JPH07114937A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH07114937A
JPH07114937A JP5258028A JP25802893A JPH07114937A JP H07114937 A JPH07114937 A JP H07114937A JP 5258028 A JP5258028 A JP 5258028A JP 25802893 A JP25802893 A JP 25802893A JP H07114937 A JPH07114937 A JP H07114937A
Authority
JP
Japan
Prior art keywords
fuel cell
intermediate electrode
leakage current
manifold
ammeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5258028A
Other languages
Japanese (ja)
Inventor
Shohei Uozumi
昇平 魚住
Masanori Yamaguchi
雅教 山口
Takeo Yamagata
武夫 山形
Seiichiro Ono
征一郎 小野
Masamitsu Nakazawa
正光 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5258028A priority Critical patent/JPH07114937A/en
Publication of JPH07114937A publication Critical patent/JPH07114937A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell of high reliability by preventing corrosion of various kinds of materials. CONSTITUTION:A gas seal member 12 and an O-ring 13 are interposed between a fuel cell lamination 14 and a manifold 11, between which an intermediate electrode 19 is disposed on a side of the O-ring 13 while an insulating film 21 is disposed on a side of the manifold 11 along the O-ring 13. The intermediate electrode 19 is located in approximately the same height as an undermost electrode of the fuel cell lamination 14, where at least one point is introduced out so as to be electrically connected. After passing an ammeter 22, the introducing-out portion of the intermediate electrode 19 is connected at one end thereof to the manifold 11 serving as an earth while at the other end thereof to a current collecting plate 17 via a variable resistor 23 and a DC power source 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池に係り、特に、
単位電池を多数積層した積層体の腐食防止に関する。
FIELD OF THE INVENTION The present invention relates to a fuel cell, and more particularly,
The present invention relates to corrosion prevention of a laminated body in which a large number of unit batteries are laminated.

【0002】[0002]

【従来の技術】従来の燃料電池は、単位電池を多数積層
した積層体の腐食防止に関しては単に絶縁に頼るのみで
何ら対策することがなかった。
2. Description of the Related Art In a conventional fuel cell, no measures have been taken to prevent corrosion of a laminated body in which a large number of unit cells are laminated, merely by relying on insulation.

【0003】[0003]

【発明が解決しようとする課題】例えば、電解質として
リン酸を用いるリン酸型燃料電池では、触媒2を坦持し
た空気極3,燃料極4及び両極に挾持されたマトリック
ス5より構成された単位電池1をガスセパレータ6を介
して多数積層し、かつこれらをマニホールド受け板7と
ともに、図示していない締め付け治具によって締め付け
た積層体に矢印のように空気8及び燃料9を供給排出す
るためのマニホールド11を電気的な絶縁をかねたガス
シール部材12とOリング13などのガスケットとを併
用して積層体の四面に固定してなる図7に示す燃料電池
積層体14では、一般にはマニホールド11をアース電
位として、あるいは積層電池の上下いずれかの電位にし
て用いている。図8は燃料電池積層体14のガスシール
部の要部を示す平面図であるが、電気的な絶縁はガスシ
ール部材12とOリング13及びマニホールド11内面
のフッ素樹脂系の皮膜層15でなされている。これを電
気的な等価回路にすると図9に示すようになる。1−1
〜1−nはそれぞれ単位電池を示し、アース電位である
マニホールドとの間はそれぞれの絶縁抵抗10−1〜1
0−(n+1)で接続されている。
For example, in a phosphoric acid type fuel cell using phosphoric acid as an electrolyte, a unit composed of an air electrode 3 carrying a catalyst 2, a fuel electrode 4 and a matrix 5 held between both electrodes. In order to supply and discharge air 8 and fuel 9 as shown by arrows to a laminated body in which a large number of batteries 1 are laminated via a gas separator 6 and which are clamped together with a manifold receiving plate 7 by a clamping jig (not shown). In the fuel cell stack 14 shown in FIG. 7 in which the manifold 11 is fixed to the four faces of the stack by using the gas seal member 12 that also serves as an electrical insulator and the gasket such as the O-ring 13, the manifold 11 is generally used. Is used as the ground potential or one of the upper and lower potentials of the laminated battery. FIG. 8 is a plan view showing the main part of the gas seal portion of the fuel cell stack 14, but electrical insulation is provided by the gas seal member 12, the O ring 13, and the fluororesin-based coating layer 15 on the inner surface of the manifold 11. ing. An electrical equivalent circuit of this is shown in FIG. 1-1
1-n are unit batteries, and the insulation resistances 10-1 to 10-1 are provided between the unit cells and the manifold, which is at ground potential.
They are connected by 0- (n + 1).

【0004】この状態で燃料電池の発電がなされると、
主たる負荷電流16は矢印のように負荷Zに流れるとと
もに、単位電池1−1〜1−nにはそれぞれ矢印で示す
ような電流20−1〜20−nが流れる。この際絶縁抵
抗10−1及び10−(n+1)を除く絶縁抵抗10−
2〜10−nに流れる電流は、それぞれの抵抗の上下の
電池による電流が互いに相殺し非常に小さくなるが、絶
縁抵抗10−1及び10−(n+1)には、積層電池全
電圧と絶縁抵抗10−1及び10−(n+1)とによる非
常に大きな電流が流れることになる。この電流を点P〜
Sで考えると、点P及び点Rは流れ出る電流で、この電
流が全て電子によるものであれば特に問題は無いが、点
Pではリン酸の存在によってリン酸中の水が電気分解し
て水素イオンと活性酸素を生成し、水素イオンは対面す
る点Qにイオン電流として流れ、一方の活性酸素は点P
のカーボンなどの材料を腐食させる問題があった。さら
に経年的に考えると絶縁抵抗10−1〜10−(n+1)
は、電解質であるリン酸が徐々に浸透し、抵抗が小さく
なる傾向にあり、腐食の進行がさらに進む問題があっ
た。即ち、従来の燃料電池では各種の材料の腐食がイオ
ンによる漏れ電流であることに気付かず、有効な対策が
無されていなかった問題があった。
When the fuel cell generates electricity in this state,
The main load current 16 flows through the load Z as indicated by the arrows, and the currents 20-1 through 20-n as indicated by the arrows respectively flow through the unit batteries 1-1 through 1-n. At this time, insulation resistances 10- and 10- (n + 1) except insulation resistance 10-
The currents flowing through 2 to 10-n are extremely small because the currents due to the batteries above and below the respective resistances cancel each other out, and the insulation resistances 10-1 and 10- (n + 1) are equal to the total voltage of the laminated battery and the insulation resistance. A very large current due to 10-1 and 10- (n + 1) will flow. This current is applied to point P ~
Considering S, points P and R are currents flowing out, and there is no particular problem as long as all the currents are due to electrons, but at point P, the water in phosphoric acid is electrolyzed by the presence of phosphoric acid and hydrogen Ions and active oxygen are generated, and hydrogen ions flow as an ion current at the facing point Q, while one active oxygen is at point P.
There was a problem of corroding carbon and other materials. Considering further over time, insulation resistance 10-1 to 10- (n + 1)
However, there was a problem that the phosphoric acid as the electrolyte gradually penetrated, and the resistance tended to decrease, and the corrosion proceeded further. That is, in the conventional fuel cell, there is a problem that the corrosion of various materials is not a leakage current due to ions and effective measures have not been taken.

【0005】本発明の目的は、各種材料の腐食を防止
し、信頼性の高い燃料電池を提供することにある。
An object of the present invention is to prevent corrosion of various materials and provide a highly reliable fuel cell.

【0006】[0006]

【課題を解決するための手段】上記目的は、イオンによ
る漏れ電流の流れる部分の回路を電気的に遮断し、回路
内に中間電極,絶縁膜を設け、イオンによる漏れ電流の
流れでる部分と中間電極との間に、この電流を打ち消す
ように直流電源,可変抵抗,電流計及び制御装置による
電気回路を構成することによって達成される。
The above-mentioned object is to electrically cut off a circuit in a portion where a leakage current due to ions flows, and to provide an intermediate electrode and an insulating film in the circuit so that the leakage current due to ions flows into an intermediate portion. This is achieved by constructing an electric circuit including a DC power source, a variable resistance, an ammeter and a controller so as to cancel this current between the electrodes.

【0007】[0007]

【作用】燃料電池を発電状態にすることにより、イオン
による漏れ電流が流れようとするが、直流電源の電圧、
または抵抗を調節することによりイオン電流を打消し、
活性酸素の発生を無くし、燃料電池に用いられている各
種材料の腐食を防止する。
[Function] When the fuel cell is in a power generation state, a leakage current due to ions tends to flow, but the voltage of the DC power supply
Or adjust the resistance to cancel the ionic current,
Eliminates generation of active oxygen and prevents corrosion of various materials used in fuel cells.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1および図2に
よって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】図1において、燃料電池積層体14は、触
媒2を坦持した空気極3,燃料極4及び両極に挾持され
たマトリックス5より構成されている単位電池1をガス
セパレータ6を介して多数積層し、かつこれらをマニホ
ールド受け板7,集電板17、及び絶縁板18ととも
に、図示していない締め付け治具によって締め付けた積
層体としている。
In FIG. 1, a fuel cell stack 14 comprises a unit cell 1 composed of an air electrode 3 carrying a catalyst 2, a fuel electrode 4 and a matrix 5 sandwiched between both electrodes, with a gas separator 6 interposed therebetween. A large number of layers are laminated, and these are laminated together with the manifold receiving plate 7, the current collecting plate 17, and the insulating plate 18 by a clamping jig (not shown) to form a laminated body.

【0010】この燃料電池積層体14の四側面にはマニ
ホールド11が固定され、矢印のように空気8が、また
これと直行するように燃料9が供給,排出できるように
構成されている。
A manifold 11 is fixed to the four side surfaces of the fuel cell stack 14 so that air 8 can be supplied as indicated by the arrow and fuel 9 can be supplied and discharged so as to be orthogonal to the air 8.

【0011】さらに、燃料電池積層体14とマニホール
ド11との間には、電気的な絶縁をかねたガスシール部
材12とOリング13などのガスケットが配設されてい
る。さらに、Oリング13とマニホールド11との間に
はOリング13側には中間電極19が、マニホールド1
1側には絶縁膜21が、Oリングにほぼ沿って配設され
ている。中間電極19は燃料電池積層体14の最下部の
電極3の高さとほぼ等しい位置より配設し、かつOリン
グの幅より広く構成している。また、少なくとも一個所
は電気的な接続が可能なように導出されている。絶縁膜
21は中間電極19とマニホールド11を絶縁するた
め、中間電極よりも大きく構成している。中間電極19
の導出部は、電流計22を経由した後、一端はアースと
成るマニホールド11に、また一端は可変抵抗23,直
流電源24を経由して集電板17に接続している。ま
た、燃料電池積層体14の最上部側にも下部と対象の位
置に中間電極19,絶縁膜21を同様に配置している。
25は、制御装置で電流指示値が常に零と成るよう可変
抵抗23を調整できるようになっている。
Further, between the fuel cell stack 14 and the manifold 11, a gas seal member 12 that also serves as an electrical insulator and a gasket such as an O-ring 13 are provided. Further, an intermediate electrode 19 is provided between the O-ring 13 and the manifold 11 on the O-ring 13 side,
An insulating film 21 is provided on the first side substantially along the O-ring. The intermediate electrode 19 is disposed at a position substantially equal to the height of the lowermost electrode 3 of the fuel cell stack 14, and is wider than the width of the O-ring. Further, at least one place is led out so that it can be electrically connected. Since the insulating film 21 insulates the intermediate electrode 19 from the manifold 11, it is made larger than the intermediate electrode. Intermediate electrode 19
The derivation part of (1) is connected to the manifold 11 which is grounded at one end after passing through the ammeter 22 and is connected to the collector plate 17 through the variable resistor 23 and the DC power source 24 at one end. Further, the intermediate electrode 19 and the insulating film 21 are similarly arranged at the lower portion and the target position on the uppermost side of the fuel cell stack 14.
In the controller 25, the variable resistor 23 can be adjusted so that the current instruction value is always zero.

【0012】以上のように構成して燃料電池を所定温度
に昇温し、それぞれの電極に反応ガスを導入することで
それぞれの単位電池1に起電力が生じ、ガスシール部材
12,Oリング13及びマニホールド11を結ぶ電気回
路が形成され、燃料電池積層体14の最下部及び最上部
の回路に腐食を引き起こす電流が流れようとする。しか
し、この電流は可変抵抗23,直流電源24によって相
殺され、材料の腐食が抑制される。図2に示す等価回路
によってこれをさらに詳細に説明する。
With the above structure, the temperature of the fuel cell is raised to a predetermined temperature and an electromotive force is generated in each unit cell 1 by introducing the reaction gas into each electrode, and the gas seal member 12 and the O ring 13 are formed. An electric circuit that connects the manifold 11 and the manifold 11 is formed, and an electric current that causes corrosion tends to flow in the lowermost and uppermost circuits of the fuel cell stack 14. However, this current is canceled by the variable resistor 23 and the DC power supply 24, and the corrosion of the material is suppressed. This will be explained in more detail by the equivalent circuit shown in FIG.

【0013】図2において、単位電池1−1〜1−nと
マニホールド11との間を絶縁するガスシール部材12
等による絶縁抵抗10−1〜10−(n+1)のうち、絶
縁抵抗10−2〜10−nに流れる電流は、それぞれの
抵抗の上下の電池による電流が互いに相殺し、例えば絶
縁抵抗10−2を流れる電流は、電流20−1と電流2
0−2が互いに相殺し、ほとんど零になる。最下部の絶
縁抵抗10−1に流れる電流は、電流計22の電流が常
に零と成るよう制御装置25,可変抵抗23によって制
御できるので、点Pにおける腐食はほとんど生じなくな
る。
In FIG. 2, a gas seal member 12 which insulates the unit batteries 1-1 to 1-n and the manifold 11 from each other.
Of the insulation resistances 10-1 to 10- (n + 1), the currents flowing through the insulation resistances 10-2 to 10-n are offset by the currents from the batteries above and below the respective resistances. The currents flowing through are current 20-1 and current 2
0-2 offset each other to almost zero. The current flowing through the lowermost insulation resistance 10-1 can be controlled by the control device 25 and the variable resistance 23 so that the current of the ammeter 22 is always zero, so that the corrosion at the point P hardly occurs.

【0014】即ち、電流20−1は絶縁膜の抵抗21a
−1が電流計22の抵抗に比べて非常に大きいので、点
Qにおいて電流計側に流れる。従って、この電流20−
1を相殺する電流を点P0,Q0,Q,Pに可変抵抗2
3,直流電源24によって流し、電流計指示値が常に零
となるよう制御装置25によって制御すれば絶縁抵抗1
0−1を流れる電流を無くし、換言すれば点Pを流れ出
るイオンによる電流を零とすることができるのでその部
分の腐食を無くすることができる。なお、点P0 では流
れ出る電流ではあるが、この部分ではイオンによるもの
ではなく、電子によるものであり腐食を生じることは無
い。また、最下部となる単位電池1の絶縁抵抗10−1
の絶縁を強化し、この部分のイオン電流20−1を抑制
することは、最下部の腐食は抑制できるが、絶縁抵抗1
0−2を流れる電流20−2を打ち消すことができない
ので、単位電池1−2の部材に腐食が生じてしまい、全
体として腐食を抑制することができない。
That is, the current 20-1 is the resistance 21a of the insulating film.
Since -1 is much larger than the resistance of the ammeter 22, it flows to the ammeter side at the point Q. Therefore, this current 20-
The variable resistance 2 is applied to the points P 0 , Q 0 , Q, P for canceling the current 1
3. If the control device 25 controls so that the ammeter indication value is always zero, the insulation resistance 1
Since the current flowing through 0-1 can be eliminated, in other words, the current due to the ions flowing out of the point P can be reduced to zero, corrosion of that portion can be eliminated. It should be noted that although the current flows out at the point P 0 , corrosion does not occur at this portion because it is not due to ions but due to electrons. In addition, the insulation resistance 10-1
Insulation resistance 1 can be suppressed by strengthening the insulation of the electrode and suppressing the ion current 20-1 in this part, although corrosion at the bottom can be suppressed.
Since the current 20-2 flowing through 0-2 cannot be canceled, the members of the unit battery 1-2 are corroded, and the corrosion cannot be suppressed as a whole.

【0015】一方、最上部についても点R0,R,S,
0に可変抵抗23,直流電源24によって電流を流
し、電流計指示値が常に零となるよう制御装置25によ
って制御すれば最下部と同様の作用で腐食の発生をほと
んど無くすることができる。
On the other hand, the points R 0 , R, S,
If a current is caused to flow through S 0 by the variable resistor 23 and the DC power supply 24 and the controller 25 controls so that the ammeter indicated value is always zero, the occurrence of corrosion can be almost eliminated by the same action as the lowermost part.

【0016】本発明によれば、イオンによる漏れ電流を
打ち消すように電気回路を形成することによって、燃料
電池の各種材料の腐食を無くし、信頼性の高い燃料電池
を提供することができる。
According to the present invention, by forming an electric circuit so as to cancel the leakage current due to ions, it is possible to eliminate corrosion of various materials of the fuel cell and provide a highly reliable fuel cell.

【0017】なお、本発明では中間電極19をOリング
13とマニホールド11との間に絶縁膜21を介して挿
入したが、ガスシール部材12とOリング13との間に
挿入して、絶縁膜21を省略してもほぼ同じ効果が得ら
れる。
Although the intermediate electrode 19 is inserted between the O-ring 13 and the manifold 11 via the insulating film 21 in the present invention, the intermediate electrode 19 is inserted between the gas seal member 12 and the O-ring 13 to form the insulating film. Even if 21 is omitted, almost the same effect can be obtained.

【0018】また電流計22,可変抵抗23,直流電源
24,制御装置25を一体化した電子負荷装置とし、電
流が常に零と成るようにコントロールすることは、低コ
スト化,コンパクト化にたいし特に有効である。
Further, it is preferable to make the ammeter 22, the variable resistor 23, the DC power source 24, and the control device 25 into an integrated electronic load device so that the current is always zero so as to reduce the cost and the size. Especially effective.

【0019】図3,図4の発明は、溶融炭酸塩型燃料電
池でよく見られる内部マニホールド型の燃料電池に適用
した例である。
The invention of FIGS. 3 and 4 is an example applied to an internal manifold type fuel cell which is often found in molten carbonate type fuel cells.

【0020】内部マニホールド型の単位電池の特徴はセ
パレータ6aにガス通路が設けられていることであり、
他の部材はマニホールドをもつタイプと同じである。本
発明の中間電極は間に絶縁膜21を挾んで19a,19
bとに分割し、燃料電池積層体14の少なくとも一つの
単位電池1の端部シール部分26(多くの場合マトリッ
クス5がこれをかねている。)の中間に設けられ、かつ
セパレータ6aには接触しないように配設している。中
間電極19a,19bには電流計22が接続されてい
る。また、最下部のセパレータと最上部のセパレータ6
aとの間には可変抵抗23,直流電源24が接続されて
いる。25は制御装置で、図1の発明同様電流計22の
信号を取り込み可変抵抗23を制御できるように構成さ
れている。27は燃料電池本体にガスを供給排出するた
めのガスヘッダである。
The characteristic feature of the internal manifold type unit cell is that a gas passage is provided in the separator 6a.
The other members are the same as the type having the manifold. In the intermediate electrode of the present invention, the insulating film 21 is sandwiched between 19a and 19a.
and is provided in the middle of the end seal portion 26 (often the matrix 5 also serves as this) of at least one unit cell 1 of the fuel cell stack 14 and does not contact the separator 6a. It is arranged as follows. An ammeter 22 is connected to the intermediate electrodes 19a and 19b. Also, the bottom separator and the top separator 6
A variable resistor 23 and a DC power supply 24 are connected between a and. Reference numeral 25 is a control device, which is configured to take in the signal from the ammeter 22 and control the variable resistor 23 as in the case of the invention of FIG. 27 is a gas header for supplying and discharging gas to the fuel cell main body.

【0021】このように構成して燃料電池を所定温度に
昇温し、それぞれの電極に反応ガスを導入することでそ
れぞれの単位電池1に起電力が生じ、従来の方式の場合
には、液短絡部分となる端部シール部分26にイオンに
よる漏れ電流が流れ、端部シール部分に接するセパレー
タ6aやその側面の特に電流の流れだす部分に腐食が発
生するが、本発明によれば、この電流は可変抵抗23,
直流電源24によって相殺され、材料の腐食が抑制され
る。この作用を図4に示す等価回路によってさらに詳細
に説明する。
With this structure, the fuel cell is heated to a predetermined temperature, and an electromotive force is generated in each unit cell 1 by introducing a reaction gas into each electrode. Leakage current due to ions flows in the end seal portion 26 that is a short-circuit portion, and corrosion occurs in the separator 6a in contact with the end seal portion and especially on the side surface where current flows. According to the present invention, this current is generated. Is a variable resistor 23,
The DC power supply 24 cancels each other out, and corrosion of the material is suppressed. This operation will be described in more detail with reference to the equivalent circuit shown in FIG.

【0022】液短絡部分となる端部シール部分の抵抗に
よってそれぞれの単位電池1−1〜1−nを短絡する電
流は、合隣なる電池によって互いに相殺され、破線矢印
で示すようにP,Q,R,S全体を流れる電流と成る
が、この電流は直流電源24,可変抵抗23、及び制御
装置25によってP0,R0,S,Qを流れる電流により
相殺され、最終的にはP0,R0,S,R,P,Qを流れ
る電流となり、QからSに向かうイオン性の、しかも流
れ出る電流、即ち腐食を引き起こす電流が零となる。従
ってセパレータ6aを腐食させることが無い。また、Q
からP0 に向かう電流は電子によるものであり、これは
腐食を生じさせない。
The currents that short-circuit the respective unit batteries 1-1 to 1-n due to the resistance of the end seal portion which is the liquid short-circuit portion are canceled by the adjacent batteries, and P and Q are indicated by broken line arrows. , R, S, which is a current flowing through the DC power supply 24, the variable resistor 23, and the controller 25, and this current is canceled by the current flowing through P 0 , R 0 , S, and Q, and finally P 0. , R 0 , S, R, P, Q, and the ionic current flowing from S to Q and flowing out, that is, the current causing corrosion becomes zero. Therefore, the separator 6a is not corroded. Also, Q
The current from P to P 0 is due to electrons, which does not cause corrosion.

【0023】本実施例によれば、内部マニホールド型の
燃料電池においてもイオンによる漏れ電流を打ち消すよ
うに電気回路を構成することによって、燃料電池の各種
材料の腐食を無くす燃料電池を提供することができる。
According to the present embodiment, even in the internal manifold type fuel cell, the electric circuit is configured so as to cancel the leakage current due to the ions, so that the fuel cell in which corrosion of various materials of the fuel cell is eliminated can be provided. it can.

【0024】図5,図6の発明は、燃料電池の冷却装置
に適用した例である。燃料電池は、電池反応において電
気出力とほぼ同程度の発熱を伴うので、これを冷却する
ための冷却器を複数個の単位電池ごとに挿入する必要が
ある。
The invention of FIGS. 5 and 6 is an example applied to a cooling device for a fuel cell. Since a fuel cell generates heat almost as much as an electric output in a cell reaction, it is necessary to insert a cooler for cooling the plurality of unit cells.

【0025】図5において、34は複数個の単位電池を
積層した電池群で、冷却管29を内装した冷却器28と
交互に積層され、かつマニホールド受け板7などと一緒
に図示していない締め付け装置によって締め付けられ、
燃料電池積層体14を成している。
In FIG. 5, reference numeral 34 denotes a battery group in which a plurality of unit batteries are stacked, which are stacked alternately with a cooler 28 having a cooling pipe 29 therein and which are not shown together with the manifold receiving plate 7 and the like. Tightened by the device,
The fuel cell stack 14 is formed.

【0026】冷却水31は冷却母管30によって一括供
給され、分岐管32によって矢印のように各冷却管29
に送られる。冷却管29は冷却母管30が一般には接地
され、かつ冷却媒体が水であるため絶縁チューブ33に
よって絶縁されている。最下部の分岐管32は管状の中
間電極19と絶縁チューブ33aとに分割されている。
中間電極19と冷却管29との間には電流計22,可変
抵抗23,直流電源24が接続され、かつこれらを制御
する制御装置25を備えている。また最上部の冷却器に
も下部と同様な装置を備えている。なお一般には冷却管
29はフロート電位と成るのを防止するため冷却器28
と等電位にしている。また、冷却器28の排水側は図面
が煩雑になるため省略しているが、供給側同様冷却母管
で一括して排水し、かつ絶縁されている。
The cooling water 31 is supplied all at once by the cooling mother pipe 30, and is branched by the branch pipe 32 as shown by the arrows.
Sent to. The cooling pipe 29 is generally grounded to the cooling mother pipe 30 and is insulated by the insulating tube 33 because the cooling medium is water. The lowermost branch pipe 32 is divided into a tubular intermediate electrode 19 and an insulating tube 33a.
An ammeter 22, a variable resistance 23, and a DC power supply 24 are connected between the intermediate electrode 19 and the cooling pipe 29, and a control device 25 for controlling these is provided. The uppermost cooler is also equipped with the same device as the lower part. In general, the cooling pipe 29 is provided in order to prevent the cooling pipe 29 from having a float potential.
And have the same potential. Further, the drain side of the cooler 28 is omitted because the drawing becomes complicated, but like the supply side, it is collectively drained by a cooling mother pipe and is insulated.

【0027】このように構成して燃料電池を所定温度に
昇温し、それぞれの電極に反応ガスを導入することで起
電力が生じ、電気出力を得ることができるが、電気出力
とほぼ同程度の発熱を冷却すること、及び電池群27が
所定の温度と成るようコントロールするため冷却水を流
している。この冷却水はイオン交換樹脂などにより十分
清浄化し、その抵抗を高くしているが、冷却母管30は
接地され、一方、冷却管29は高い電圧と成っているた
め、絶縁チューブ33aによって絶縁されているとはい
え腐食を生ぜしめるイオン性の電流が流れようとする。
しかし、図1,図3と同様この電流は直流電源24,可
変抵抗23、及び制御装置25によって相殺され、冷却
管29などの腐食が防止される。
With the above structure, the electromotive force is generated by raising the temperature of the fuel cell to a predetermined temperature and introducing the reaction gas into each electrode, and the electric output can be obtained, but it is almost the same as the electric output. Cooling water is supplied to cool the heat generation of the battery and to control the battery group 27 to reach a predetermined temperature. Although this cooling water is sufficiently cleaned by ion exchange resin or the like to increase its resistance, the cooling mother pipe 30 is grounded, while the cooling pipe 29 has a high voltage, so it is insulated by the insulating tube 33a. However, an ionic current that causes corrosion is about to flow.
However, similar to FIG. 1 and FIG. 3, this current is canceled by the DC power supply 24, the variable resistor 23, and the control device 25, and the corrosion of the cooling pipe 29 and the like is prevented.

【0028】図6に示す等価回路でさらに詳細に説明す
る。27−1〜27−3は冷却器間の電池群の出力電圧
で、絶縁管33の液抵抗33−1〜33−4によって接
地電位である冷却母管に接続されている。また、33a
−1,33a−2は絶縁管33aの部分の液抵抗であ
る。燃料電池の運転で電池群が起電力をもつとそれぞれ
の回路に電流20−1〜20−3が流れようとするが、
液抵抗33−2,33−3には隣接する電池群による電
流が互いに相殺し電流が流れない、従ってこの部分の冷
却管が腐食することは無い。これは従来の燃料電池でも
同じであるが、最下部の冷却器28の冷却管29の液と
の接触部である点Pの部分では電流20−1を相殺する
電流がないため、流れ出る電流による腐食を生じていた
が(点Sにおいても同様である。)、本発明では可変抵
抗23,直流電源24,制御装置25により点P,
0,Q0,Qに電流を流すことによって相殺でき、点P
での腐食を防止できる。即ち、電流20−1は点Qにお
いて液抵抗33−1が電流計22の内部抵抗に比べ非常
に大きいので、電流20−1は電流計側に流れる。従っ
て電流計22の電流が常に零になるよう制御すれば点P
の腐食が防止できる。また最上部の冷却管においても点
S,S0,R0,Rに相殺する電流を流すことによって点
Sでの腐食が防止できるものである。
The equivalent circuit shown in FIG. 6 will be described in more detail. 27-1 to 27-3 are output voltages of the battery group between the coolers, and are connected to the cooling mother pipe having the ground potential by the liquid resistances 33-1 to 33-4 of the insulating pipe 33. Also, 33a
-1, 33a-2 are liquid resistances of the insulating tube 33a. When the cell group has an electromotive force during the operation of the fuel cell, currents 20-1 to 20-3 tend to flow in the respective circuits.
In the liquid resistances 33-2 and 33-3, the currents due to the adjacent battery groups cancel each other out and no current flows, so that the cooling pipes in this portion do not corrode. This is the same as in the conventional fuel cell, but there is no current that cancels the current 20-1 at the point P, which is the contact portion with the liquid in the cooling pipe 29 of the cooler 28 at the bottom, so there is a current flowing out. Corrosion occurred (the same is true at point S). However, in the present invention, the variable resistor 23, the DC power source 24, and the controller 25 cause the point P,
This can be canceled by passing a current through P 0 , Q 0 , and Q,
Corrosion can be prevented. That is, since the liquid resistance 33-1 of the current 20-1 is much larger than the internal resistance of the ammeter 22 at the point Q, the current 20-1 flows to the ammeter side. Therefore, if the current of the ammeter 22 is controlled so that it is always zero, the point P
Can prevent corrosion. Also in the uppermost cooling pipe, corrosion at the point S can be prevented by passing a current that cancels out at the points S, S 0 , R 0 , and R.

【0029】本実施例によれば、冷却水を流れるイオン
による漏れ電流を打ち消すように電気回路を構成するこ
とによって、燃料電池の冷却管など冷却系統の各材料の
腐食を無くした燃料電池を提供することができる。
According to this embodiment, a fuel cell is provided in which the corrosion of each material of the cooling system such as the cooling pipe of the fuel cell is eliminated by constructing the electric circuit so as to cancel the leakage current due to the ions flowing through the cooling water. can do.

【0030】[0030]

【発明の効果】本発明によれば、イオンによる漏れ電流
の流れる部分に中間電極,絶縁膜を設け、かつイオンに
よる漏れ電流の流れでる部分と中間電極との間に、この
電流を打ち消すように直流電源,可変抵抗,電流計及び
制御装置による電気回路を構成することによって、腐食
の主因となるイオン電流が常に零と成るように制御でき
るので、燃料電池の各種材料の腐食を無くした燃料電池
を提供することができる。
According to the present invention, the intermediate electrode and the insulating film are provided in the portion where the leakage current due to the ions flows, and the current is canceled between the portion where the leakage current flows due to the ions and the intermediate electrode. By constructing an electric circuit consisting of a DC power supply, a variable resistance, an ammeter, and a control device, it is possible to control so that the ionic current, which is the main cause of corrosion, will always be zero. Can be provided.

【0031】なお、本発明では抵抗を可変することで電
流を制御したが、抵抗を固定して電圧で制御することも
可能である。また、直流電源,可変抵抗,電流計及び制
御装置を一体化した、例えば電子負荷装置などを用いる
ことも可能である。
In the present invention, the current is controlled by changing the resistance, but it is also possible to fix the resistance and control the voltage. It is also possible to use, for example, an electronic load device in which a DC power supply, a variable resistance, an ammeter and a control device are integrated.

【0032】さらに、本発明では、マニホールド,端部
シール部分,冷却器部分について説明したが、イオン性
の漏れ電流の流れる部分には全て有効である。
Further, in the present invention, the manifold, the end seal portion and the cooler portion have been described, but they are all effective for the portion where ionic leakage current flows.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の部分断面図。FIG. 1 is a partial cross-sectional view of a fuel cell of the present invention.

【図2】燃料電池の等価電気回路図。FIG. 2 is an equivalent electric circuit diagram of a fuel cell.

【図3】内部マニホールド型燃料電池の部分断面図。FIG. 3 is a partial cross-sectional view of an internal manifold type fuel cell.

【図4】内部マニホールド型燃料電池の等価電気回路
図。
FIG. 4 is an equivalent electric circuit diagram of an internal manifold type fuel cell.

【図5】燃料電池の冷却構成の説明図。FIG. 5 is an explanatory diagram of a cooling configuration of a fuel cell.

【図6】燃料電池の冷却構成部分の等価電気回路図。FIG. 6 is an equivalent electric circuit diagram of a cooling component of the fuel cell.

【図7】従来の燃料電池の部分断面図。FIG. 7 is a partial cross-sectional view of a conventional fuel cell.

【図8】従来の燃料電池のマニホールドシール部分の要
部を示す平面図。
FIG. 8 is a plan view showing a main part of a manifold seal portion of a conventional fuel cell.

【図9】従来の燃料電池の等価電気回路図。FIG. 9 is an equivalent electric circuit diagram of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

3…空気極、4…燃料極、5…マトリックス、11…マ
ニホールド、14…燃料電池積層体、19…中間電極、
21…絶縁膜、22…電流計、23…可変抵抗、24…
直流電源、25…制御装置、26…端部シール部分、2
8…冷却器、29…冷却管、32…分岐管、33a…絶
縁チューブ。
3 ... Air electrode, 4 ... Fuel electrode, 5 ... Matrix, 11 ... Manifold, 14 ... Fuel cell stack, 19 ... Intermediate electrode,
21 ... Insulating film, 22 ... Ammeter, 23 ... Variable resistance, 24 ...
DC power supply, 25 ... control device, 26 ... end seal portion, 2
8 ... Cooler, 29 ... Cooling pipe, 32 ... Branch pipe, 33a ... Insulating tube.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 征一郎 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 中沢 正光 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiichiro Ono 1-1-1 Kokubun-cho, Hitachi-shi, Ibaraki Hitachi Kokubun factory (72) Inventor Masamitsu Nakazawa 1-1-1 Kokubun-cho, Hitachi-shi, Ibaraki No. 1 Stock company Hitachi Kokubu factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】空気極と燃料極との間に電解質を含むマト
リックスを挾持した燃料電池において、イオン性の漏れ
電流の流れる部分の回路の一部に中間電極を挿入し、イ
オン性の漏れ電流の流れ出る部分と前記中間電極との間
に、前記漏れ電流を相殺するように電気回路を構成した
ことを特徴とする燃料電池。
1. A fuel cell in which a matrix containing an electrolyte is sandwiched between an air electrode and a fuel electrode, an intermediate electrode is inserted in a part of a circuit where an ionic leakage current flows, and an ionic leakage current is introduced. A fuel cell, wherein an electric circuit is configured to cancel the leakage current between a portion where the leakage current flows out and the intermediate electrode.
【請求項2】請求項1において、前記漏れ電流を相殺す
るように設けた前記電気回路を、直流電源,抵抗,電流
計及び制御装置によって構成した燃料電池。
2. The fuel cell according to claim 1, wherein the electric circuit provided to cancel the leakage current is composed of a DC power source, a resistor, an ammeter and a controller.
【請求項3】請求項1において、前記直流電源,抵抗,
電流計及び制御装置が一体化された電子負荷装置である
燃料電池。
3. The DC power supply, resistor,
A fuel cell that is an electronic load device in which an ammeter and a control device are integrated.
【請求項4】請求項1において、前記イオン性の漏れ電
流の流れる部分が燃料電池積層体と反応ガスを供給排出
するためのマニホールドとの間であって、前記燃料電池
積層体と前記マニホールドとの間に絶縁膜を介して中間
電極を設け、前記燃料電池積層体と前記中間電極との間
に直流電源,抵抗,電流計及び制御装置を設けた燃料電
池。
4. The fuel cell stack according to claim 1, wherein the portion where the ionic leakage current flows is between the fuel cell stack and the manifold for supplying and discharging the reaction gas, and the fuel cell stack and the manifold. A fuel cell in which an intermediate electrode is provided between the fuel cell stack and the intermediate electrode, and a DC power supply, a resistance, an ammeter, and a control device are provided between the fuel cell stack and the intermediate electrode.
【請求項5】請求項1において、前記燃料電池が内部マ
ニホールド型であって、前記イオン性の漏れ電流の流れ
る部分が端部シール部分であるものにおいて、端部シー
ル部分に互いに絶縁した二つの中間電極を設け、前記中
間電極間に直流電源,抵抗,電流計及び制御装置を設け
た燃料電池。
5. The fuel cell according to claim 1, wherein the fuel cell is an internal manifold type, and the portion through which the ionic leakage current flows is an end seal portion. A fuel cell provided with an intermediate electrode, and a DC power supply, a resistance, an ammeter and a control device provided between the intermediate electrodes.
【請求項6】請求項1において、前記イオン性の漏れ電
流の流れる部分が前記燃料電池積層体を冷却するための
冷却器の冷却管と前記冷却管に冷却水を供給排出するた
めの分岐管との間であって、前記分岐管の一部を分割
し、管状の中間電極を接続し、前記分岐管との間を絶縁
チューブによって接続し、前記冷却管と前記管状の中間
電極との間に直流電源,抵抗,電流計及び制御装置を設
けた燃料電池。
6. The cooling pipe of a cooler for cooling the fuel cell stack, and a branch pipe for supplying and discharging cooling water to and from the cooling pipe, wherein a portion where the ionic leakage current flows is provided in the cooling pipe. And a part of the branch pipe is divided, a tubular intermediate electrode is connected, the branch pipe is connected by an insulating tube, and the cooling pipe and the tubular intermediate electrode are connected. Fuel cell with DC power supply, resistance, ammeter, and controller installed in
JP5258028A 1993-10-15 1993-10-15 Fuel cell Pending JPH07114937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5258028A JPH07114937A (en) 1993-10-15 1993-10-15 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5258028A JPH07114937A (en) 1993-10-15 1993-10-15 Fuel cell

Publications (1)

Publication Number Publication Date
JPH07114937A true JPH07114937A (en) 1995-05-02

Family

ID=17314535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5258028A Pending JPH07114937A (en) 1993-10-15 1993-10-15 Fuel cell

Country Status (1)

Country Link
JP (1) JPH07114937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305377A (en) * 2006-05-10 2007-11-22 Mitsubishi Electric Corp Fuel cell system
ITMI20111653A1 (en) * 2011-09-14 2013-03-15 Ansaldo Fuel Cells Spa ELECTRIC PROTECTION OF FUEL CELL SYSTEMS IN CARBONATI FUSI (MCFC)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305377A (en) * 2006-05-10 2007-11-22 Mitsubishi Electric Corp Fuel cell system
ITMI20111653A1 (en) * 2011-09-14 2013-03-15 Ansaldo Fuel Cells Spa ELECTRIC PROTECTION OF FUEL CELL SYSTEMS IN CARBONATI FUSI (MCFC)

Similar Documents

Publication Publication Date Title
US9017869B2 (en) Cell stack for redox flow battery
JP4901169B2 (en) Fuel cell stack
US6949920B2 (en) Apparatus for measuring current density of fuel cell
US8871377B2 (en) Battery with a plurality of individual cells
JP4630529B2 (en) Fuel cell system
JP3920018B2 (en) Fuel cell stack
US7169496B2 (en) Fuel Cell
JP2003338305A (en) Stack structure of fuel cell
US7422814B2 (en) Fuel cell system
US20020009648A1 (en) Liquid-cooled fuel cell battery and method for operating it
JP2001332288A (en) Fuel cell stack
JPH07114937A (en) Fuel cell
JP5309902B2 (en) Fuel cell
JP5374096B2 (en) Fuel cell stack and installation method thereof
JPH10261426A (en) Block structure of fuel cell stack
JP4025282B2 (en) Polymer electrolyte fuel cell
JPS61264683A (en) Measuring device for current distribution at electrode part of fuel cell
JP4551746B2 (en) Fuel cell stack
JP2002367664A (en) Fuel cell
JPH06267552A (en) Fuel cell cooling system
CA2298965A1 (en) Joined solid oxide fuel cell stacks and method for fabricating same
JP3574514B2 (en) Redox flow type secondary battery system
JPH08138699A (en) Solid polyelectrolyte fuel cell
JP2004047270A (en) Fuel cell
JP2006147463A (en) Fuel cell stack