JPH07113893A - Jet pump for boiling water reactor - Google Patents

Jet pump for boiling water reactor

Info

Publication number
JPH07113893A
JPH07113893A JP5260949A JP26094993A JPH07113893A JP H07113893 A JPH07113893 A JP H07113893A JP 5260949 A JP5260949 A JP 5260949A JP 26094993 A JP26094993 A JP 26094993A JP H07113893 A JPH07113893 A JP H07113893A
Authority
JP
Japan
Prior art keywords
pipe
jet pump
measurement pipe
support
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5260949A
Other languages
Japanese (ja)
Inventor
Noboru Saito
登 斎藤
Katsuhiko Motai
勝彦 馬渡
Hiroshi Miyano
廣 宮野
Hiroshi Niwa
博志 丹羽
Shigeru Fujimoto
滋 藤本
Yasushi Hattori
靖 服部
Hiroshi Katayama
洋 片山
Eiji Manome
栄二 馬目
Hideaki Takahashi
秀明 高橋
Takuya Miyagawa
卓也 宮川
Takeshi Ogiwara
剛 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5260949A priority Critical patent/JPH07113893A/en
Publication of JPH07113893A publication Critical patent/JPH07113893A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To improve safety of reactor in normal operation by selecting the outer diameter of an instrumentation pipe of jet pump so that the natural frequency of the instrumentation pipe avoids the resonance frequency zone in normal operation. CONSTITUTION:Instrumentation pipes 24 for each jet pump are fixed at welding parts 27 fillet-welded to support metals 26 of a rectangular paralelopiped on the outer surface of diffusers 20 put on a baffle plate. At the horizontal pipe 24, a plurality of pipes 24 capable of sliding to absorb the bend due to thermal expansion are supported with support metals. By selecting the outer diameter of the pipes 24 at 27, 2mm or more, the natural frequency can be avoided from the resonance frequency zone. That is, pressure pulse frequency of the natural frequency corresponding to 100% of recirculation pump revolution can be generated. Also, support part 26 suffers only stress due to forced vibration, which is kept below the fatigue limit stress and thus, damage on the welding parts 27 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉のジェ
ットポンプに関する。
FIELD OF THE INVENTION The present invention relates to a jet pump for a boiling water reactor.

【0002】[0002]

【従来の技術】従来の沸騰水型原子炉は図8に示すごと
く構成されている。原子炉圧力容器1内には炉心2を収
納するシュラウド3が設置されており、シュラウド3の
下部および上部にそれぞれ配設された炉心支持板4およ
び上部格子板5の間には多数の燃料集合体6が設置され
ている。
2. Description of the Related Art A conventional boiling water reactor is constructed as shown in FIG. A shroud 3 for accommodating a core 2 is installed in a reactor pressure vessel 1, and a large number of fuel assemblies are provided between a core support plate 4 and an upper lattice plate 5 which are respectively arranged below and above the shroud 3. The body 6 is installed.

【0003】シュラウド3の上部にはシュラウドヘッド
7が配設されており、このシュラウドヘッド7の上部に
はスタンドパイプ8を介して気水分離器9が設置され、
この気水分離器9の上方に蒸気乾燥器10が設置されて
いる。また、炉心支持板4の下方には、炉心2内に挿入
される制御棒(図示せず)を収納する制御棒案内管11
と、制御棒を駆動するための制御棒駆動機構12が設置さ
れている。
A shroud head 7 is disposed above the shroud 3, and a steam separator 9 is installed above the shroud head 7 via a stand pipe 8.
A steam dryer 10 is installed above the steam separator 9. Below the core support plate 4, a control rod guide tube 11 for accommodating a control rod (not shown) inserted into the core 2 is provided.
And a control rod drive mechanism 12 for driving the control rod.

【0004】炉心2の側方には複数のジェットポンプ13
が配設されており、このジェットポンプ13の入り口側に
は原子炉圧力容器1内の冷却水を再循環する再循環ポン
プ14を備えた再循環系配管15の吐出側配管16が開口して
おり、原子炉圧力容器1のジェットポンプ13の側方には
再循環系配管15の吸込側配管17が開口している。
A plurality of jet pumps 13 are provided on the side of the core 2.
The jet side of the jet pump 13 is provided with a discharge side pipe 16 of a recirculation system pipe 15 provided with a recirculation pump 14 for recirculating the cooling water in the reactor pressure vessel 1. The suction side pipe 17 of the recirculation system pipe 15 is open to the side of the jet pump 13 of the reactor pressure vessel 1.

【0005】また、原子炉圧力容器1の蒸気乾燥器10側
方には図示しないタービンへ炉心2で発生した蒸気を導
く主蒸気管18が開口しており、さらに原子炉圧力容器1
のスタンドパイプ8側方にはこの原子炉圧力容器1に冷
却水を供給する給水配管19が開口している。
Further, a main steam pipe 18 for guiding steam generated in the core 2 to a turbine (not shown) is opened on the side of the steam dryer 10 of the reactor pressure vessel 1, and the reactor pressure vessel 1 is further provided.
A water supply pipe 19 for supplying cooling water to the reactor pressure vessel 1 is opened on the side of the stand pipe 8.

【0006】原子炉の出力は主に炉心2への冷却水流量
で制御しており、この冷却水流量の制御は、ジェットポ
ンプ13に水を送る再循環ポンプ14の回転数変化によって
行っている。
The output of the nuclear reactor is mainly controlled by the flow rate of the cooling water to the core 2, and the control of the flow rate of the cooling water is performed by changing the number of revolutions of the recirculation pump 14 that sends water to the jet pump 13. .

【0007】各ジェットポンプ13の流量は、図9に示す
ようにディフューザ20の上部管内とバッフルプレート21
の下面の圧力との差圧を測定し、較正された差圧と流量
の関係から算出される。バッフルプレート21下面の圧力
はガイドロッド22により炉心全体の平均的圧力が原子炉
圧力容器1外に取り出される。各ジェットポンプ13で
は、ディフューザ20の上部に圧力タップ23が管外から管
内に貫通して設けられ、ジェットポンプ計測配管24と呼
ばれる導圧管25がこの圧力タップ23に連結されている。
複数のジェットポンプ13から来た計測配管24が束ねられ
他圧力容器1外へ取り出されている。個々のジェットポ
ンプ13からの計測配管24は、ディフューザ20上部からデ
ィフューザ20の外表面に沿って下方へディフューザ20中
間部で曲げられ、水平方向に引き廻されている。
The flow rate of each jet pump 13 is as shown in FIG. 9 in the upper pipe of the diffuser 20 and the baffle plate 21.
It is calculated from the calibrated differential pressure and the flow rate by measuring the differential pressure with the pressure on the lower surface of the. As for the pressure on the lower surface of the baffle plate 21, the average pressure of the entire core is taken out of the reactor pressure vessel 1 by the guide rod 22. In each jet pump 13, a pressure tap 23 is provided above the diffuser 20 so as to penetrate from the outside of the pipe to the inside of the pipe, and a pressure guiding pipe 25 called a jet pump measurement pipe 24 is connected to the pressure tap 23.
The measurement pipes 24 coming from the plurality of jet pumps 13 are bundled and taken out of the other pressure vessel 1. The measurement pipe 24 from each jet pump 13 is bent downward in the middle part of the diffuser 20 along the outer surface of the diffuser 20 from the upper part of the diffuser 20, and is laid horizontally.

【0008】計測配管24は、図10に部分的に拡大して示
すように、ディフューザ20の外表面においては直方体の
支持金具26とすみ肉溶接した溶接部27により固定されて
いる。また水平部の配管では、熱膨脹によるたわみを吸
収できるようにスライドが可能な複数の計測配管24を支
持できる支持金具(図示せず)で固定されている。
As shown in a partially enlarged view of FIG. 10, the measurement pipe 24 is fixed to the outer surface of the diffuser 20 by a rectangular parallelepiped support fitting 26 and a fillet-welded weld portion 27. Further, the horizontal pipe is fixed by a support fitting (not shown) capable of supporting a plurality of slidable measurement pipes 24 so as to absorb the deflection caused by thermal expansion.

【0009】[0009]

【発明が解決しようとする課題】原子炉圧力容器1内で
は、ジェットポンプ13の側方に再循環系配管15の吸込側
配管17が開口している。このため、再循環ポンプ14の羽
根切り圧力脈動がジェットポンプ13の側方に伝播し、計
測配管24を励振させる。
In the reactor pressure vessel 1, a suction side pipe 17 of the recirculation system pipe 15 is opened to the side of the jet pump 13. Therefore, the blade cutting pressure pulsation of the recirculation pump 14 propagates to the side of the jet pump 13 and excites the measurement pipe 24.

【0010】再循環流量の増減は、再循環ポンプ14の回
転数を増減させて行うために、再循環ポンプ14の羽根切
り圧力脈動の周波数fは 0≦f≦(1秒間当たりの最高ポンプ回転数)×羽根枚
数[Hz] の範囲で変化する。
Since the recirculation flow rate is increased / decreased by increasing / decreasing the number of revolutions of the recirculation pump 14, the frequency f of the blade cutting pressure pulsation of the recirculation pump 14 is 0 ≦ f ≦ (maximum pump revolutions per second. Number) x number of blades [Hz].

【0011】従来例では、機器の固有振動数に対して機
器を励振する上記圧力脈動の周波数帯域の考慮はなされ
ていない。万一、機器の固有振動数が上記圧力脈動数と
一致し共振減少を起こした場合、計測配管の振動振幅は
急激に大きく(共振の無い強制振動の数十倍から数百
倍)なり、支持金具と計測配管の付根溶接部に応力が集
中し、計測配管が破断する等の課題がある。
In the conventional example, the frequency band of the pressure pulsation for exciting the device with respect to the natural frequency of the device is not taken into consideration. If the natural frequency of the equipment coincides with the above-mentioned pressure pulsation and causes a decrease in resonance, the vibration amplitude of the measurement pipe will suddenly increase (tens to hundreds of times that of forced vibration without resonance) and support it. There is a problem that stress concentrates on the root welded part of the metal fitting and the measurement pipe, and the measurement pipe breaks.

【0012】本発明は上記課題を解決するためになされ
たもので、ジェットポンプの計測配管が再循環ポンプの
羽根切り圧力脈動と共振しないか、または、共振を起こ
しても溶接部の破損を防止して健全であり、原子炉の通
常時の安全性の向上を図ることができる沸騰水型原子炉
用ジェットポンプを提供することを目的とする。
The present invention has been made to solve the above problems, and the measurement pipe of the jet pump does not resonate with the blade pulsation pressure pulsation of the recirculation pump, or even if resonance occurs, damage to the welded portion is prevented. Another object of the present invention is to provide a jet pump for a boiling water reactor which is sound and is capable of improving the safety of the reactor at normal times.

【0013】[0013]

【課題を解決するための手段】本発明は、沸騰水型原子
炉のジェットポンプの計測配管の外径を計測配管の固有
振動数が通常運転時の共振周波数帯域を避けた値になる
様に選定し、その計測配管の固有振動数を再循環ポンプ
の羽根切り圧力脈動の振幅が大きくプラント運転中の使
用頻度の高い(運転時間の長い)周波数帯域を避ける
か、または、支持部に発生する応力を低減する支持構造
や形状に変更するか、あるいは、共振するポンプ回転数
でのポンプ運転の時間を制限することで、支持部に発生
する応力振動による疲労損傷を低減することを特徴とす
る。
According to the present invention, the outer diameter of the measurement pipe of a jet pump of a boiling water reactor is set so that the natural frequency of the measurement pipe is a value that avoids the resonance frequency band during normal operation. Select the natural frequency of the measurement pipe and avoid the frequency band where the blade cutting pressure pulsation of the recirculation pump is large and the frequency of use is high (long operation time) during plant operation, or occurs in the support part. It is characterized by reducing fatigue damage due to stress vibration generated in the support part by changing to a support structure or shape that reduces stress or by limiting the time of pump operation at a resonating pump speed. .

【0014】[0014]

【作用】図1にポンプ回転数とジェットポンプ計測配管
の固有振動数の関係を示す。ポンプ回転数に依存して発
生するポンプ圧力脈動周波数と計測配管の固有振動数が
一致した共振条件時に共振現象が発生する。通常のプラ
ント運転では75%〜95%ポンプ回転数(通常運転範囲)
での使用頻度が多い。
FIG. 1 shows the relationship between the pump rotation speed and the natural frequency of the jet pump measurement pipe. A resonance phenomenon occurs under the resonance condition where the pump pressure pulsation frequency generated depending on the pump rotation speed and the natural frequency of the measurement pipe match. 75% to 95% pump speed in normal plant operation (normal operating range)
Is often used in.

【0015】この周波数帯域を避けるために、 100%ポ
ンプ回転数に対応する周波数より測定配管の固有振動数
を上げて剛設計にすると、羽根切り圧力脈動と計測配管
の共振現象が避けられ、支持部には強制加振による応力
しか発生せず疲労限界応力値以下になり、溶接部の損傷
を防ぐとことができる。
In order to avoid this frequency band, if the natural frequency of the measurement pipe is increased from the frequency corresponding to 100% pump rotation speed to make it a rigid design, the blade pulsation pressure pulsation and the resonance phenomenon of the measurement pipe are avoided, and Only the stress due to the forced vibration is generated in the portion, and the fatigue limit stress value becomes less than the value, so that the damage of the welded portion can be prevented.

【0016】再循環ポンプの羽根切りによる圧力脈動
は、図3に示したようにモックアップ試験および実プラ
ント測定から基本的にポンプ回転数の自乗に比例する。
計測配管の固有振動数を 100%ポンプ回転数に対応する
周波数より大きく設定できない場合は、逆に固有振動を
下げて柔設計にすることにより励振力を低減し、共振し
た場合でも支持部に発生する応力を疲労限界応力値以下
にすることができ、溶接部の破損を防げる。
The pressure pulsation due to blade cutting of the recirculation pump is basically proportional to the square of the pump rotation speed from the mockup test and the actual plant measurement as shown in FIG.
If the natural frequency of the measurement pipe cannot be set higher than the frequency corresponding to 100% pump rotation speed, the natural vibration is reduced to a flexible design to reduce the excitation force, and even if it resonates, it occurs in the support part. The stress to be applied can be kept below the fatigue limit stress value, and damage to the welded part can be prevented.

【0017】支持部をつぎに述べる実施例に示す構造、
または、計測配管に直接励振力が働かない構造に変更す
ることにより、共振時においても支持部に発生する応力
を疲労限界応力値以下にすることができ、溶接部の破損
を防げる。
The structure shown in the embodiment in which the supporting portion is described below,
Alternatively, by changing to a structure in which the exciting force does not work directly on the measurement pipe, the stress generated in the support portion even at the time of resonance can be made equal to or less than the fatigue limit stress value, and damage to the welded portion can be prevented.

【0018】炉内の諸条件から計測配管の固有振動数が
通常運転範囲の周波数帯域以下で、運転中にポンプ圧力
脈動との共振の可能性があり、共振した時には支持部の
発生応力が疲労限界応力値以上の場合は、共振状態であ
る運転制限範囲のポンプ回転数での運転時間を制限する
ことにより、プラント寿命中における計測配管支持部の
疲労による損傷を避けることができる。
Due to various conditions inside the furnace, the natural frequency of the measuring pipe is below the frequency band of the normal operating range, and there is a possibility of resonance with the pump pressure pulsation during operation. When the stress value is equal to or higher than the limit stress value, by limiting the operation time at the pump rotation speed within the operation limit range which is a resonance state, it is possible to avoid damage to the measurement pipe support portion due to fatigue during the life of the plant.

【0019】以上から、共振現象を起こさない、また、
起こしても支持点の溶接部の疲労損傷による破損を防ぐ
ことができ、原子炉の通常運転中の安全性の向上を図る
ことができる。
From the above, the resonance phenomenon does not occur, and
Even if it occurs, it is possible to prevent damage due to fatigue damage of the welded portion of the support point, and it is possible to improve safety during normal operation of the reactor.

【0020】[0020]

【実施例】本発明に係る沸騰水型原子炉用ジェットポン
プの第1の実施例について説明する。本実施例に係るジ
ェットポンプの基本的な構造は図9及び図10に示した
従来例と変わらないので、具体的な構造の説明は省略
し、従来例と異なった部分についてのみ説明する。
EXAMPLE A first example of a boiling water reactor jet pump according to the present invention will be described. Since the basic structure of the jet pump according to this embodiment is the same as that of the conventional example shown in FIGS. 9 and 10, the description of the specific structure is omitted, and only the parts different from the conventional example will be described.

【0021】第1の実施例が従来例と異なった点は、計
測配管24自体の外径27.2mm以上に選定して固有振動数を
共振周波数帯域から避けることにある。
The difference between the first embodiment and the prior art is that the measuring pipe 24 itself is selected to have an outer diameter of 27.2 mm or more to avoid the natural frequency from the resonance frequency band.

【0022】計測配管24の固有振動数fは一般的にThe natural frequency f of the measuring pipe 24 is generally

【数1】 但し、λ:支持条件によって決定する定数 l:支持点間距離 E:計測配管の縦弾性係数 I:計測配管の断面2次モーメント γ:計測配管の質量密度 A:計測配管の断面積 g:重力加速度 で表される。[Equation 1] However, λ: a constant determined by the supporting condition l: distance between supporting points E: longitudinal elastic modulus of the measuring pipe I: second moment of area of the measuring pipe γ: mass density of the measuring pipe A: sectional area of the measuring pipe g: gravity Expressed in acceleration.

【0023】従来例の計測配管24は、 配管外径:do=13.8mm,配管板厚:t=2.2mm であり、再循環ポンプの約55〜65%ポンプ速度(電源周
波数50Hz地域)および約45〜55%ポンプ速度(電源周
波数60Hz地域)で共振の可能性がある。
The measurement pipe 24 of the conventional example has a pipe outer diameter: do = 13.8 mm, a pipe plate thickness: t = 2.2 mm, and the recirculation pump has a pump speed of about 55 to 65% (power supply frequency region of 50 Hz) and about. Resonance is possible at 45-55% pump speed (60Hz power frequency region).

【0024】これに対して、本発明の実施例では計測配
管24の外径をdo≧27.2mmに選定する。これにより、固
有振動数がポンプ回転数 100%に対応する圧力脈動周波
数を起こすことができ、また、支持部には強制加振によ
る応力しか発生せず疲労限界応力値以下になり、図10に
示す溶接部27の損傷を防ぐことができる。
On the other hand, in the embodiment of the present invention, the outer diameter of the measuring pipe 24 is selected to be do ≧ 27.2 mm. As a result, the natural frequency can generate the pressure pulsation frequency corresponding to 100% of the pump rotation speed, and only the stress due to the forced vibration is generated in the supporting part, which is below the fatigue limit stress value. It is possible to prevent damage to the weld 27 shown.

【0025】つぎに図2により本発明に係るジェットポ
ンプの第2の実施例を説明する。◎図2は図9において
示した部分の改良であるため、図10と対応させてその要
部のみを示している。計測配管24が支持点において回転
が自由になるようにするため図2(a)および図2
(d)に示した支持金具26aおよびU字金具28を使用す
る。
Next, a second embodiment of the jet pump according to the present invention will be described with reference to FIG. ◎ Since FIG. 2 is an improvement of the part shown in FIG. 9, only the main part thereof is shown in correspondence with FIG. 10. In order to allow the measurement pipe 24 to freely rotate at the support point, the measurement pipe 24 shown in FIGS.
The support fitting 26a and the U-shaped fitting 28 shown in (d) are used.

【0026】すなわち図2(a)〜(c)では計測配管
24が断面かまぼこ状の4辺角形の支持金具26aに囲まれ
た支持構造例を示している。なお、図2(b)は(a)
の横断面図を、図2(c)は(a)の縦断面図を示して
いる。また、図2(d)では計は測配管24を断面円状の
逆U字金具28に囲まれた支持構造例を示している。図2
(a)と(d)の例は共に計測配管24を両端ピン支持す
る構造である。
That is, in FIG. 2 (a)-(c), the measurement piping
24 shows an example of a support structure surrounded by a quadrilateral support metal fitting 26a having a semicylindrical cross section. Note that FIG. 2B shows (a)
2C is a horizontal sectional view of FIG. 2C, and FIG. 2C is a vertical sectional view of FIG. Further, FIG. 2D shows an example of a support structure in which the metering pipe 24 is surrounded by an inverted U-shaped metal fitting 28 having a circular cross section. Figure 2
Both of the examples of (a) and (d) have a structure in which the measurement pipe 24 is supported by pins at both ends.

【0027】図10に示す従来の計測配管24の支持点は両
端ともに支持金具26の上面で溶接部27で両端完全固定さ
れており、従来例の場合には(1)式の係数λは4.73で
ある。これに対して、本実施例の支持金具26a,28を両
端に用いた場合には、係数λがπ(=3.14)になる。支
持点間距離lが同じ場合でも、固有振動係数は
The supporting point of the conventional measuring pipe 24 shown in FIG. 10 is completely fixed at both ends by the welded portions 27 on the upper surface of the supporting metal fitting 26 at both ends. In the case of the conventional example, the coefficient λ of the equation (1) is 4.73. Is. On the other hand, when the support fittings 26a and 28 of this embodiment are used at both ends, the coefficient λ becomes π (= 3.14). Even if the distance l between supporting points is the same, the natural vibration coefficient is

【数2】 に低下する。[Equation 2] Fall to.

【0028】計測配管を振動させる単位長さ当たりの励
振力Fは、
The exciting force F per unit length for vibrating the measuring pipe is

【数3】 但し,P:再循環ポンプの羽根切り圧力脈動で表され
る。
[Equation 3] However, P: is represented by the blade cutting pressure pulsation of the recirculation pump.

【0029】再循環ポンプの羽根切り圧力脈動Pは図3
に示すように、再循環ポンプの回転数(励振周波数)の
自乗に比例するため、固有振動数の低下から 0.442 =0.19倍 に低下する。計測配管の外径に変化が無い場合、計測配
管の固有振動数と再循環ポンプの羽根切り圧力脈動が共
振したとしても、励振力は0.19倍に低下する。計測配管
に発生する応力σは(3)式の様に
The blade cutting pressure pulsation P of the recirculation pump is shown in FIG.
As shown in, since it is proportional to the square of the rotation speed (excitation frequency) of the recirculation pump, the natural frequency decreases to 0.44 2 = 0.19 times. If there is no change in the outer diameter of the measurement pipe, the excitation force will decrease 0.19 times even if the natural frequency of the measurement pipe resonates with the blade cutting pressure pulsation of the recirculation pump. The stress σ generated in the measurement pipe is as shown in equation (3).

【0030】[0030]

【数4】 但し、M:計測配管に働く曲げモーメント曲げモーメン
トに比例する、梁に働く曲げモーメントは、均一分布荷
重条件下で以下の各両端支持条件の場合、以下の式にな
る。
[Equation 4] However, M: the bending moment acting on the beam, which is proportional to the bending moment acting on the measurement pipe, is given by the following formula under the condition of uniformly distributed load under the following supporting conditions at both ends.

【0031】・両端完全固定・ Completely fixed at both ends

【数5】 [Equation 5]

【0032】・両端ピン支持[Both ends pin support]

【数6】 但し、W:単位長さ当たりの荷重[Equation 6] However, W: load per unit length

【0033】本発明におけるの支持金具26a,U字金具
28を使用すると計測配管24の両端支持条件が完全溶接固
定からピン支持に変更され、計測配管24の固有振動数が
従来に比べ0.44倍になり、計測配管24に発生する応力は
従来に比べ
Support metal fitting 26a, U-shaped metal fitting of the present invention
When 28 is used, the condition for supporting both ends of the measurement pipe 24 is changed from perfect welding fixing to pin support, the natural frequency of the measurement pipe 24 is 0.44 times that of the conventional type, and the stress generated in the measurement pipe 24 is greater than that of the conventional type.

【数7】 となり、疲労限界応力値以下になる。[Equation 7] And becomes below the fatigue limit stress value.

【0034】また、一般に通常支持金具、U字金具と計
測配管24の備え付けは常温で行い、原子炉運転時には高
温(約 270℃)になる。計測配管24と支持金具に熱膨脹
係数の等しい同材質の材料を用いた場合、据付時にガタ
が無い状態で据え付けても、原子炉運転中の高温では熱
膨脹による隙間ができ、支持部にガタが発生し、支持部
の損傷の要因となる。支持金具の材料に熱膨脹係数が計
測配管24の熱膨脹係数より大きくなる材料を採用し、高
温時にも、材質の熱膨張差により、支持部にガタが発生
しないようにする。
Further, generally, the supporting metal fittings, the U-shaped metal fittings, and the measurement pipe 24 are installed at room temperature, and the temperature becomes high (about 270 ° C.) during the operation of the reactor. If the measurement pipe 24 and the support metal fittings are made of the same material with the same coefficient of thermal expansion, there will be a gap due to thermal expansion at the high temperature during the reactor operation, and there will be some play in the support even if the product is installed without any play. However, this may cause damage to the support portion. A material whose coefficient of thermal expansion is larger than that of the measurement pipe 24 is used as the material of the support fitting so that play does not occur in the support portion due to the difference in thermal expansion between the materials even at high temperatures.

【0035】つぎに図4により本発明に係るジェットポ
ンプの第3の実施例を説明する。◎図4においてディフ
ューザ20の外周面に設けた計測配管24の支持金具26,26
間で発生する1次固有振動(最低周波数)モードで最も
振幅が大きくなる位置(支持点間のほぼ中央)に重鎮29
を設ける。
Next, a third embodiment of the jet pump according to the present invention will be described with reference to FIG. ◎ In FIG. 4, support fittings 26, 26 for the measurement pipe 24 provided on the outer peripheral surface of the diffuser 20
At the position where the amplitude is the largest in the first natural eigenvibration (lowest frequency) mode that occurs between the points (almost the center between the support points), 29
To provide.

【0036】(1)式から、計測配管の固有振動数fはFrom equation (1), the natural frequency f of the measuring pipe is

【数8】 但し、m:計測配管の質量であり、計測配管24に発生す
る曲げモーメントは、(2)式より
[Equation 8] However, m is the mass of the measurement pipe, and the bending moment generated in the measurement pipe 24 is calculated from the equation (2).

【0037】[0037]

【数9】 計測配管に発生する応力σは、(3),(5)および
(6)式により
[Equation 9] The stress σ generated in the measurement pipe is calculated by the equations (3), (5) and (6).

【0038】[0038]

【数10】 となる。[Equation 10] Becomes

【0039】一例として支持点間の計測配管(内部流体
も含む)の重量の3倍の重鎮29を取り付けた場合、前記
の例と同様に、計測配管の固有振動数と再循環ポンプの
羽根切り圧力脈動が共振したとしても、計測配管24に発
生する応力はσ
As an example, when the weight 29 of the measuring pipe between the support points (including the internal fluid) is installed three times, the natural frequency of the measuring pipe and the blade cutting of the recirculation pump are the same as in the above example. Even if the pressure pulsation resonates, the stress generated in the measurement pipe 24 is σ

【数11】 と低減する。計測配管24に重鎮29を設ける事により支持
部の発生応力を疲労限界応力値以下とすることができ
る。
[Equation 11] And reduce. By providing the heavy pipe 29 in the measurement pipe 24, the stress generated in the supporting portion can be made equal to or lower than the fatigue limit stress value.

【0040】重鎮29は計測配管24と一体物、または、溶
接で計測配管24に取り付けることはできるが、現場での
微調が出来ない。重鎮29の取り付けを焼きばめにするこ
とにより現場での微調が可能となる。また、重鎮29の据
付は常温で行い、原子炉運転時には高温(約 270℃)に
なることから、重鎮29に形状記憶合金をもちいて高温時
に計測配管24と結合するようにすることもできる。
The heavy weight 29 can be attached to the measurement pipe 24 integrally with the measurement pipe 24, or can be attached to the measurement pipe 24 by welding, but fine adjustment cannot be made on site. By adjusting the attachment of the heavy weight 29, it is possible to make fine adjustments on site. Further, since the heavy weight 29 is installed at room temperature and has a high temperature (about 270 ° C.) when the reactor is operating, it is possible to use a shape memory alloy for the heavy weight 29 and connect it to the measurement pipe 24 at high temperature.

【0041】つぎに、図5により本発明に係るジェット
ポンプの第4の実施例を説明する。本実施例は、支持金
具26と溶接する位置の計測配管24に外径を局部的に大き
くした太径部31を形成して、支持部以外の計測配管24と
は応力集中が発生しないようになめらかな外径の変化で
連結する。一般的に支持部で発生する応力σは(3)式
で表され、支持部にかかる曲げモーメントが一定の時
は、
Next, a fourth embodiment of the jet pump according to the present invention will be described with reference to FIG. In this embodiment, the measurement pipe 24 at the position where it is welded to the support fitting 26 is formed with a large diameter portion 31 having a locally large outer diameter so that stress concentration does not occur with the measurement pipe 24 other than the support portion. Connect with a smooth change in outer diameter. Generally, the stress σ generated in the supporting portion is expressed by the equation (3), and when the bending moment applied to the supporting portion is constant,

【数12】 但し、di:計測配管の内径 で表せ、計測配管の内径が一定の場合は図6に示すよう
に配管口径が増加するにつれて計測配管に発生する応力
は低下する。例えば、計測配管外径doを19mm以上に変
更すると、発生応力は約1/3以下になり、疲労限界応
力値以下になる。
[Equation 12] However, di can be expressed by the inner diameter of the measurement pipe, and when the inner diameter of the measurement pipe is constant, as shown in FIG. 6, the stress generated in the measurement pipe decreases as the pipe diameter increases. For example, when the measurement pipe outer diameter do is changed to 19 mm or more, the generated stress becomes about ⅓ or less and the fatigue limit stress value or less.

【0042】つぎに図7により本発明に係るジェットポ
ンプの第5の実施例を説明する。◎本実施例は、計測配
管24の支持部においてディフューザ20から出された支持
金具26に任意の長さの内径が計測配管24の外径より大き
い支持パイプ30を溶接して二重管構造に形成している。
計測配管24は支持パイプ30を貫通して設置されており、
支持パイプ30と計測配管24は接続されていない。
Next, a fifth embodiment of the jet pump according to the present invention will be described with reference to FIG. ◎ In this embodiment, a double pipe structure is formed by welding a support pipe 30 having an inner diameter larger than the outer diameter of the measurement pipe 24 to a support fitting 26 that is taken out from the diffuser 20 at a support portion of the measurement pipe 24. Is forming.
The measurement pipe 24 is installed through the support pipe 30,
The support pipe 30 and the measurement pipe 24 are not connected.

【0043】本実施例では、支持部を二重管構造にしそ
の二重管に空隙を持たせ、支持点を柔構造にし固有振動
数を下げ、しかも支持部における応力発生を支持パイプ
30のサポート溶接部27と計測配管24で分担し、応力低減
ができ、支持部の発生応力を疲労限界応力値以下とする
ことができる。
In this embodiment, the supporting portion has a double pipe structure, and the double pipe has an air gap, and the supporting point has a flexible structure to reduce the natural frequency.
The support welded portion 27 of 30 and the measurement pipe 24 share the stress, and the stress can be reduced, and the stress generated in the support portion can be kept below the fatigue limit stress value.

【0044】、また、本実施例の支持パイプ30の内面は
クレビス腐食を防ぐために、パイプ長手方向に複数の溝
を設けこともできる。
Further, the inner surface of the support pipe 30 of this embodiment may be provided with a plurality of grooves in the longitudinal direction of the pipe in order to prevent clevis corrosion.

【0045】さらに、支持部構造と計測配管24の据付は
常温で行い、原子炉運転時には高温(約 270℃)にな
る。支持パイプ30の材料に熱膨張係数が計測配管24の熱
膨脹係数より大きくなる材料を採用し、高温時にも、材
質の熱膨脹差により、支持パイプが締まる様にし、溶接
が不要なガタの発生しない支持構造が可能になる。
Further, the support structure and the measurement pipe 24 are installed at room temperature, and the temperature becomes high (about 270 ° C.) during the reactor operation. A material whose coefficient of thermal expansion is larger than that of the measuring pipe 24 is used as the material of the support pipe 30, and the support pipe is tightened due to the difference in the thermal expansion of the material even at high temperature, so that there is no backlash that does not require welding. Structures are possible.

【0046】また、支持部近傍の局所的な二重管構造で
はなく、計測配管炉内引き回し全域を二重管構造にし、
励振力である再循環ポンプの羽根切り圧力脈動が直接計
測配管に作用することを防ぎ、計測配管の発生応力を低
減する事もできる。
In addition, instead of a local double pipe structure near the supporting portion, a double pipe structure is used throughout the measurement piping furnace
It is possible to prevent the blade cutting pressure pulsation of the recirculation pump, which is an exciting force, from directly acting on the measurement pipe, and reduce the stress generated in the measurement pipe.

【0047】つぎに本発明に係るジェットポンプの第6
の実施例を説明する。ジェットポンプの計測配管24は再
循環ポンプ14の約55〜65%ポンプ速度(電源周波数60H
z地域)で共振の可能性がある。プラントの運転のプラ
ント起動及びサイクルパターン時には必ず上記共振可能
ポンプ速度領域を通過する。燃料や圧力容器の健全性の
観点からポンプの上昇・下降速度は制限され運転手順に
決定されている。
Next, the sixth embodiment of the jet pump according to the present invention.
An example will be described. The measurement pipe 24 of the jet pump is about 55 to 65% of the recirculation pump 14 pump speed (power frequency 60H
There is a possibility of resonance in the z area). It always passes through the above resonable pump speed range at the time of plant startup and cycle pattern of plant operation. From the viewpoint of the soundness of the fuel and pressure vessel, the rising and falling speeds of the pump are limited and the operating procedure is determined.

【0048】そこで、本実施例では共振可能領域での運
転時間を最小限にするため、この領域においては、定常
運転を行わず、規定内で速やかに共振可能領域を通過す
る。共振可能領域で計測配管と再循環ポンプ羽根切り圧
力脈動とが共振しても共振時間が短時間であるため、プ
ラントの運転寿命の間で計測配管支持部における疲労損
傷を避けることができる。
Therefore, in the present embodiment, in order to minimize the operating time in the resonable region, the steady operation is not performed in this region, and the resonable region is quickly passed within the specified range. Since the resonance time is short even if the measurement pipe and the recirculation pump blade cutting pressure pulsation resonate in the resonable region, fatigue damage on the measurement pipe support can be avoided during the operating life of the plant.

【0049】なお、本発明の実施態様を要約すればつぎ
のとおりである。 (1)沸騰水型原子炉のジェットポンプにおいて、通常
運転範囲の顕著な励振周波数から十分な裕度を持って計
測配管の支持間の固有振動周波数を、支持点間長さ,管
の剛性,支持方法,負荷質量を調整して遠ざけること。 (2)沸騰水型原子炉のジェットポンプ計測配管におい
て、その外径を27.2mm以上の管にしたこと。 (3)沸騰型原子炉のジェットポンプ計測配管の引き回
しにおいて、計測配管の支持点において回転が自由にな
る複数個の支持金具を有すること。 (4)熱膨脹係数が計測配管材料よりも大きな材料を用
いた支持金具を有すること。 (5)沸騰水型原子炉のジェットポンプ計測配管の引き
回しにおいて、支持金具の間の計測配管に1個または複
数個の重鎮を有すること。 (6)前記重鎮を焼きばめによって固定、または重鎮の
材料に形状記憶合金を用いること。 (7)沸騰水型原子炉のジェットポンプ計測配管におい
て、局部的に支持部の外径を拡大した計測配管を有する
こと。 (8)沸騰水型原子炉のジェットポンプ計測配管の引き
回しにおいて、支持部を二重管構造とし、外管を支持サ
ポートと溶接し、内管である計測配管が外管内を貫通す
ること。 (9)外管内表面に長手方向の複数の溝を設けたこと。 (10)熱膨脹係数が計測配管材料よりも小さな材料を用
いた支持外管を有すること。 (11)沸騰水型原子炉のジェットポンプ計測配管の引き
回しにおいて、炉内の全引き回し領域を二重管構造とす
ること。 (12)通常運転範囲のポンプ圧力脈動周波数以下の固有
振動数を有する沸騰水型原子炉のジェットポンプにおい
て、ポンプ圧力脈動と共振する周波数領域で定常運転を
行わず速やかに通過する運転制限を設けたこと。
The embodiments of the present invention are summarized as follows. (1) In the boiling water reactor jet pump, the natural vibration frequency between the supports of the measurement pipe has a sufficient margin from the remarkable excitation frequency in the normal operation range, and the length between the support points, the rigidity of the pipe, Adjust the support method and load mass to keep them away from each other. (2) The outer diameter of the jet pump measurement pipe of a boiling water reactor should be 27.2 mm or more. (3) In arranging the jet pump measurement pipe of the boiling reactor, it is necessary to have a plurality of support fittings that can freely rotate at the support points of the measurement pipe. (4) To have a support metal fitting made of a material having a coefficient of thermal expansion larger than that of the measurement pipe material. (5) In arranging the jet pump measurement pipes of a boiling water reactor, one or more heavy gauges should be provided in the measurement pipes between the support fittings. (6) Use of a shape memory alloy as the material of the heavy weight, or by fixing the heavy weight by shrink fitting. (7) In a jet pump measurement pipe of a boiling water reactor, a measurement pipe in which the outer diameter of the support part is locally enlarged is provided. (8) In the routing of the jet pump measurement pipe of a boiling water reactor, the support part has a double pipe structure, the outer pipe is welded to the support support, and the measurement pipe as the inner pipe penetrates through the outer pipe. (9) A plurality of longitudinal grooves are provided on the inner surface of the outer tube. (10) A supporting outer tube made of a material whose coefficient of thermal expansion is smaller than that of the measuring piping material must be provided. (11) Regarding the routing of jet pump measurement pipes for boiling water reactors, the entire routing area in the reactor shall have a double pipe structure. (12) In a boiling water reactor jet pump with a natural frequency equal to or lower than the pump pressure pulsation frequency in the normal operation range, an operation limit is set so that steady operation is not performed in the frequency range that resonates with the pump pressure pulsation. Was it.

【0050】[0050]

【発明の効果】本発明によれば、ジェットポンプの計測
配管が再循環ポンプの羽根切り圧力脈動との共振現象を
避けることができる。また、共振現象を起こしても支持
点の溶接部の集中応力値が疲労限界応力値以下となり溶
接部の破損を防ぐことができる。さらに、共振時間の短
縮により溶接部のプラント寿命中の疲労損傷を防ぐこと
ができる。よって、原子炉の通常運転中の安全性の向上
を図ることができる。
According to the present invention, the measurement pipe of the jet pump can avoid the resonance phenomenon with the blade cutting pressure pulsation of the recirculation pump. Further, even if the resonance phenomenon occurs, the concentrated stress value of the welded portion at the supporting point becomes equal to or less than the fatigue limit stress value, and the damage of the welded portion can be prevented. Furthermore, shortening the resonance time can prevent fatigue damage during the plant life of the weld. Therefore, it is possible to improve safety during normal operation of the nuclear reactor.

【図面の簡単な説明】[Brief description of drawings]

【図1】ジェットポンプの作用を説明するためのポンプ
の回転数と計測配管固有振動数との関係を示す線図。
FIG. 1 is a diagram showing the relationship between the rotational speed of a pump and the natural frequency of measurement piping for explaining the action of a jet pump.

【図2】(a)は本発明に係るジェットポンプの第2の
実施例の要部を示す斜視図。(b)は(a)の横断面
図、(c)は(a)の縦断面図、(d)は(a)におけ
る他の例の要部を示す斜視図。
FIG. 2A is a perspective view showing a main part of a second embodiment of the jet pump according to the present invention. (B) is a horizontal cross-sectional view of (a), (c) is a vertical cross-sectional view of (a), and (d) is a perspective view showing a main part of another example in (a).

【図3】図2におけるジェットポンプの計測配管に加わ
る圧力脈動とポンプ回転数との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between pressure pulsation applied to the measurement pipe of the jet pump in FIG. 2 and pump rotation speed.

【図4】本発明に係るジェットポンプの第4の実施例の
要部を示す斜視図。
FIG. 4 is a perspective view showing a main part of a fourth embodiment of the jet pump according to the present invention.

【図5】本発明に係るジェットポンプの第4の実施例の
要部を示す斜視図。
FIG. 5 is a perspective view showing a main part of a fourth embodiment of the jet pump according to the present invention.

【図6】図5におけるジェットポンプの支持部発生応力
低減率と支持部計測配管外径との関係を示す曲線図。
FIG. 6 is a curve diagram showing the relationship between the stress reduction rate generated in the support part of the jet pump and the outer diameter of the support part measurement pipe in FIG.

【図7】本発明に係るジェットポンプの第5の実施例の
要部を示す斜視図。
FIG. 7 is a perspective view showing an essential part of a fifth embodiment of the jet pump according to the present invention.

【図8】従来の沸騰水型原子炉の炉内構造を概略的に示
す縦断面図。
FIG. 8 is a vertical sectional view schematically showing the internal structure of a conventional boiling water reactor.

【図9】図8におけるジェットポンプの計測系を示す系
統図。
9 is a system diagram showing a measurement system of the jet pump in FIG.

【図10】図8におけるジェットポンプの計測配管支持
構造を概略的に示す斜視図。
10 is a perspective view schematically showing a measurement pipe support structure of the jet pump in FIG.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…炉心、3…シュラウド、4…
炉心支持板、5…上部格子板、6…燃料集合体、7…シ
ュラウドヘッド、8…スタンドパイプ、9…気水分離
器、10…蒸気乾燥機、11…制御棒案内管、12…制御棒駆
動機構、13…ジェットポンプ、14…再循環ポンプ、15…
再循環配管、16…吐出側配管、17…吸込側配管、18…主
蒸気管、19…給水配管、20…ディフューザ、21…バッフ
ルプレート、22…ガイドロッド、23…圧力タップ、24…
計測配管、25…導圧管、26・26a…支持金具、27…溶接
部、28…U字金具、29…重鎮、30…支持パイプ、31…太
径部。
1 ... Reactor pressure vessel, 2 ... Reactor core, 3 ... Shroud, 4 ...
Core support plate, 5 ... Upper lattice plate, 6 ... Fuel assembly, 7 ... Shroud head, 8 ... Stand pipe, 9 ... Steam separator, 10 ... Steam dryer, 11 ... Control rod guide tube, 12 ... Control rod Drive mechanism, 13 ... Jet pump, 14 ... Recirculation pump, 15 ...
Recirculation pipe, 16 ... Discharge side pipe, 17 ... Suction side pipe, 18 ... Main steam pipe, 19 ... Water supply pipe, 20 ... Diffuser, 21 ... Baffle plate, 22 ... Guide rod, 23 ... Pressure tap, 24 ...
Measuring pipe, 25 ... Pressure guiding pipe, 26 / 26a ... Supporting metal, 27 ... Welding part, 28 ... U-shaped metal fitting, 29 ... Heavy weight, 30 ... Supporting pipe, 31 ... Large diameter part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 博志 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 藤本 滋 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 服部 靖 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 片山 洋 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 馬目 栄二 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 高橋 秀明 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 宮川 卓也 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 荻原 剛 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Niwa 1 Komukai Toshiba Town, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Corporate Research & Development Center, Toshiba Corporation (72) Inventor Shigeru Fujimoto Komukai Toshiba, Kawasaki City, Kanagawa Prefecture Town No. 1 Incorporated company Toshiba Research and Development Center (72) Inventor Yasushi Hattori No. 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Incorporated company Toshiba Research and Development Center (72) Inventor Hiroshi Katayama Kanzaki Kawasaki, Kanagawa Prefecture Komukai-shi Toshiba-cho 1-share company Toshiba Research and Development Center (72) Inventor Eiji Mame Komu-shi Toshiba-cho 1-share company Toshiba Research and Development Center (72) Inventor Hideaki Takahashi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Within the Corporate Research and Development Center, Toshiba Corporation (72) Inventor Takuya Miyakawa, Sai-ku, Kawasaki-shi, Kanagawa Komukai Toshiba Town No. 1 Incorporated Toshiba Corporation R & D Center (72) Inventor Tsuyoshi Ogiwara Komukai Toshiba No. 1 in Kawasaki City, Kanagawa Prefecture Komukai Toshiba R & D Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器内の炉心外側には位置さ
れかつバッフルプレート上に載置されたディフューザの
外周面に複数の支持金具を介して計測配管が取り付けら
れ、入口側に再循環系配管の吐出側配管が開口し、側方
に再循環系配管の吸込側配管が開口してなる沸騰水型原
子炉用ジェットポンプにおいて、前記計測配管の外径を
計測配管の固有振動数が通常運転時の共振周波数帯域を
避けた値になる様に選定してなることを特徴とする沸騰
水型原子炉用ジェットポンプ。
1. A measurement pipe is attached to the outer peripheral surface of a diffuser, which is located outside the core in a reactor pressure vessel and is mounted on a baffle plate, via a plurality of support fittings, and a recirculation system is provided on the inlet side. In a jet pump for a boiling water reactor in which the discharge side pipe of the pipe is opened and the suction side pipe of the recirculation system pipe is opened to the side, the outer diameter of the measurement pipe is usually the natural frequency of the measurement pipe. A jet pump for a boiling water reactor characterized by being selected so as to avoid a resonance frequency band during operation.
【請求項2】 前記計測配管は支持点において回転が自
由になる複数個の支持金具を有することを特徴とする請
求項1記載の沸騰水型原子炉用ジェットポンプ。
2. The jet pump for a boiling water reactor according to claim 1, wherein the measurement pipe has a plurality of support fittings which are freely rotatable at a support point.
【請求項3】 前記複数の支持金具間の計測配管に少な
くとも1個の重鎮を設けてなることを特徴とする請求項
1記載の沸騰水型原子炉用ジェットポンプ。
3. The jet pump for a boiling water reactor according to claim 1, wherein at least one heavy weight is provided in the measurement pipe between the plurality of support fittings.
【請求項4】 前記複数の支持金具と溶接する位置の計
測配管に外径を局部的に大きくした大径部を形成したこ
とを特徴とする請求項1記載の沸騰水型原子炉用ジェッ
トポンプ。
4. The jet pump for a boiling water reactor according to claim 1, wherein a large-diameter portion having a locally large outer diameter is formed in the measurement pipe at a position where the plurality of support fittings are welded. .
【請求項5】 前記支持金具に任意長さの内径が前記計
測配管の外径より大きい支持パイプを溶接して前記計測
配管を二重構造に形成したことを特徴とする請求項1記
載の沸騰水型原子炉用ジェットポンプ。
5. The boiling according to claim 1, wherein the measuring pipe is formed in a double structure by welding a supporting pipe having an inner diameter of an arbitrary length larger than the outer diameter of the measuring pipe to the supporting fitting. Jet pump for water reactor.
JP5260949A 1993-10-19 1993-10-19 Jet pump for boiling water reactor Pending JPH07113893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260949A JPH07113893A (en) 1993-10-19 1993-10-19 Jet pump for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260949A JPH07113893A (en) 1993-10-19 1993-10-19 Jet pump for boiling water reactor

Publications (1)

Publication Number Publication Date
JPH07113893A true JPH07113893A (en) 1995-05-02

Family

ID=17355016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260949A Pending JPH07113893A (en) 1993-10-19 1993-10-19 Jet pump for boiling water reactor

Country Status (1)

Country Link
JP (1) JPH07113893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249822A (en) * 2009-04-20 2010-11-04 Ge-Hitachi Nuclear Energy Americas Llc Method and device for clamping jet pump sensing line support

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249822A (en) * 2009-04-20 2010-11-04 Ge-Hitachi Nuclear Energy Americas Llc Method and device for clamping jet pump sensing line support

Similar Documents

Publication Publication Date Title
JPS63253290A (en) Thin-wall channel
JPS6353476B2 (en)
JPH01126592A (en) Spider assembly for supporting control rod cluster
US6997141B2 (en) Anti-vibration support for steam generator heat transfer tubes and method for making same
JPH07113893A (en) Jet pump for boiling water reactor
JPS6025032Y2 (en) pipe restraint device
Gawande et al. Design optimization of shell and tube heat exchanger by vibration analysis
JP2011127925A (en) Welded structure of structural body in nuclear reactor, and method for welding the welded structure
JP3316459B2 (en) Reactor Vessel Internal Structure
US4768582A (en) Steam generator wrapper accommodating tube support members of high thermal expansion coefficient material
Elhelaly et al. Effect of pitch ratio and flat bar support conditions on fei threshold for low mdp parallel triangular array–single-phase water-flow
Chen et al. Tube vibration in a half-scale sector model of a helical tube steam generator
JPH0643286A (en) Vibration damper
JPH07167988A (en) Boiling water type thermal neutron reactor and operating method thereof
EP0225805B1 (en) Rod cluster spider having improved vane configuration
JP2013242259A (en) Jet pump for nuclear reactor
Usman et al. Investigation of the Effects of the Incident Flow Angle on Vibration Behavior in Heat Exchanger Tube Bundle
JP2002257967A (en) Fast breeding reactor
CN101770821A (en) Support grid having a layout of mixing blades for realizing hydraulic balance
Yadav et al. EXPERIMENTAL STUDIES ON THE EFFECT OF FIN GEOMETRY ON FLUID-ELASTIC INSTABILITY OF PARALLEL TRIANGULAR FINNED TUBE ARRAY
Gidi et al. Two-phase flow induced vibrations of tube bundles with tube surface boiling
Pettigrew Flow-induced vibration of nuclear power station components
Moussou An excitation spectrum criterion for the vibration-induced fatigue of small bore pipes
Sim et al. Conceptional design of test loop for FIV in fuel bundle
JPH05142373A (en) Fuel handle having short, intermediate and partially long rods, wherein possibility of vibration induced by coolant flow and bending of fuel rod are minimum