差測
定法や電子顕微鏡観察法等を用いて、可能な限り正確な
膜厚を測定する。以上により5種類のチタン薄膜につい
て正確な膜厚とシート抵抗の関係(R1,t1),
(R2,t2),(R3,t3),(R4,t4),(R5
5)が得られる。本実施例におけるチタン薄膜では以
下の値となる。
Five kinds of titanium thin films are obtained by the four-point probe measuring method or the like.
Sheet resistance R1, R2, R 3, RFour, RFiveMeasure
To do. Continued accurate film thickness t of 5 kinds of titanium thin film1
t2, T3, TFour, TFiveTo measure. Step measurement for film thickness measurement
As accurate as possible using standard methods and electron microscopy.
Measure the film thickness. With the above
And accurate relationship between film thickness and sheet resistance (R1, T1),
(R2, T2), (R3, T3), (RFour, TFour), (RFive
tFive) Is obtained. In the titanium thin film in this embodiment,
It will be the lower value.

【0024】 (R1,t1)=(69.5Ω,15.3nm) (R2,t2)=(39.5Ω,23.1nm) (R3,t3)=(26.8Ω,30.8nm) (R4,t4)=(21.1Ω,38.5nm) (R5,t5)=(16.7Ω,46.2nm) 以上得られた5点のチタン薄膜の膜厚とシート抵抗か
ら、以下の関係式を求める。すなわち、チタン薄膜のシ
ート抵抗を膜厚の逆数の2次式により近似する。導伝体
薄膜のシート抵抗は、導伝体薄膜の膜厚の逆数の2次式
で精度よく近似することができる。
(R 1 , t 1 ) = (69.5 Ω, 15.3 nm) (R 2 , t 2 ) = (39.5 Ω, 23.1 nm) (R 3 , t 3 ) = (26.8 Ω, (30.8 nm) (R 4 , t 4 ) = (21.1 Ω, 38.5 nm) (R 5 , t 5 ) = (16.7 Ω, 46.2 nm) The film thickness of the five titanium thin films obtained above. And the sheet resistance, the following relational expression is obtained. That is, the sheet resistance of the titanium thin film is approximated by a quadratic equation that is the inverse of the film thickness. The sheet resistance of the conductor thin film can be accurately approximated by a quadratic equation that is the reciprocal of the film thickness of the conductor thin film.

【0025】 Rs=A+BT+CT2 …………………………(4) ただし、T=1000/t A,B,Cは定数 以上によって三つの定数A,B,Cが導出できる。本実
施例におけるチタン薄膜では定数A,B,Cは以下のよ
うな数字になる。
R s = A + BT + CT 2 …………………… (4) However, T = 1000 / t A, B, and C are constants The three constants A, B, and C can be derived from the above. In the titanium thin film of this embodiment, the constants A, B and C have the following numbers.

【0026】A=0.764 B=5.556 C=1.058 理論的には薄膜のシート抵抗は、次の関係式で表すこと
ができる。
A = 0.764 B = 5.556 C = 1.058 Theoretically, the sheet resistance of a thin film can be expressed by the following relational expression.

【0027】 Rs=BT+CT2 …………………………(5) ただし、T=1/t つまり、膜厚が0nmのときにはシート抵抗は無限大に
なるので、理論的には定数Aは0である。しかしながら
本実施例では定数項Aを加える。定数項Aを加えた方が
より誤差の少ない近似が可能である。
R s = BT + CT 2 (5) However, T = 1 / t That is, when the film thickness is 0 nm, the sheet resistance becomes infinite, and thus theoretically a constant. A is 0. However, in this embodiment, the constant term A is added. The addition of the constant term A enables approximation with less error.

【0028】引き続き導伝体薄膜のシート抵抗の測定値
sと三つの定数A,B,Cから、導伝体薄膜の膜厚t
の導出方法について説明する。(5)式から次の関係式
が得られる。
Subsequently, from the measured value R s of the sheet resistance of the conductive thin film and the three constants A, B and C, the film thickness t of the conductive thin film is obtained.
The derivation method of will be described. The following relational expression is obtained from the expression (5).

【0029】 T={−B+〔B2−4A(C−Rs)〕-1/2}/2A ……(6) 以上によって、シート抵抗の関数により、膜厚とシート
抵抗の関係式を導出できる。すなわち、以後4探針測定
法等によるシート抵抗の測定値から(6)式により膜厚
に変換することが可能になる。
T = {− B + [B 2 −4A (C−R s )] −1/2 } / 2A (6) From the above, the relational expression between the film thickness and the sheet resistance is calculated by the function of the sheet resistance. Can be derived. That is, thereafter, it becomes possible to convert the measured value of the sheet resistance by the 4-probe measurement method or the like into the film thickness by the equation (6).

【0030】引き続き膜厚tとシート抵抗Rsは、液晶
表示装置あるいはLED表示装置を利用し表示するよう
にする。
Subsequently, the film thickness t and the sheet resistance R s are displayed by using a liquid crystal display device or an LED display device.

【0031】本発明の実施例をチタン薄膜に適用したと
きの結果を図2に示す。図2中の黒塗りの点は、4探針
測定法によるチタン薄膜のシート抵抗の測定結果R1
2,R3,R4,R5と、段差測定によりチタン薄膜の膜
厚t1,t2,t3,t4,t5を測定した結果を、横軸を
チタン薄膜の膜厚、縦軸をシート抵抗としてプロットし
たものである。また、黒塗りの測定点を結ぶ曲線は、本
発明の実施例により4探針測定法によるシート抵抗の測
定から、(6)式によりチタン薄膜の膜厚に変換したと
きの結果である。
The results of applying the embodiment of the present invention to a titanium thin film are shown in FIG. The black dots in FIG. 2 are the sheet resistance measurement results R 1 of the titanium thin film by the 4-probe measurement method,
R 2, R 3, R 4 , and R 5, the result of measurement of the titanium film thickness of the thin film t 1, t 2, t 3 , t 4, t 5 by step measurement, the horizontal axis of the titanium thin film thickness, The vertical axis is plotted as the sheet resistance. The curve connecting the black measurement points is the result when the sheet resistance is measured by the 4-probe measurement method according to the embodiment of the present invention and converted to the film thickness of the titanium thin film by the formula (6).

【0032】本実施例によれば、直接的な膜厚測定方法
であり、試料作製に手間のかかる段差測定によるチタン
薄膜の膜厚測定によらずとも、4探針測定法等によるシ
ート抵抗の測定結果から、チタン薄膜の膜厚への変換が
大きな誤差なく実施できることがわかる。
According to this embodiment, the film thickness is directly measured, and the sheet resistance of the titanium thin film can be measured by the four-point probe measurement method or the like without depending on the film thickness measurement of the titanium thin film by the step measurement, which takes time to prepare the sample. From the measurement results, it can be seen that the conversion to the film thickness of the titanium thin film can be performed without a large error.

【0033】また、本発明の実施例をアルミニウム合金
薄膜に適用したときの結果を図3に示す。図3中の黒塗
りの点は、4探針測定法によるアルミニウム合金薄膜の
シート抵抗の測定結果R1,R2,R3,R4,R5と、段
差測定によりアルミニウム合金薄膜の膜厚t1,t2,t
3,t4,t5を測定した結果を、横軸をアルミニウム合
金薄膜の膜厚、縦軸をシート抵抗としてプロットしたも
のである。また、黒塗りの測定点を結ぶ曲線は、本発明
の実施例により4探針測定法によるシート抵抗の測定か
ら、(6)式によりアルミニウム合金薄膜の膜厚に変換
したときの結果である。
FIG. 3 shows the results of applying the embodiment of the present invention to an aluminum alloy thin film. The black dots in FIG. 3 represent the sheet resistance measurement results R 1 , R 2 , R 3 , R 4 , R 5 of the aluminum alloy thin film by the 4-probe measurement method and the film thickness of the aluminum alloy thin film by the step measurement. t 1 , t 2 , t
The results of measuring 3 , t 4 , and t 5 are plotted by plotting the horizontal axis as the film thickness of the aluminum alloy thin film and the vertical axis as the sheet resistance. The curve connecting the black measurement points is the result when the sheet resistance is measured by the 4-probe measurement method according to the embodiment of the present invention and converted into the film thickness of the aluminum alloy thin film by the formula (6).

【0034】本実施例によれば、直接的な膜厚測定方法
であり、試料作製に手間のかかる段差測定によるアルミ
ニウム薄膜の膜厚測定によらずとも、4探針測定法等に
よるシート抵抗の測定結果から、アルミニウム合金薄膜
の膜厚への変換が大きな誤差なく実施できることがわか
る。
According to this embodiment, the film thickness is directly measured, and the sheet resistance of the four-point probe measurement method or the like can be used even if the film thickness of the aluminum thin film is not measured by measuring the step, which takes time to prepare the sample. From the measurement results, it can be seen that the conversion into the film thickness of the aluminum alloy thin film can be performed without a large error.

【0035】また、本発明の実施例をチタン窒化物薄膜
に適用したときの結果を図4に示す。図4中の黒塗りの
点は、4探針測定法によるチタン窒化物薄膜のシート抵
抗の測定結果R1,R2,R3,R4,R5と、段差測定に
よりチタン窒化物薄膜の膜厚t1,t2,t3,t4,t5
を測定した結果を、横軸をチタン窒化物薄膜の膜厚、縦
軸をシート抵抗としてプロットしたものである。また、
黒塗りの測定点を結ぶ曲線は、本発明の実施例により4
探針測定法によるシート抵抗の測定から、(6)式によ
りチタン窒化物薄膜の膜厚に変換したときの結果であ
る。
FIG. 4 shows the result when the embodiment of the present invention is applied to the titanium nitride thin film. The black dots in FIG. 4 represent the sheet resistance measurement results R 1 , R 2 , R 3 , R 4 , R 5 of the titanium nitride thin film by the four-point probe measurement method and the titanium nitride thin film Film thickness t 1 , t 2 , t 3 , t 4 , t 5
Is a plot of the measurement results of the film thickness of the titanium nitride thin film on the horizontal axis and the sheet resistance on the vertical axis. Also,
The curve connecting the blackened measurement points is 4 according to the embodiment of the present invention.
It is the result of converting the sheet resistance by the probe measurement method to the film thickness of the titanium nitride thin film by the formula (6).

【0036】本実施例によれば、直接的な膜厚測定方法
であり、試料作製に手間のかかる段差測定によるチタン
窒化物薄膜の膜厚測定によらずとも、4探針測定法等に
よるシート抵抗の測定結果から、チタン窒化物薄膜の膜
厚への変換が大きな誤差なく実施できることがわかる。
According to the present embodiment, the film thickness is measured directly, and the sheet is measured by the four-point probe measurement method or the like without depending on the film thickness measurement of the titanium nitride thin film by the step measurement which takes time to prepare the sample. From the measurement result of the resistance, it can be seen that the conversion into the film thickness of the titanium nitride thin film can be performed without a large error.

【0037】以上のように本発明の実施例によれば、導
伝体薄膜の種類が変わっても応用でき、導伝体薄膜のシ
ート抵抗の測定から精度よく導伝体薄膜の膜厚を求める
ことができる。
As described above, according to the embodiment of the present invention, it can be applied even if the kind of the conductive thin film is changed, and the film thickness of the conductive thin film can be accurately obtained by measuring the sheet resistance of the conductive thin film. be able to.

【0038】[0038]

【発明の効果】本発明によれば、半導体装置の製造工程
において現実に使用される導伝体薄膜形成装置により形
成した導伝体薄膜を用いて、シート抵抗を膜厚の逆数の
2次式により近似することにより、導伝体薄膜の膜厚を
導伝体薄膜のシート抵抗の関数で大きな誤差なく近似す
ることができる。導伝体薄膜の膜厚を導伝体薄膜のシー
ト抵抗の関数を利用することにより、半導体装置の製造
工程において現実に使用される導伝体薄膜形成装置、形
成条件に応じて、シート抵抗の測定から正確な導伝体薄
膜のシート抵抗の測定が可能になる。さらに、半導体装
置の製造工程において、瞬時に導伝体薄膜の正確な膜厚
測定が可能になり、不良を生み出すことなく精度よく設
計どうりの半導体装置の製造が可能になる。
According to the present invention, the sheet resistance is formed by a quadratic equation of the reciprocal of the film thickness by using the conductor thin film formed by the conductor thin film forming apparatus actually used in the manufacturing process of the semiconductor device. By approximating the above, the film thickness of the conductor thin film can be approximated by a function of the sheet resistance of the conductor thin film without a large error. By using the film thickness of the conductor thin film as a function of the sheet resistance of the conductor thin film, the conductor thin film forming apparatus actually used in the manufacturing process of the semiconductor device, the sheet resistance From the measurement, it is possible to accurately measure the sheet resistance of the conductor thin film. Further, in the manufacturing process of the semiconductor device, the film thickness of the conductor thin film can be instantaneously measured accurately, and it is possible to manufacture the designed semiconductor device with high precision without causing defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導伝体薄膜の膜厚測定方法を示す概念
FIG. 1 is a conceptual diagram showing a film thickness measuring method of a conductor thin film of the present invention.

【図2】本発明の導伝体薄膜の膜厚測定方法の第1の実
施例を示す図
FIG. 2 is a diagram showing a first embodiment of the method for measuring the thickness of a conductor thin film of the present invention.

【図3】本発明の導伝体薄膜の膜厚測定方法の第2の実
施例を示す図
FIG. 3 is a diagram showing a second embodiment of the method for measuring the thickness of a conductor thin film of the present invention.

【図4】本発明の導伝体薄膜の膜厚測定方法の第3の実
施例を示す図
FIG. 4 is a diagram showing a third embodiment of the method for measuring the thickness of a conductor thin film of the present invention.

【図5】従来の導伝体薄膜の膜厚測定方法の解決すべき
課題を示す図
FIG. 5 is a diagram showing a problem to be solved by a conventional method for measuring a film thickness of a conductor thin film.

【図6】従来の導伝体薄膜の膜厚測定方法の解決すべき
課題を示す図
FIG. 6 is a diagram showing a problem to be solved by a conventional method for measuring a film thickness of a conductor thin film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 n種の膜厚の導伝体薄膜のシート抵抗R
nを測定する工程と、導伝体薄膜の膜厚tnを測定する工
程と、シート抵抗Rnと膜厚tnから Rn=A+BT+CT2 を満たす定数A,B,Cを導出する工程(ただし、T=
1000/tn)を備え、前記導伝体薄膜のあるシート
抵抗の測定値Rから導伝体薄膜の膜厚を導出することを
特徴とする膜厚測定方法。
1. A sheet resistance R of a conductor thin film having n kinds of film thickness.
a step of measuring n , a step of measuring the film thickness t n of the conductor thin film, and a step of deriving constants A, B and C satisfying R n = A + BT + CT 2 from the sheet resistance R n and the film thickness t n ( However, T =
1000 / t n ) and deriving the film thickness of the conductive thin film from the measured value R of the sheet resistance of the conductive thin film.
JP25973493A 1993-10-18 1993-10-18 Thick film measuring method Pending JPH07115116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25973493A JPH07115116A (en) 1993-10-18 1993-10-18 Thick film measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25973493A JPH07115116A (en) 1993-10-18 1993-10-18 Thick film measuring method

Publications (1)

Publication Number Publication Date
JPH07115116A true JPH07115116A (en) 1995-05-02

Family

ID=17338210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25973493A Pending JPH07115116A (en) 1993-10-18 1993-10-18 Thick film measuring method

Country Status (1)

Country Link
JP (1) JPH07115116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490677B1 (en) * 2014-05-13 2015-02-09 주식회사 코엠에스 Semiconducter Substrate Thickness Measurement Device
CN104425303A (en) * 2013-09-05 2015-03-18 中芯国际集成电路制造(上海)有限公司 Method for measuring thickness of conductive layer
CN114002503A (en) * 2022-01-05 2022-02-01 北京理工大学 Resistance calculation method for conductive film of micro-cathode arc thruster

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425303A (en) * 2013-09-05 2015-03-18 中芯国际集成电路制造(上海)有限公司 Method for measuring thickness of conductive layer
KR101490677B1 (en) * 2014-05-13 2015-02-09 주식회사 코엠에스 Semiconducter Substrate Thickness Measurement Device
CN114002503A (en) * 2022-01-05 2022-02-01 北京理工大学 Resistance calculation method for conductive film of micro-cathode arc thruster
CN114002503B (en) * 2022-01-05 2022-03-15 北京理工大学 Resistance calculation method for conductive film of micro-cathode arc thruster

Similar Documents

Publication Publication Date Title
US4332833A (en) Method for optical monitoring in materials fabrication
US5057441A (en) Method for reliability testing integrated circuit metal films
US4805296A (en) Method of manufacturing platinum resistance thermometer
US7134785B2 (en) Capacitance temperature sensor and temperature measuring device
EP0578899B1 (en) Process for measuring the planarity degree of a dielectric layer in an integrated circuit and integrated circuit including means for performing said process
JPH07115116A (en) Thick film measuring method
Chen et al. Capacitance and $ S $-Parameter Techniques for Dielectric Characterization With Application to High-$ k $ PMNT Thin-Film Layers
US20080268557A1 (en) Method for measuring a thin film thickness
Cage et al. Determination of the time-dependence of Omega/sub NBS/using the quantized Hall resistance
JPS61156748A (en) Test structural body
JPS62185102A (en) Strain gage with thin discontinuous metallic layer
US4599241A (en) Method for inspecting defects of thin material film
JPH11271145A (en) Detection film for use in bolometer and its formation, and bolometer element
Riekkinen et al. Reactively sputtered tantalum pentoxide thin films for integrated capacitors
KR100252749B1 (en) Method for fabrication of standard wafer used in thickness measurement
JP2001110602A (en) Thin-film resistor forming method and sensor
US6784012B2 (en) Method for measuring temperature in a wide range using a tunnel junction
US4990218A (en) Method of testing conductor film quality
EP4317926A1 (en) Strain-resistance film and pressure sensor
RU2170993C2 (en) Micromechanical gage and its manufacturing process
Liu et al. Local microwave characterization of metal films using a scanning microwave near-field microscope
Mol et al. Process for low temperature deposition of strain gauge materials based on chromium nitride thin films
KR20110043067A (en) Thin film thickness measurement apparatus use four-point probe method
JP3107638B2 (en) Measuring method of metal thin film quality
English et al. Atomic Layer Deposited Platinum as a Sensor Material: Uniformity, 1/f Noise, and Young’s Modulus