JPH07113786A - Electrophoresis device - Google Patents

Electrophoresis device

Info

Publication number
JPH07113786A
JPH07113786A JP5259592A JP25959293A JPH07113786A JP H07113786 A JPH07113786 A JP H07113786A JP 5259592 A JP5259592 A JP 5259592A JP 25959293 A JP25959293 A JP 25959293A JP H07113786 A JPH07113786 A JP H07113786A
Authority
JP
Japan
Prior art keywords
sample
gel
capillaries
thin tube
electrophoretic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5259592A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
勝彦 村上
Hideki Kanbara
秀記 神原
Satoshi Takahashi
智 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5259592A priority Critical patent/JPH07113786A/en
Publication of JPH07113786A publication Critical patent/JPH07113786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To secure a large number of electrophoresis furnaces, and load simply a sample to be separated by connecting one ends of capillaries respectively to respective electrophorestic passages, enlarging sufficiently an interval between mutual other ends of the capillaries, and loading the sample through the capillaries. CONSTITUTION:An electrophorestic part 1 of a sample is plate gel constituted by sandwiching polyacrylamide between glass plates, and to one ends, capillaries 2 in which polyacrylamide is filled are connected, for example, by 100 pieces in a row in the vertical direction to the electrophoretic direction. The other ends of the capillaries 2 enter a sample tube 4 through a position determined by a support part 3. When sample liquid 5 is loaded, in a condition where the sample liquid is housed in the sample tube 4, prescribed voltage is impressed between electrodes 6 and 16 and between 16 and 12, and the sample liquid 5 is loaded. Afterwards, prescribed voltage is impressed between the electrodes 6 and 16 and between 16 and 12, electrophoresis is carried out, and the sample liquid 5 is electrophoresed in the capillaries 2 and the electrophorestic part 1, and molecular weight is separated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はDNAあるいは蛋白質な
どを電気泳動して分離する電気泳動分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophoretic separation device for separating DNA or protein by electrophoresis.

【0002】[0002]

【従来の技術】従来、DNA等の分析には平板ゲル電気
泳動が用いられる。これらでは、ゲルの片端に試料をロ
ーディングする際に、ピペットでサンプルチューブから
試料を取りだし、平板ゲルの縁につくられたウェル内の
バッファ液中に試料を注入していた。通常、DNAシー
ケンシングには0.3mm 厚のポリアクリルアミドゲルが
用いられるが、泳動速度を速くするためゲルに高電界
(200V/cm)をかける事が望まれている。通常用い
る0.3mm 厚のゲルに高電界をかけると発熱のためゲル
が歪んだり、ゲル内に気泡が生じたりしてうまくいかな
い。そこで、発熱量の少ない薄膜ゲル(0.05〜0.1
mm厚)が注目されてきている。
2. Description of the Related Art Conventionally, flat gel electrophoresis has been used for analyzing DNA and the like. In these methods, when loading the sample on one end of the gel, the sample was taken out from the sample tube with a pipette, and the sample was injected into the buffer solution in the well formed at the edge of the slab gel. Normally, a 0.3 mm thick polyacrylamide gel is used for DNA sequencing, but it is desired to apply a high electric field (200 V / cm) to the gel in order to increase the migration speed. When a high electric field is applied to a commonly used 0.3 mm thick gel, the gel is distorted due to heat generation and bubbles are generated in the gel, which does not work. Therefore, a thin-film gel (0.05-0.1) that generates less heat
(mm thickness) has been attracting attention.

【0003】また、毛細管(内径0.05〜0.1mm)内
にゲルを満たして用いるキャピラリゲル電気泳動も、高
速泳動可能な手法として発展してきている。キャピラリ
を多数本並べたキャピラリアレー方式は、狭い場所に多
くの泳動路を確保する手段として注目されている。〔ア
ナリティカル ケミストリー,第64巻,第967項
(1992年)(Analytical Chemistry 64,967
(1992))〕。
Capillary gel electrophoresis, in which a capillary (inner diameter 0.05 to 0.1 mm) is filled with a gel, has been developed as a technique capable of high-speed electrophoresis. The capillary array method in which a large number of capillaries are arranged has attracted attention as a means for securing many migration paths in a narrow space. [Analytical Chemistry 64, 967 (1992) (Analytical Chemistry 64, 967)
(1992))].

【0004】[0004]

【発明が解決しようとする課題】高速高スループットを
実現するには、キャピラリアレー方式が最も有力である
が、現状では、多数本のキャピラリ中に再現良く良質
(気泡などがなく、均質なもの)のゲルを作成すること
が難しいという問題がある。一方、薄膜ゲルは、比較的
良質のゲルを再現良く作成出来る利点がある。平板ゲル
での電気泳動でのローディングは、現在ピペットを用い
手動で行われるが、ゲルの厚さを薄く(0.1mm以下)し
ようとすると、試料のゲル端へのローディングの操作が
困難になってくる。そこで、0.1mm 以下の薄い平板ゲ
ルに対して、いかに簡便にサンプルをローディングする
かが問題となる。
The capillary array method is the most effective method for achieving high speed and high throughput, but at present, it has good reproducibility and good quality (no bubbles, etc.) in a large number of capillaries. There is a problem that it is difficult to make the gel. On the other hand, the thin film gel has an advantage that a relatively good quality gel can be produced with good reproducibility. The loading by electrophoresis on a slab gel is currently performed manually using a pipette, but when the thickness of the gel is made thin (0.1 mm or less), it becomes difficult to load the sample to the gel edge. Come on. Therefore, how to easily load a sample on a thin flat gel of 0.1 mm or less becomes a problem.

【0005】また、キャピラリゲル電気泳動や平板ゲル
電気泳動にかかわらず、一般に電気泳動装置では、スル
ープットの向上が求められている。それには、泳動する
レーンの数を増やすことが一つの方法であり、それによ
って一度に多くの試料を泳動出来る。
In addition, regardless of the capillary gel electrophoresis or the slab gel electrophoresis, the electrophoretic apparatus is generally required to improve the throughput. One way to do this is to increase the number of lanes to be electrophoresed, so that many samples can be electrophoresed at one time.

【0006】しかし、単にレーン数を増大させるだけで
あると、例えば、1レ−ンあたり5mm幅のレーンを40
レーンから80レーンに増やした場合、必要な空間は2
00mmから400mmへと広がり、検出すべき領域が広く
なる。受光素子の幅が20mmの検出系を用い、F値が
0.85 のレンズで結像させて検出する場合、縮小率m
が10から20になるので、受光時の集光効率は1/
(4*F*(1+m))2 で計算され、約0.0715%か
ら約0.0196%へと約3.6 分の1になってしま
い、検出感度が低下してしまう。また、レーン数が多い
と、試料のローディングも手間がかかり、問題である。
However, if the number of lanes is simply increased, for example, 40 lanes with a width of 5 mm per lane will be used.
If you increase the number of lanes from 80 to 80, the required space is 2
From 00 mm to 400 mm, the area to be detected becomes wider. When using a detection system with the width of the light receiving element of 20 mm and imaging with a lens with an F value of 0.85, the reduction ratio m
Is 10 to 20, so the light collection efficiency when receiving light is 1 /
It is calculated by (4 * F * (1 + m)) 2 , and it becomes about 1 / 3.6 from about 0.0715% to about 0.0196%, and the detection sensitivity decreases. Further, if the number of lanes is large, loading of the sample is troublesome, which is a problem.

【0007】従って、現在レーンあたり3〜4mmを必要
とし40レーン程度が限界であるが、測定領域のサイズ
を現状に維持した上で、泳動路の幅や間隔を出来るだけ
小さくし、いかに多くの泳動路を確保するかが大きな課
題である。また、同時に多くの試料のローディングを、
いかに簡潔にするかということも大きな課題となってい
る。
Therefore, although 3 to 4 mm is currently required for each lane and the limit is about 40 lanes, the width and interval of the migration path can be made as small as possible while maintaining the size of the measurement area as it is. The major issue is how to secure the migration path. In addition, loading many samples at the same time
How to make it simple is also a big issue.

【0008】本発明の目的は、多くの泳動路を確保する
と共に、電気泳動により分離する試料のローディングを
簡便に行うことができる電気泳動装置を提供することに
ある。
An object of the present invention is to provide an electrophoresis apparatus which can secure many migration paths and can easily load a sample to be separated by electrophoresis.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、電気泳動部分に密に多くの泳動路を確保し、各泳動
路にそれぞれ細管の一端をつなげ、細管の他端同士の間
隔を十分大きくし、その細管を介してローディングを行
うように電気泳動装置を構成する。
[Means for Solving the Problems] In order to solve the above problems, many migration paths are densely secured in the electrophoretic portion, one end of each capillary is connected to each migration path, and the distance between the other ends of the capillary is set to be small. The electrophoretic device is configured so that it is sufficiently large and loading is performed through the thin tube.

【0010】[0010]

【作用】各泳動路に結合された細管は、外径0.35mm
程度と細いので、決まった空間内に多くの泳動路を確保
できる。また、細管は柔軟に曲げることが可能なので、
検出側の泳動路の間隔を詰めていても、それに対して細
管の反対側、つまり、サンプルをローディングする側の
間隔を広くすることができ、キャピラリアレー方式同様
に簡単に、ゲルの端にサンプルをローディングすること
ができる。
[Function] The thin tube connected to each migration path has an outer diameter of 0.35 mm.
Since it is thin enough, many migration paths can be secured in a fixed space. Also, since the thin tube can be flexibly bent,
Even if the migration path on the detection side is narrowed, the distance on the opposite side of the capillary, that is, the side on which the sample is loaded can be widened, and the sample can be placed on the edge of the gel as easily as the capillary array method. Can be loaded.

【0011】[0011]

【実施例】【Example】

(実施例1)本発明による第一の実施例を説明する。図
1,図2は、第一の実施例の説明図。試料の泳動部1
は、ポリアクリルアミドをガラス板ではさんで構成した
平板ゲル(厚さ0.1mm)であり、その一端には、ポリア
クリルアミドゲルを充填した細管2(内径0.1mm,外
径0.35mm,長さ10cm)が、1.0mm の間隔で、泳
動方向に対して垂直な方向に一列に100本接続されて
いる。このように泳動レーンの横幅は全体で約10cmと
狭く、泳動中に試料からの蛍光などの信号を検出する
際、検出できる立体角を容易に大きく取ることが出来
る。同時に泳動レーンが従来の約30レーンよりはるか
に多く、100レーンあるため、時間あたりのスループ
ットが上がる。
(Embodiment 1) A first embodiment according to the present invention will be described. 1 and 2 are explanatory views of the first embodiment. Sample migration part 1
Is a flat gel (thickness: 0.1 mm) composed of polyacrylamide sandwiched between glass plates. At one end, a thin tube 2 filled with polyacrylamide gel (inner diameter: 0.1 mm, outer diameter: 0.35 mm, long) 100 cm) are connected in a line perpendicular to the migration direction at intervals of 1.0 mm. In this way, the width of the migration lane is as narrow as about 10 cm as a whole, and when detecting a signal such as fluorescence from a sample during migration, a solid angle that can be detected can be easily made large. At the same time, since there are 100 migration lanes, which is far more than the conventional lanes of about 30, the throughput per hour is increased.

【0012】ここで、細管にゲルを詰めず、代わりにバ
ッファ液を満たしても良いが、表面処理をして、細管2
内で試料5の移動する向きが泳動部1に向かうような調
整が必要である。また、泳動部1は、ガラス板ではさん
だ平板ゲルの代わりに、筐体としてプラスチックシート
に挟んだゲルを使っても良い。
Here, the thin tube may be filled with a buffer solution instead of being filled with the gel, but the thin tube 2 is subjected to a surface treatment.
It is necessary to adjust the moving direction of the sample 5 toward the electrophoretic unit 1. In addition, the electrophoretic unit 1 may use a gel sandwiched between plastic sheets as a housing instead of the flat gel sandwiched by the glass plates.

【0013】試料が泳動される距離、すなわち、泳動部
1の端から検出部14までの距離は、20cmとする。図
2(a)は、中間ホルダ10の付近の断面図である。泳
動部1と細管2は向い合わせに配置され、その接合部は
ゲル7で占められている。そのゲル7の上にバッファ液
18があり、バッファ液18の中に電極16が接触して
いる。これら全体が、中間ホルダ10で被われている。
The distance over which the sample migrates, that is, the distance from the end of the migration unit 1 to the detection unit 14 is 20 cm. FIG. 2A is a sectional view of the vicinity of the intermediate holder 10. The migration part 1 and the thin tube 2 are arranged face to face, and the joint part is occupied by the gel 7. The buffer solution 18 is on the gel 7, and the electrode 16 is in contact with the buffer solution 18. All of these are covered with the intermediate holder 10.

【0014】電極16がなければ、電極6と電極12の
間に電圧を印加したとき、細管2の抵抗が泳動部1より
も大きいため、細管2内の電界強度が泳動部1内の電界
強度より大きくなり、必要以上に泳動部1内の泳動速度
が遅くなる可能性がある。あるいは、必要な泳動速度を
得るために、過大な電圧を電極6と電極12の間に印加
しなければならない。電極16があることによって、泳
動部1内の電界強度と、細管2内の電界強度をそれぞれ
独立に調節することが出来るので、上記の問題がない。
Without the electrode 16, when the voltage is applied between the electrode 6 and the electrode 12, the electric field strength in the thin tube 2 is larger than that in the electrophoretic section 1 because the resistance of the thin tube 2 is larger than that in the electrophoretic section 1. It may be larger, and the migration speed in the migration unit 1 may be slower than necessary. Alternatively, an excessive voltage must be applied between electrodes 6 and 12 to obtain the required migration rate. The presence of the electrode 16 allows the electric field strength in the electrophoretic section 1 and the electric field strength in the narrow tube 2 to be adjusted independently, so that the above problem does not occur.

【0015】ここで泳動部1と細管2との間隔は、1mm
以下とする。この間隔は、試料が拡散なく泳動されるよ
うにするため、狭い方が望ましい。この例で泳動部1の
ゲル7と中間ホルダ10内のゲル7と細管2内のゲル7
は、同時に重合した連続的なものである。しかし、元来
別々に重合されたゲルを接触させてもよい。例えば、細
管中に薄い濃度のゲルを充填し、平板内に濃い濃度のゲ
ルを充填すれば、試料に細管を速く移動させ、平板内で
分子量分離を図ることが可能になる。
Here, the distance between the electrophoretic section 1 and the thin tube 2 is 1 mm.
Below. It is desirable that this interval be narrow so that the sample migrates without diffusion. In this example, the gel 7 of the migration unit 1, the gel 7 in the intermediate holder 10 and the gel 7 in the thin tube 2 are used.
Is a continuous one polymerized at the same time. However, the gels that were originally polymerized separately may be contacted. For example, if the thin tube is filled with a thin gel and the flat plate is filled with a high gel, it is possible to quickly move the thin tube to the sample and separate the molecules in the flat plate.

【0016】細管2の他端11は、支持部3によって決
められた位置を経由して、図2(b)に示すようにそれぞ
れ一つずつ計100個のサンプルチューブ4の中に入っ
ている。この例では細管2が通る支持部3の孔の配列
は、10行10列の二次元である。この配列の並び方
は、細管の長さによる制限はあるが、一次元の折線状や
曲線状でもよい。また、5個の孔毎に分割されたものを
別々に、泳動路を囲むような位置に置くことも考えら
れ、このとき細管の必要な長さは本例より短くてすむ。
細管2が通る支持部3の孔と孔の間隔は、9mmとする。
The other end 11 of the thin tube 2 passes through the position determined by the supporting portion 3 and enters one each into a total of 100 sample tubes 4 as shown in FIG. 2 (b). . In this example, the arrangement of the holes of the supporting portion 3 through which the thin tube 2 passes is two-dimensional with 10 rows and 10 columns. The arrangement of the arrays is limited by the length of the thin tube, but may be one-dimensional broken lines or curved lines. It is also conceivable that the five divided holes are placed separately so as to surround the migration path, and at this time, the required length of the thin tube is shorter than that of this example.
The distance between the holes of the supporting portion 3 through which the thin tube 2 passes is 9 mm.

【0017】サンプルチューブ4内で、試料液(または
バッファ液)5と細管2の端11が接触している。試料
液5には、泳動電圧を印加するための電極6が接触して
いる。また平板ゲルの泳動部1の下部をバッファ液13
に浸しており、電極12もバッファ液13に浸してあ
る。三つの電極は、電源15から電圧をかけられる。図
1(c)は、サンプルチューブ4内の断面図である。サ
ンプルチューブ4内には、試料液5が入っていて、これ
に電極6,細管2が浸してある。
In the sample tube 4, the sample solution (or buffer solution) 5 and the end 11 of the capillary tube 2 are in contact with each other. An electrode 6 for applying a migration voltage is in contact with the sample liquid 5. In addition, the lower part of the electrophoretic part 1 of the flat gel is filled with the buffer solution 13
The electrode 12 is also immersed in the buffer solution 13. The three electrodes are energized by the power supply 15. FIG. 1C is a sectional view of the inside of the sample tube 4. The sample solution 5 is contained in the sample tube 4, and the electrode 6 and the thin tube 2 are immersed in the sample solution 5.

【0018】試料液5をローディングする時、サンプル
チューブ4内にローディングしたい試料液5が入ってい
る状態で、電極6と電極16の間に3kVの電圧を、電
極16と電極12の間に0kVの電圧を、それぞれ電源
15により同時に5秒間印加して試料2をローディング
する。充分な量の試料液5が細管2に入れば、サンプル
チューブ4をバッファ液入りのサンプルチューブに取り
換える。
When the sample solution 5 is loaded, with the sample solution 5 to be loaded in the sample tube 4, a voltage of 3 kV is applied between the electrodes 6 and 16 and a voltage of 0 kV is applied between the electrodes 16 and 12. The voltage of 1 is simultaneously applied by the power supply 15 for 5 seconds to load the sample 2. When a sufficient amount of the sample solution 5 has entered the thin tube 2, the sample tube 4 is replaced with a sample tube containing a buffer solution.

【0019】その後、電極6と電極16の間に8kVの
電圧を、電極16と電極12の間に2kVの電圧を、そ
れぞれ電源15から同時に印加して電気泳動を行い、細
管2および泳動部1内に試料5を泳動させて、分子量分
離する。ここでは、細管2にゲルが充填されているの
で、分子量によって試料5が分離する場所は、泳動部1
内と、ゲル7の充填された細管2内の両方であるが、特
に問題はない。細管2を分離しながら泳動した試料5
は、一旦細管2を出たあとすぐに泳動部1中に泳動して
いく。細管2内にバッファが充填されている場合は、泳
動部1に試料5が進入した瞬間から分子量分離される。
Thereafter, a voltage of 8 kV is applied between the electrode 6 and the electrode 16 and a voltage of 2 kV is applied between the electrode 16 and the electrode 12 from the power source 15 at the same time to perform electrophoresis, and the capillary tube 2 and the migration section 1 are electrophoresed. The sample 5 is electrophoresed inside and the molecular weight is separated. Here, since the thin tube 2 is filled with gel, the place where the sample 5 is separated depending on the molecular weight is the migration unit 1.
Both inside and inside the thin tube 2 filled with the gel 7, there is no particular problem. Sample 5 electrophoresed while separating capillary 2
Migrates into the migration unit 1 immediately after leaving the capillary tube 2. When the thin tube 2 is filled with the buffer, the molecular weight is separated from the moment the sample 5 enters the migration unit 1.

【0020】(実施例2)図3は、第二の実施例の説明
図である。図3(a)は図1の細管2と泳動部1の接続
に関して、泳動部1に対し垂直の方向に細管2を取り付
けた場合を示す。図3(b)は、第二の実施例での中間
ホルダ10′近傍の断面図である。図3(a)の泳動路
1′と中間ホルダ10′には細管2を通すための100
個の孔がそれぞれあいている。この孔は、実施例1と同
じ1mm間隔で、泳動方向に対して直角に平板に沿って並
んでいる。中間ホルダ10′は、細管を平板に固定し、
細管内のゲル(あるいはバッファ)7と、平板中のゲル
7と、バッファ18′,電極16′を電気的に接触させ
られるように構成する。
(Embodiment 2) FIG. 3 is an explanatory view of the second embodiment. FIG. 3A shows a case where the capillary 2 is attached to the migration unit 1 in the direction perpendicular to the migration unit 1 in connection with the capillary 2 in FIG. FIG. 3B is a sectional view of the vicinity of the intermediate holder 10 'in the second embodiment. The migration path 1'and the intermediate holder 10 'of FIG.
Each hole is open. The holes are arranged along a flat plate at a 1 mm interval as in Example 1 and at right angles to the migration direction. The intermediate holder 10 'fixes the thin tube on a flat plate,
The gel (or buffer) 7 in the thin tube, the gel 7 in the flat plate, the buffer 18 ', and the electrode 16' are electrically contacted.

【0021】バッファ18′と電極16′の役割は、そ
れぞれ実施例1のバッファ18と電極16の役割と同じ
である。他の部分は図1と同様である。
The roles of the buffer 18 'and the electrode 16' are the same as those of the buffer 18 and the electrode 16 of the first embodiment, respectively. Other parts are the same as those in FIG.

【0022】(実施例3)第三の実施例では、第一の実
施例において、細管2が取外し可能であるような装置を
構成する。この装置の操作は、試料液5を細管2にロー
ディングする時までは、実施例1と同じであるが、その
後、試料を注入した細管2の先端11と、中間ホルダ1
0内の他端を入れ替える。そして、電極6と電極16の
間に8kVの電圧を、電極16と電極12の間に2kV
の電圧を、それぞれ電源15から同時に印加する。する
と、細管2内に入っている試料液5は、電界に従って細
管2を出て泳動部1に入る。この後、試料5は泳動部1
内で分子量によって分離する。この実施例では、細管2
の必要な長さが第一の実施例よりも短くて済み、細管2
内のゲル7が壊れた場合でも、その部分を切断すること
によって、同じ細管2を何度も使用できるという利点が
ある。この例の別構成として、第二の実施例において細
管2が取外し可能であるような装置としてもよい。
(Embodiment 3) In the third embodiment, an apparatus in which the thin tube 2 is removable in the first embodiment is constructed. The operation of this device is the same as that in the first embodiment until the sample solution 5 is loaded into the thin tube 2, but thereafter, the tip 11 of the thin tube 2 into which the sample is injected and the intermediate holder 1 are inserted.
Swap the other end of 0. Then, a voltage of 8 kV is applied between the electrodes 6 and 16, and a voltage of 2 kV is applied between the electrodes 16 and 12.
The above voltages are simultaneously applied from the power supply 15. Then, the sample liquid 5 contained in the thin tube 2 exits the thin tube 2 according to the electric field and enters the electrophoretic section 1. After this, the sample 5 is the migration unit
Separated by molecular weight in. In this embodiment, the thin tube 2
The required length of the thin tube 2 is shorter than that of the first embodiment.
Even if the gel 7 inside is broken, there is an advantage that the same thin tube 2 can be used many times by cutting that portion. As another configuration of this example, a device in which the thin tube 2 is removable in the second embodiment may be used.

【0023】[0023]

【発明の効果】厚さの非常に薄い板ゲルや泳動レーン間
隔の狭い板ゲルに対しても、容易に試料のローディング
ができ、さらに、従来と同じ泳動レーン幅に対して、分
離部の泳動レーンの間隔を詰めることが可能になる。こ
れによって、蛍光検出型の泳動装置において検出感度を
上げる事が出来る。また、従来と同じ泳動全幅空間に対
して、泳動レーン数を多くすることが出来る。このため
に、装置全体のスループットが上がる。従来約4mm/レ
ーンであったのが、本発明では0.5〜1.0mm/レーン
であるから、スループットは約4倍から8倍あがる。
EFFECT OF THE INVENTION Samples can be easily loaded even on plate gels having an extremely thin thickness and plate gels having narrow migration lane intervals. It is possible to reduce the distance between lanes. This can increase the detection sensitivity in the fluorescence detection type electrophoretic device. Further, the number of migration lanes can be increased with respect to the same full-width migration space as in the past. Therefore, the throughput of the entire device is increased. In the present invention, the throughput is about 4 to 8 times because it is 0.5 to 1.0 mm / lane, which was about 4 mm / lane in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の中間ホルダ近傍の説明図。FIG. 1 is an explanatory diagram of the vicinity of an intermediate holder according to a first embodiment of the present invention.

【図2】実施例1のサンプルチューブ近傍の断面図。FIG. 2 is a sectional view of the vicinity of a sample tube of Example 1.

【図3】本発明の実施例2の中間ホルダ付近の説明図。FIG. 3 is an explanatory diagram of the vicinity of an intermediate holder according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電気泳動部、2…ゲル充填細管、3…細管の支持
部、4…サンプルチューブ、5…試料液またはバッファ
液、6…電極、10…中間ホルダ、11…細管の先端、
12…電極、13…バッファ液、14…検出部、15…
電源。
DESCRIPTION OF SYMBOLS 1 ... Electrophoresis part, 2 ... Gel filling thin tube, 3 ... Capillary support part, 4 ... Sample tube, 5 ... Sample liquid or buffer liquid, 6 ... Electrode, 10 ... Intermediate holder, 11 ... Tip of the thin tube,
12 ... Electrode, 13 ... Buffer solution, 14 ... Detection part, 15 ...
Power supply.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電気泳動装置において、試料を分離する泳
動部と、前記泳動部に前記試料を導くために設けた細管
から構成される試料ガイド部を有することを特徴とする
電気泳動装置。
1. An electrophoretic device comprising: an electrophoretic unit for separating a sample; and a sample guide unit composed of a thin tube provided for guiding the sample to the electrophoretic unit.
【請求項2】請求項1において、前記試料ガイド部が、
ゲル充填細管部分からなる電気泳動装置。
2. The sample guide portion according to claim 1,
Electrophoresis device consisting of gel-filled capillaries.
【請求項3】請求項1において、前記試料ガイド部が、
バッファ液充填細管部分からなる電気泳動装置。
3. The sample guide section according to claim 1,
Electrophoresis device consisting of a buffer-filled capillary.
【請求項4】請求項2または3において、前記試料を分
離する前記電気泳動部が、ガラス板、またはプラスチッ
ク板等の絶縁体にはさまれた泳動路からなる電気泳動装
置。
4. The electrophoretic device according to claim 2, wherein the electrophoretic section for separating the sample comprises an electrophoretic path sandwiched by an insulator such as a glass plate or a plastic plate.
【請求項5】請求項4において、前記試料ガイド部の細
管が、脱着可能である電気泳動装置。
5. The electrophoresis device according to claim 4, wherein the thin tube of the sample guide portion is removable.
JP5259592A 1993-10-18 1993-10-18 Electrophoresis device Pending JPH07113786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5259592A JPH07113786A (en) 1993-10-18 1993-10-18 Electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5259592A JPH07113786A (en) 1993-10-18 1993-10-18 Electrophoresis device

Publications (1)

Publication Number Publication Date
JPH07113786A true JPH07113786A (en) 1995-05-02

Family

ID=17336255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5259592A Pending JPH07113786A (en) 1993-10-18 1993-10-18 Electrophoresis device

Country Status (1)

Country Link
JP (1) JPH07113786A (en)

Similar Documents

Publication Publication Date Title
EP0687905B1 (en) Automated capillary electrophoresis apparatus
US5202010A (en) Automated capillary electrophoresis apparatus
US7122104B2 (en) Electrophoresis apparatus for simultaneous loading of multiple samples
US5051162A (en) Fluorescence detection type electrophoresis apparatus and its supporting vessel
EP0614528A1 (en) Gel electrophoresis sample applicator/retriever
JPH08136502A (en) Sample holder and sample injection method for electrophoretic system
WO2003019139A2 (en) Multi-channel analyte-separation device employing side-entry excitation
US6596140B2 (en) Multi-channel capillary electrophoresis device and method
JPH04335152A (en) Horizontal type gel electrophoretic apparatus
EP0840113B1 (en) Microchip electrophoretic method and apparatus
EP0999443A2 (en) Capillary electrophoretic apparatus, sample plate and sample injection method
US5384025A (en) Notched spacer for slab-gel electrophoresis
JP3456070B2 (en) Capillary array electrophoresis device
JP3450947B2 (en) Fluorescence detection type capillary array electrophoresis device
JP2974537B2 (en) Capillary array, electrophoresis method and electrophoresis apparatus
JP3075602B2 (en) Electrophoresis device
US6027625A (en) Miniaturized disposable gels for DNA analysis
JPH07113786A (en) Electrophoresis device
JPH1019846A (en) Multicapillary electrophoretic apparatus
EP0576361A2 (en) Electrophoretic electrode, method of/and system for capillary electrophoresis using the electrophoretic electrode and fraction collector assembled into the capillary electrophoresis system
US5744097A (en) DNA base sequencer
JPH05223778A (en) Electrophoretic device
Sonehara et al. Ultra‐slim laminated capillary array for high‐speed DNA separation
US20080257737A1 (en) Electrophoresis method, electrophoresis module and electrophoresis apparatus
JPS63217264A (en) Electrophoretic apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090511

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100511

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110511

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120511

EXPY Cancellation because of completion of term