JPH07114300B2 - Optical fiber amplifier - Google Patents

Optical fiber amplifier

Info

Publication number
JPH07114300B2
JPH07114300B2 JP3156682A JP15668291A JPH07114300B2 JP H07114300 B2 JPH07114300 B2 JP H07114300B2 JP 3156682 A JP3156682 A JP 3156682A JP 15668291 A JP15668291 A JP 15668291A JP H07114300 B2 JPH07114300 B2 JP H07114300B2
Authority
JP
Japan
Prior art keywords
optical
semiconductor laser
optical fiber
pumping
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3156682A
Other languages
Japanese (ja)
Other versions
JPH057047A (en
Inventor
恵之 青海
貞夫 口村
有記 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP3156682A priority Critical patent/JPH07114300B2/en
Publication of JPH057047A publication Critical patent/JPH057047A/en
Publication of JPH07114300B2 publication Critical patent/JPH07114300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Lasers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバ通信や光計測
において、実効的に受信感度を向上させる光直接増幅器
にあって、安定した信号光利得が得られる光増幅器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical direct amplifier for effectively improving the receiving sensitivity in optical fiber communication and optical measurement, and to an optical amplifier capable of obtaining a stable signal light gain.

【0002】[0002]

【従来の技術】希土類元素を添加した光ファイバ(以
下、希土類光ファイバという。)はレーザ活性媒質とし
ての特性を有しており、これを用いる光ファイバ増幅器
が実現している。たとえば、1マイクロワット(μW)
の信号光と100ミリワット(mW)の励起光を同一の
希土類光ファイバに入射し、10メートル(m)程度伝
搬すると、信号光は容易に1mW程度に増幅される。
2. Description of the Related Art An optical fiber doped with a rare earth element (hereinafter referred to as a rare earth optical fiber) has characteristics as a laser active medium, and an optical fiber amplifier using this is realized. For example, 1 microwatt (μW)
Signal light and 100 mWatt (mW) pump light are incident on the same rare earth optical fiber and propagated for about 10 m (m), the signal light is easily amplified to about 1 mW.

【0003】図3は公知である光ファイバ増幅器の基本
構成を示したもので、301は信号光の入射端となる光
コネクタ、302は光コード、303は信号光と励起光
を合波するための光結合器、304は希土類光ファイ
バ、305は雑音除去のための光フィルタ、306は信
号光を出力する光コネクタ、307、308は光コー
ド、309は戻り光を阻止するための光アイソレータ、
310は光コード、311は励起用半導体レーザ、31
2は励起用半導体レーザ311の光強度をモニタするた
めの光コード、313は励起用半導体レーザ311に電
流を供給するための給電線、314は光強度モニタに応
じて励起光源の電流を制御する制御電流供給装置であ
る。
FIG. 3 shows the basic configuration of a known optical fiber amplifier. Reference numeral 301 is an optical connector which is an incident end of signal light, 302 is an optical code, and 303 is for multiplexing signal light and pumping light. , An optical coupler 304, a rare earth optical fiber, an optical filter 305 for removing noise, an optical connector 306 for outputting a signal light, optical cords 307 and 308, an optical isolator 309 for blocking return light,
310 is an optical code, 311 is a pumping semiconductor laser, 31
Reference numeral 2 is an optical code for monitoring the light intensity of the pumping semiconductor laser 311. Reference numeral 313 is a power supply line for supplying a current to the pumping semiconductor laser 311. Reference numeral 314 is for controlling the current of the pumping light source according to the light intensity monitor. It is a control current supply device.

【0004】稀土類光ファイバ304は、希土類元素と
してエルビュウムをドープしたエルビュウム光ファイバ
が一般的であり、その場合には、励起用半導体レーザ3
11には発信波長1.48ミクロンメートル(μm)の半
導体レーザが用いられる。また信号光の波長は1.55μ
mが適している。光結合器303は1.48μmと1.55
μmの合波器が用いられ、また光フィルタ305の中心
波長は1.55μmである。
The rare earth optical fiber 304 is generally an erbium optical fiber doped with erbium as a rare earth element. In this case, the pumping semiconductor laser 3 is used.
A semiconductor laser having an emission wavelength of 1.48 μm (μm) is used for 11. The wavelength of the signal light is 1.55μ
m is suitable. Optical coupler 303 is 1.48μm and 1.55
A μm multiplexer is used, and the center wavelength of the optical filter 305 is 1.55 μm.

【0005】図3の例では励起用半導体レーザ311が
劣化や破損によって光出力が低下した場合は、信号光の
増幅利得が低下し、光通信や光計測に重大な障害をもた
らすことになる。
In the example of FIG. 3, when the pumping semiconductor laser 311 is deteriorated or damaged and its optical output is reduced, the amplification gain of the signal light is reduced, which causes a serious obstacle to optical communication and optical measurement.

【0006】従来より、海底光中継器のような高信頼性
が要求される光通信システムでは、あらかじめ1個の予
備用半導体レーザを組み込んでおいて、主半導体レーザ
が劣化した場合には予備に切り替える方法が実用化され
ている。しかし、この方法は信号光源に関するものであ
り、さらに、単なる切り替えであって、主および予備の
2系統の半導体レーザが同時に動作する方式ではない。
Conventionally, in an optical communication system such as a submarine optical repeater which requires high reliability, one spare semiconductor laser is incorporated in advance, and when the main semiconductor laser is deteriorated, it is spared. The method of switching has been put to practical use. However, this method relates to the signal light source, and is merely a switching method, not a method in which the main and standby semiconductor lasers of two systems operate simultaneously.

【0007】光ファイバ増幅器において、励起光源を2
系統用いる方法はこれまでに提案されているが、励起光
強度を相加的に強くすることを目的としており、信頼性
向上のための二重化光源として用いる方法もしくは装置
は提案されていない。
In an optical fiber amplifier, two pump light sources are used.
Although a method of systematic use has been proposed so far, a method or apparatus for use as a dual light source for improving reliability has not been proposed for the purpose of additively increasing pump light intensity.

【0008】[0008]

【発明の課題】そこで、本発明は2系統の励起光源を用
い、これらの光出力を連携制御することにより、励起光
源の劣化や破損に対して安定した信号光利得を得ること
ができる光ファイバ増幅器を提供することを課題をす
る。
SUMMARY OF THE INVENTION Therefore, the present invention uses two systems of pumping light sources, and by controlling the optical outputs of these systems in cooperation with each other, it is possible to obtain a stable signal light gain against deterioration or damage of the pumping light source. The challenge is to provide an amplifier.

【0009】[0009]

【課題を解決するための手段】上記の課題を達成するた
めに、本発明は希土類元素が添加された光ファイバと、
該光ファイバを光学的に励起するための2系統の励起用
半導体レーザ光源と、該励起用半導体レーザ光源の出力
光ならびに信号光を前記光ファイバに入射するための光
結合器と、前記励起用半導体レーザ光源に電流を供給す
る制御電流供給装置からなる光ファイバ増幅器におい
て、制御電流供給装置が、2系統の各励起用半導体レー
ザ光源の出力光強度を入力とし、2系統の各励起用半導
体レーザ光源への供給電流を出力とし、該入力および出
力の関係が、1系統の出力の減少を他系統の出力の増加
で補うことにより、信号光利得が所定の一定値となるプ
ログラムに従って動作するように構成したものである。
In order to achieve the above object, the present invention provides an optical fiber doped with a rare earth element,
Two systems of pumping semiconductor laser light sources for optically pumping the optical fiber, an optical coupler for making output light and signal light of the pumping semiconductor laser light source enter the optical fiber, and the pumping In an optical fiber amplifier comprising a control current supply device for supplying a current to a semiconductor laser light source, the control current supply device inputs the output light intensity of each of the two pump semiconductor laser light sources and inputs each of the two semiconductor laser pumps. The supply current to the light source is used as the output, and the relationship between the input and the output is that the output of one system decreases but the output of the other system increases.
By supplementing with one in which signal light gain is configured to operate according to a program which is a predetermined constant value.

【0010】[0010]

【実施例】図1は本発明の第1の実施例の構成概略図で
ある。101は信号光の入射端となる光コネクタ、10
2は光コード、103は信号光と励起光を合波する光結
合器、104は希土類光ファイバ、105は光フィル
タ、106は信号光を出力する光コネクタ、107、1
08 109はそれぞれ光コード、110は戻り光を阻
止するための光アイソレータ、111は光コード、11
2は中心波長1.48μmの励起用半導体レーザ、113
は励起用半導体レーザ112の光出力モニタ用光コー
ド、114は励起用半導体レーザ112への給電線、1
15は光コード、116は光アイソレータ、117は中
心波長1.48μmの励起用半導体レーザ、118は励起
用半導体レーザ117の光出力モニタ用光コード、11
9は励起用半導体レーザ117への給電線、120は制
御電流供給装置、121は光コード、122は2系統の
励起光を合波する光結合器である。
1 is a schematic diagram of the configuration of a first embodiment of the present invention. Reference numeral 101 denotes an optical connector serving as an incident end of signal light, 10
2 is an optical code, 103 is an optical coupler that combines signal light and pumping light, 104 is a rare earth optical fiber, 105 is an optical filter, 106 is an optical connector that outputs signal light, 107, 1
08 109 is an optical code, 110 is an optical isolator for blocking return light, 111 is an optical code, 11
2 is a pumping semiconductor laser with a center wavelength of 1.48 μm, 113
Is an optical code for monitoring the optical output of the pumping semiconductor laser 112, 114 is a power supply line to the pumping semiconductor laser 112, 1
Reference numeral 15 is an optical code, 116 is an optical isolator, 117 is an excitation semiconductor laser having a center wavelength of 1.48 μm, 118 is an optical output monitor optical code of the excitation semiconductor laser 117, 11
Reference numeral 9 is a power supply line to the pumping semiconductor laser 117, 120 is a control current supply device, 121 is an optical code, and 122 is an optical coupler for multiplexing pumping lights of two systems.

【0011】励起用半導体レーザ112と117の中心
波長が同じであるので、2系統の励起用半導体レーザ1
12、117の光出力の偏光面を直交させて光結合器1
22で合波する。信号光と励起光は波長が異なるので、
光結合器103は偏波依存性のない波長多重合波器を用
いる。
Since the central wavelengths of the pumping semiconductor lasers 112 and 117 are the same, two pumping semiconductor lasers 1 are provided.
The optical couplers 1 and 2 are configured by making the polarization planes of the optical outputs 12 and 117 orthogonal to each other.
Combine at 22. Since the signal light and the pump light have different wavelengths,
As the optical coupler 103, a wavelength multiplex wave device having no polarization dependence is used.

【0012】半導体レーザは通常、前後両方向に光を出
力するので、光コード113、118にはそれぞれ励起
用半導体レーザ112、117の後方の出力光を伝搬さ
せればよい。1方向にのみ発光する半導体レーザでは、
前方向出力を分岐してモニタ光とすることができる。希
土類光ファイバ104の信号光利得は励起光の偏光状態
に依存しないので、2系統の励起光源の出力和が一定で
あれば、信号光利得は個々の励起光強度には依らない。
したがって、制御電流供給装置120の電流制御のプロ
グラムは、2系統の励起光源モニタ光出力の和が一定と
なるように設定すればよい。
Since the semiconductor laser normally outputs light in both the front and back directions, the output light behind the pumping semiconductor lasers 112 and 117 may be propagated to the optical codes 113 and 118, respectively. In a semiconductor laser that emits light only in one direction,
The output in the forward direction can be branched into monitor light. Since the signal light gain of the rare earth optical fiber 104 does not depend on the polarization state of the pump light, if the output sum of the two pump light sources is constant, the signal light gain does not depend on the individual pump light intensity.
Therefore, the current control program of the control current supply device 120 may be set so that the sum of the pump light source monitor light outputs of the two systems becomes constant.

【0013】[0013]

【0014】図1の実施例において、2系統の励起用半
導体レーザの中心波長が異なる構成をとることも可能で
ある。すなわち、励起光源の波長としては、1.48μm
の他に、0.98μmあるいは0.82μmが適当であるこ
とが公知である。一例としては、励起用半導体レーザ1
12を中心波長0.98μm、同117の中心波長を1.4
8μmとする構成が考えられる。この場合には光結合器
122は波長多重用の合波器であってもよい。励起光の
波長が異なると励起光強度と信号光利得の関係が異なる
ため、先の例のようなモニタ光強度の単純な相加が一定
であるといったプログラムとはならない。
In the embodiment of FIG. 1, it is also possible to adopt a configuration in which the central wavelengths of the two systems of pumping semiconductor lasers are different. That is, the wavelength of the excitation light source is 1.48 μm
In addition, 0.98 μm or 0.82 μm is known to be suitable. As an example, a semiconductor laser for excitation 1
12 has a center wavelength of 0.98 μm and 117 has a center wavelength of 1.4
A configuration of 8 μm is conceivable. In this case, the optical coupler 122 may be a wavelength division multiplexer. When the wavelength of the pumping light is different, the relationship between the pumping light intensity and the signal light gain is different, so the program is not such that the simple addition of the monitor light intensity is constant as in the previous example.

【0015】しかし、同じ増幅利得を得る観点で、0.9
8μmの光強度が1.48μmの光強度の何倍に相当する
かはあらかじめ測定可能であるので、その関係を制御電
流供給装置に記憶させておくことにより、各半導体レー
ザに供給する電流を容易に制御できるようになる。
However, from the viewpoint of obtaining the same amplification gain, 0.9
It is possible to measure in advance how many times the light intensity of 8 μm corresponds to the light intensity of 1.48 μm. By storing the relationship in the control current supply device, the current supplied to each semiconductor laser can be easily adjusted. Will be able to control.

【0016】図2は本発明の他の実施例である、励起光
源の一方が信号光と逆方向に伝搬する光ファイバ増幅器
の構成を示している。201は信号光の入射端となる光
コネクタ、202は光コード、203は信号光と励起光
を合波する光結合器、204は希土類光ファイバ、20
5は光フィルタ、206は信号光を出力する光コネク
タ、207は励起光をエルビュウム光ファイバに入射さ
せるための光結合器、208、209はそれぞれ光コー
ド、210は光アイソレータ、211は光コード、21
2は中心波長1.48μmの励起用半導体レーザ、213
は励起用半導体レーザ212の光出力モニタ用光コー
ド、214は励起用半導体レーザ212への給電線、2
15は光コード、216は光アイソレータ、217は中
心波長1.48μmの励起用半導体レーザ、218は励起
用半導体レーザ217の光出力モニタ用光コード、21
9は励起用半導体レーザ217への給電線、220は制
御電流供給装置、221、222はそれぞれ光コードで
ある。光結合器203、207には偏波依存性のない波
長多重用合波器を用いる。
FIG. 2 shows the configuration of an optical fiber amplifier according to another embodiment of the present invention, in which one of the pumping light sources propagates in the opposite direction to the signal light. Reference numeral 201 is an optical connector that is an incident end of signal light, 202 is an optical code, 203 is an optical coupler that multiplexes signal light and excitation light, 204 is a rare earth optical fiber, 20
5 is an optical filter, 206 is an optical connector for outputting signal light, 207 is an optical coupler for making excitation light incident on the erbium optical fiber, 208 and 209 are optical codes, 210 is an optical isolator, 211 is an optical code, 21
2 is a semiconductor laser for excitation with a central wavelength of 1.48 μm, 213
Is an optical code for monitoring the optical output of the pumping semiconductor laser 212, 214 is a power supply line to the pumping semiconductor laser 212, 2
Reference numeral 15 is an optical code, 216 is an optical isolator, 217 is an excitation semiconductor laser having a center wavelength of 1.48 μm, 218 is an optical output monitor optical code of the excitation semiconductor laser 217, 21
Reference numeral 9 is a power supply line to the pumping semiconductor laser 217, 220 is a control current supply device, and 221 and 222 are optical cords. Wavelength multiplexing multiplexers having no polarization dependence are used as the optical couplers 203 and 207.

【0017】図2の実施例を図1の実施例と比較する
と、1系統の励起光が信号光と逆方向に伝搬すること、
すなわち逆方向励起であることと、それに伴い光結合器
が異なる。
When the embodiment of FIG. 2 is compared with the embodiment of FIG. 1, one system of pump light propagates in the opposite direction to the signal light,
That is, it is reverse pumping, and the optical coupler is different accordingly.

【0018】しかし、励起光強度と信号光利得の関係は
同方向励起と逆方向励起とでほとんど差のないことは公
知であるので、図1に示した実施例と全く同様の電流制
御のためのプログラムを適用できる。
However, since it is well known that there is almost no difference in the relationship between the pumping light intensity and the signal light gain between the same-direction pumping and the reverse-direction pumping, the same current control as in the embodiment shown in FIG. 1 is performed. The program of can be applied.

【0019】図1と図2の実施例を組み合わせた光ファ
イバ増幅器や、さらに異なる波長の励起光源を組み合わ
せた光ファイバ増幅器を考えることができる。これらの
場合も、以上で述べた電流制御方法を基本とした制御電
流供給装置によって、信号光利得が一定である光ファイ
バ増幅器を構成できる。
An optical fiber amplifier combining the embodiments of FIGS. 1 and 2 or an optical fiber amplifier combining pumping light sources of different wavelengths can be considered. In these cases as well, an optical fiber amplifier having a constant signal light gain can be configured by the control current supply device based on the current control method described above.

【0020】図1及び図2の実施例は、微弱な信号光を
増幅することを意図したものであるが、光ファイバ増幅
で光パワー増幅を行う場合も、本発明は同様に有効であ
る。
Although the embodiments of FIGS. 1 and 2 are intended to amplify weak signal light, the present invention is also effective when optical power amplification is performed by optical fiber amplification.

【0021】[0021]

【発明の効果】以上説明したように、本発明は光ファイ
バ増幅器において、2系統の励起光源への供給電流を連
携をもたせて制御するため、どれかの励起光源が劣化し
て光出力が低下しても、全体としての信号光利得が一定
あり、高信頼性が要求される光通信システムに有用であ
る。
As described above, according to the present invention, in the optical fiber amplifier, the supply currents to the two pumping light sources are controlled in cooperation with each other, so that one of the pumping light sources deteriorates and the optical output decreases. However, the signal light gain as a whole is constant, and it is useful for an optical communication system that requires high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の構成概略図FIG. 1 is a schematic configuration diagram of a first embodiment of the present invention.

【図2】本発明の他の実施例の構成概略図FIG. 2 is a schematic configuration diagram of another embodiment of the present invention.

【図3】従来例の光ファイバ増幅器の基本構成図FIG. 3 is a basic configuration diagram of a conventional optical fiber amplifier.

【符号の説明】[Explanation of symbols]

101 光コネクタ 102 光コード 103 光結合器 104 希土類光ファイバ 105 光フィルタ 106 光コネクタ 107 光コード 108 光コード 109 光コード 110 光アイソレータ 111 光コード 112 励起用半導体レーザ 113 光コード 114 給電線 115 光コード 116 光アイソレータ 117 励起用半導体レーザ 118 光コード 119 給電線 120 制御電流供給装置 121 光コード 122 光結合器 201 光コネクタ 202 光コード 203 光結合器 204 希土類光ファイバ 205 光フィルタ 206 光コネクタ 207 光結合器 208 光コード 209 光コード 210 光アイソレータ 211 光コード 212 励起用半導体レーザ 213 光コード 214 給電線 215 光コード 216 光アイソレータ 217 励起用半導体レーザ 218 光コード 219 給電線 220 制御電流供給装置 221 光コード 222 光コード 301 光コネクタ 302 光コード 303 光結合器 304 希土類光ファイバ 305 光フィルタ 306 光コネクタ 307 光コード 308 光コード 309 光アイソレータ 310 光コード 311 励起用半導体レーザ 312 光コード 313 給電線 314 制御電流供給装置 101 Optical Connector 102 Optical Code 103 Optical Coupler 104 Rare Earth Optical Fiber 105 Optical Filter 106 Optical Connector 107 Optical Code 108 Optical Code 109 Optical Code 110 Optical Isolator 111 Optical Code 112 Excitation Semiconductor Laser 113 Optical Code 114 Feed Line 115 Optical Code 116 Optical isolator 117 Excitation semiconductor laser 118 Optical code 119 Feed line 120 Control current supply device 121 Optical code 122 Optical coupler 201 Optical connector 202 Optical code 203 Optical coupler 204 Rare earth optical fiber 205 Optical filter 206 Optical connector 207 Optical coupler 208 Optical code 209 Optical code 210 Optical isolator 211 Optical code 212 Excitation semiconductor laser 213 Optical code 214 Feed line 215 Optical code 216 Optical isolator 217 Excitation Semiconductor Laser 218 Optical Code 219 Feed Line 220 Control Current Supply Device 221 Optical Code 222 Optical Code 301 Optical Connector 302 Optical Code 303 Optical Coupler 304 Rare Earth Optical Fiber 305 Optical Filter 306 Optical Connector 307 Optical Code 308 Optical Code 309 Optical Isolator 310 Optical code 311 Excitation semiconductor laser 312 Optical code 313 Feed line 314 Control current supply device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/07 3/094 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01S 3/07 3/094

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素が添加された光ファイバと、
該光ファイバを光学的に励起するための2系統の励起用
半導体レーザ光源と、該励起用半導体レーザ光源の出力
光ならびに信号光を前記光ファイバに入射するための光
結合器と、前記励起用半導体レーザ光源に電流を供給す
る制御電流供給装置からなる光ファイバ増幅器におい
て、制御電流供給装置が、2系統の各励起用半導体レー
ザ光源の出力光強度を入力とし、2系統の各励起用半導
体レーザ光源への供給電流を出力とし、該入力および出
力の関係が、1系統の出力光強度の減少を他系統の出力
光強度の増加で補うことにより、信号光利得が所定の一
定値となるプログラムに従って動作することを特徴とす
る光ファイバ増幅器。
1. An optical fiber doped with a rare earth element,
Two systems of pumping semiconductor laser light sources for optically pumping the optical fiber, an optical coupler for making output light and signal light of the pumping semiconductor laser light source enter the optical fiber, and the pumping In an optical fiber amplifier comprising a control current supply device for supplying a current to a semiconductor laser light source, the control current supply device inputs the output light intensity of each of the two pump semiconductor laser light sources and inputs each of the two semiconductor laser pumps. The supply current to the light source is used as the output, and the relationship between the input and the output is that the decrease in the output light intensity of one system is the output of the other system.
By supplementing with increase in light intensity, an optical fiber amplifier signal Mitsutoshi obtained is characterized by that operates according to a program which is a predetermined constant value.
JP3156682A 1991-06-27 1991-06-27 Optical fiber amplifier Expired - Lifetime JPH07114300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3156682A JPH07114300B2 (en) 1991-06-27 1991-06-27 Optical fiber amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3156682A JPH07114300B2 (en) 1991-06-27 1991-06-27 Optical fiber amplifier

Publications (2)

Publication Number Publication Date
JPH057047A JPH057047A (en) 1993-01-14
JPH07114300B2 true JPH07114300B2 (en) 1995-12-06

Family

ID=15633024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156682A Expired - Lifetime JPH07114300B2 (en) 1991-06-27 1991-06-27 Optical fiber amplifier

Country Status (1)

Country Link
JP (1) JPH07114300B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267757A (en) * 1992-03-23 1993-10-15 Mitsubishi Electric Corp Fiber type light amplifier
JP2836359B2 (en) * 1992-04-09 1998-12-14 日立電線株式会社 Pumping light source backup method for optical fiber amplifier
US5374973A (en) * 1993-09-21 1994-12-20 Alcatel Network Systems, Inc. Optical amplifier
JP4532249B2 (en) * 2004-12-08 2010-08-25 古河電気工業株式会社 Optical amplifier
JP2007318013A (en) * 2006-05-29 2007-12-06 Sumitomo Electric Ind Ltd Optical amplifier, and optical transmission system
JP2008181933A (en) * 2007-01-23 2008-08-07 Seiko Epson Corp Method of driving laser light source device, laser light source device, image display device, monitor and illumination apparatus
JP2011187825A (en) * 2010-03-10 2011-09-22 Furukawa Electric Co Ltd:The Fiber laser device and method of controlling the same
JP5203415B2 (en) * 2010-04-26 2013-06-05 古河電気工業株式会社 Optical amplifier
JP6278917B2 (en) * 2015-03-10 2018-02-14 日本電信電話株式会社 Component concentration measuring apparatus and component concentration measuring method
WO2023162141A1 (en) * 2022-02-25 2023-08-31 日本電信電話株式会社 Excitation light generation device and excitation light generation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738474B2 (en) * 1989-03-15 1995-04-26 国際電信電話株式会社 Redundant system of light source for pumping light
JPH02272432A (en) * 1989-04-13 1990-11-07 Nippon Telegr & Teleph Corp <Ntt> Polarized wave modulating device

Also Published As

Publication number Publication date
JPH057047A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
KR100265788B1 (en) Optical fiber amplifier having high small signal gain
JPH07114300B2 (en) Optical fiber amplifier
US6487006B1 (en) Simultaneous single mode and multi-mode propagation of signals in a double clad optical fiber
EP0844706A2 (en) Optical amplifier and laser light generating apparatus
KR100594038B1 (en) L-band light source with high amplifying efficiency and stable output power
US7079313B2 (en) Optical amplifying apparatus which routes pumping light to a raman amplification medium and a rare-earth-doped optical amplification medium
US6917464B2 (en) Unpolarized multi-lambda source
KR100480259B1 (en) Thulium doped fiber amplifier
JP3786781B2 (en) Robust multi-wavelength optical fiber communication system
EP1030415A2 (en) Optical fiber amplifier and method of amplifying an optical signal
US7081989B2 (en) Wide-band fiber amplifier
JP2634298B2 (en) Optical fiber amplifier
KR20030063322A (en) Polarization-insensitive double-pass two-stage EDFA
US6246515B1 (en) Apparatus and method for amplifying an optical signal
JPH0854580A (en) Bidirectional optical amplifier
JP2814763B2 (en) Optical fiber amplifier unit
JPH06164021A (en) Method of monitoring optical amplifier
KR100234202B1 (en) High power pumping for optical fiber amplication
JP2663873B2 (en) Light source for measuring transmission characteristics
JP3597036B2 (en) Optical fiber amplifier
JPH04289829A (en) Rare earth dope optical fiber amplifier
CN114696188A (en) Optical signal amplifying device and related optical communication equipment
JPH1032360A (en) Optical amplifying device and optical transmission device
JP2003224318A (en) Wide-band spontaneous emission light source
KR20010083713A (en) Fiber-optic amplifier using a 2-port wavelength selective coupler