JPH07113183A - Production of ultra-thin hemisphere - Google Patents

Production of ultra-thin hemisphere

Info

Publication number
JPH07113183A
JPH07113183A JP25968693A JP25968693A JPH07113183A JP H07113183 A JPH07113183 A JP H07113183A JP 25968693 A JP25968693 A JP 25968693A JP 25968693 A JP25968693 A JP 25968693A JP H07113183 A JPH07113183 A JP H07113183A
Authority
JP
Japan
Prior art keywords
hemisphere
rough
thin
thickness
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25968693A
Other languages
Japanese (ja)
Inventor
Nobuhiro Karatsu
信弘 唐津
Shizuo Kawanami
静男 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25968693A priority Critical patent/JPH07113183A/en
Publication of JPH07113183A publication Critical patent/JPH07113183A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make the thickness of a rough hemisphere almost uniform and ultra-thin by controlling immersion time at the time of immersing the rough hemisphere formed by a superplastic molding method into an etching liquid. CONSTITUTION:The rough hemisphere is produced by subjecting a uniform plate material, such as titanium alloy, having high specific strength of the thickness of the pressurization threshold to superplastic molding. This rough hemisphere 1 is connected to a hoisting down machine 4 with a programming function through a hoisting down jig 3. The time when the rough hemisphere 1 is immersed into the etching liquid 2 is controlled by the operation of this hoisting down machine 4. The thick part of the coarse hemisphere 1 is immersed for long in the etching liquid and the thin part is immersed therein for short. A tank of the min. weight having a high safety factor is obtd. if the composite material tank of a spherical shape or tear drop shape is produced by this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超薄肉半球の製造法に関
し、厳しい軽量化が要求される衛星の姿勢制御装置(リ
アクション・コントロール・システム:RCS)の燃料
タンク、衛星の二液式キックモータのタンク、あるいは
飛翔体のタンク等球形又は涙滴形タンクの製造に有利に
適用し得るものであって、特に炭素繊維強化プラスチッ
ク(CFRP)等の複合材を用いてこれらのタンクを作
る場合に必要な超薄肉の内殻球の製造に有利に適用し得
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an ultra-thin hemisphere, and a fuel tank for a satellite attitude control device (reaction control system: RCS), which requires severe weight reduction, and a two-part type kick for a satellite. It can be advantageously applied to the production of spherical tanks or teardrop tanks such as motor tanks or flying tanks, especially when these tanks are made using composite materials such as carbon fiber reinforced plastic (CFRP). The present invention relates to a method which can be advantageously applied to the production of an ultrathin inner shell sphere required for

【0002】[0002]

【従来の技術】従来の衛星ではあまりタンクが大きくな
かったため、図3(a)に示すような均一肉厚(t0
板材1を用いて超塑性成形法により図3(b)に示すよ
うな薄肉半球2を成形していた。このように成形すると
板材の伸びの大きいところほど、すなわち、深さが深い
ところほど肉厚が薄くなる(t1 >t2 )ため、薄肉半
球の頂点にあたる最薄肉部(t2 )で高圧ガス取締法に
規定される安全率を満足するように設計しなければなら
ず、特に深さの浅い径の大きいところでは肉厚にマージ
ンがあり過ぎて重量に無駄があった。
2. Description of the Related Art In conventional satellites, the tank is not so large, so that a uniform wall thickness (t 0 ) as shown in FIG.
The thin hemisphere 2 as shown in FIG. 3 (b) was formed by the superplastic forming method using the plate material 1. The higher this manner at the molding of the elongation of the sheet large, that is, as at deeper depths thickness becomes thinner (t 1> t 2) for high-pressure gas at the thinnest portion corresponding to the apex of the thin hemisphere (t 2) It had to be designed so as to satisfy the safety factor stipulated by the Control Law, and there was too much margin in the wall thickness, especially at a large depth and large diameter, which wasted weight.

【0003】図4は均一板材(t0 =1.4mm)から
成形した時の成形後の板厚分布例であり、図示のように
中央部肉厚は周辺部肉厚より可成り減少する。図4
(a)は超塑性成形前の板厚を示し、図4(b)は超塑
性成形後の板厚分布を示す図表であり、図4(b)の横
軸は半球の中心と頂点を結ぶ位置からの角度{図4
(c)参照}を示し、縦軸はその角度と円周の交点{図
4(c)参照}の肉厚を示す。
FIG. 4 shows an example of the plate thickness distribution after forming from a uniform plate material (t 0 = 1.4 mm). As shown in the figure, the thickness of the central portion is considerably smaller than the thickness of the peripheral portion. Figure 4
4A is a table showing the plate thickness distribution before superplastic forming, and FIG. 4B is a table showing the plate thickness distribution after superplastic forming. The horizontal axis of FIG. 4B connects the center of the hemisphere to the apex. Angle from position {Fig. 4
(See (c)), and the vertical axis indicates the wall thickness at the intersection of the angle and the circumference (see FIG. 4 (c)).

【0004】これの解決方法の1つの方法として、本発
明者らが既に提案したような成形後の肉厚が均一になる
ように半球の周辺部となる板材部分の肉厚を予め研削等
により薄肉化して超塑性成形をおこなうことにより、均
一の薄肉半球等の加工法(特開昭63−56317号公
報)もあるが、この方法では成形後の肉厚が0.5mm
程度までしかできない。この方法では、これ以下では中
央の厚肉部が伸びる前に固定部付近の最薄肉部が先に伸
びて成形途中に破断するからである。
As one of the solutions to this problem, the thickness of a plate material portion which is a peripheral portion of a hemisphere is previously ground by grinding or the like so that the thickness after molding as already proposed by the present inventors becomes uniform. There is also a processing method for forming a uniform thin hemisphere by thinning and performing superplastic forming (Japanese Patent Laid-Open No. 63-56317), but in this method, the thickness after forming is 0.5 mm.
You can only do so. This is because, with this method, the thinnest part near the fixed part expands before the central thick part expands and breaks during molding in the following.

【0005】[0005]

【発明が解決しようとする課題】衛星用姿勢制御装置の
燃料タンクは厳しい軽量化が要求されるため、高強度の
チタン合金を用いて薄肉にして軽量化を図る必要があ
る。燃料タンクの形状としては球形又は涙滴形の両方が
よく用いられるが、このタンクの薄肉半球や薄肉円錐は
普通、均一板材を用いて超塑性成形法により成形され
る。
Since the fuel tank of the attitude control device for a satellite is required to be lightly weighted, it is necessary to use a high-strength titanium alloy to make the fuel tank thinner and lighter. Both the spherical shape and the teardrop shape are often used as the shape of the fuel tank, and the thin-walled hemisphere and thin-walled cone of this tank are usually formed by a superplastic forming method using a uniform plate material.

【0006】均一板材を用いて成形されたものは図4に
示す如く、深さの浅い径の大きいところほど肉厚が厚く
形成され、従ってロス重量を生ずる。タンクサイズが小
さいものはロス重量もあまり気にならないが、グラムオ
ーダーの厳密な重量管理が行われる衛星ではこのロス重
量は許されない。特にCFRPタンク等の燃料適合及び
気密保持の目的で使われる内側のチタン合金等の内殻球
はできるだけ薄く作ることが必要であるが、これで要求
される肉厚は0.1〜0.3mm程度であり、本発明者
らの既提案の方法で加工できる肉厚の限界を越えた薄さ
の肉厚であった。本発明は上記技術水準に鑑み、均一な
超薄肉半球の製造法を提供しようとするものである。
As shown in FIG. 4, a product formed by using a uniform plate material has a larger wall thickness at a smaller depth and a larger diameter, resulting in loss of weight. The weight loss is not so noticeable for small tank size, but this weight loss is not allowed in the satellite that strictly controls the weight on the gram order. Especially, it is necessary to make the inner shell sphere of titanium alloy etc. used for the purpose of fuel compatibility and airtightness maintenance of CFRP tank etc. as thin as possible, but the required wall thickness is 0.1-0.3 mm. The thickness was so thin that it exceeded the limit of the thickness that could be processed by the method proposed by the present inventors. In view of the above-mentioned state of the art, the present invention aims to provide a method for producing a uniform ultrathin hemisphere.

【0007】[0007]

【課題を解決するための手段】本発明は超塑性成形法に
よる加圧限度の厚みの比強度の高い均一板材を用いて超
塑性成形法により粗半球を成形し、該粗半球の肉厚が均
一になるように該粗半球の各部の腐食液に浸漬する時間
をコントロールして化学腐食させることを特徴とする超
薄肉半球の製造法である。
Means for Solving the Problems The present invention forms a rough hemisphere by a superplastic forming method using a uniform plate material having a high specific strength of a thickness at a pressure limit by the superplastic forming method, and It is a method for producing an ultra-thin hemisphere, characterized in that chemical corrosion is performed by controlling the time of immersing each part of the rough hemisphere in a corrosive solution so as to be uniform.

【0008】すなわち、本発明は超塑性成形法による加
工限度の厚みの比強度の比較的高い均一板材を用いて、
超塑性成形法によって粗半球を成形し、これを化学腐食
法により粗半球の肉厚が均一になるように腐食液に浸漬
する時間をコントロールすることにより均一肉厚の超薄
肉の半球に加工するようにしたものである。
That is, the present invention uses a uniform plate material having a relatively high specific strength at a working limit thickness by the superplastic forming method,
Coarse hemispheres are formed by superplastic forming, and the chemical corrosion method is used to control the immersion time in a corrosive solution so that the thickness of the coarse hemispheres is uniform. It is something that is done.

【0009】[0009]

【作用】超塑性成形法で粗半球を成形すると円周方向は
均一肉厚であるが、子午線方向は頂点にいくにしたがっ
て肉厚は徐々に薄くなるように変化する。また、化学腐
食法では全体を浸漬すれば浸漬時間に比例して1分間に
数ミクロンのオーダーで一様に減肉できる。従って、粗
半球の厚い部分は長く、薄い部分は短く腐食液に浸漬す
る時間をコントロールすることにより粗半球の肉厚をほ
ぼ均一に、しかも超薄肉にすることができる。
When the rough hemisphere is formed by the superplastic forming method, the wall thickness is uniform in the circumferential direction, but the wall thickness gradually changes toward the apex in the meridian direction. Further, in the chemical corrosion method, if the whole is immersed, the wall thickness can be uniformly reduced in the order of several microns per minute in proportion to the immersion time. Therefore, the thick portion of the coarse hemisphere is long, and the thin portion is short, and by controlling the immersion time in the corrosive liquid, the thickness of the coarse hemisphere can be made substantially uniform and ultra-thin.

【0010】[0010]

【実施例】以下、本発明の一実施例を、重量%でAl:
5.5〜8.5、V:3.5〜4.5、Fe<0.2
5、O<0.20、C<0.08、N<0.05、H<
0.015の組成のチタン合金(Ti−6Al−4V)
を使用した場合について説明する。このチタン合金板を
温度:880〜920℃、応力:0.5〜1.0kg/
mm2 、歪速度:10-4〜10-3sec-1になるように
ガス圧力パターンを調整して超塑性成形法により粗半球
を作る。こゝまでの超塑性成形法で粗半球をつくるとこ
ろまでは従来の方法と同じである。
EXAMPLES An example of the present invention will be described below in terms of weight% of Al:
5.5-8.5, V: 3.5-4.5, Fe <0.2
5, O <0.20, C <0.08, N <0.05, H <
Titanium alloy with composition of 0.015 (Ti-6Al-4V)
The case of using will be described. This titanium alloy plate was heated at a temperature of 880 to 920 ° C. and a stress of 0.5 to 1.0 kg /
mm 2 and strain rate: 10 −4 to 10 −3 sec −1 , the gas pressure pattern is adjusted to form a rough hemisphere by the superplastic forming method. The procedure up to this point is the same as the conventional method until the rough hemisphere is formed by the superplastic forming method.

【0011】次に、粗半球1を図1のようにセットす
る。粗半球1は吊り下げ治具3を通じてプログラミング
機能付き巻き上げ/巻き下げ機4に連結されている。こ
の巻き上げ/巻き下げ機4の作動により、粗半球1は腐
食液2に浸漬する時間がコントロールされる。
Next, the coarse hemisphere 1 is set as shown in FIG. The coarse hemisphere 1 is connected to a hoist / unwinder 4 with a programming function through a hanging jig 3. By the operation of the hoisting / unwinding machine 4, the time for immersing the coarse hemisphere 1 in the corrosive liquid 2 is controlled.

【0012】浸漬時間のコントロールは図2に示すよう
にして行われる。図2(a)はチタン合金の超塑性成形
による粗半球1の肉厚分布の一例を示し、ハッチング部
は均一肉厚にするための減肉すべき肉厚を示す。チタン
合金の場合腐食液(例えば10%硝酸と1%弗酸の混合
液)中での減肉率は内外の両面で毎分約4ミクロンであ
るので浸漬時間は図2(a)の減肉量より図2(b)の
ように求められる。なお、図2(a),(b)の横軸は
図2(c)に示すθを示す。
The immersion time is controlled as shown in FIG. FIG. 2A shows an example of the wall thickness distribution of the rough hemisphere 1 formed by superplastic forming of a titanium alloy, and the hatched portion shows the wall thickness to be reduced in order to make the wall thickness uniform. In the case of titanium alloys, the rate of metal thinning in a corrosive liquid (for example, a mixed liquid of 10% nitric acid and 1% hydrofluoric acid) is about 4 microns per minute both inside and outside, so the dipping time is as shown in FIG. It is calculated from the quantity as shown in FIG. The horizontal axes of FIGS. 2A and 2B represent θ shown in FIG. 2C.

【0013】[0013]

【発明の効果】本発明によると、均一の超薄肉半球が製
作できるため、これを用いて球形又は涙滴形のCFRP
等の複合材タンクを作ると高圧ガス取締法に規定する安
全率を満足する最小重量のタンクが得られる。従って、
グラムオーダーで厳しく重量管理が行われる衛星用タン
クの製造手段として非常に有効である。
According to the present invention, a uniform ultra-thin hemisphere can be manufactured. Therefore, a spherical or teardrop-shaped CFRP can be produced using this.
When a composite material tank such as is manufactured, a tank having the minimum weight that satisfies the safety factor specified in the High Pressure Gas Control Law can be obtained. Therefore,
It is very effective as a means for manufacturing satellite tanks where weight control is strictly performed on the gram order.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超薄肉半球の製造法の一部の説明図。FIG. 1 is an explanatory view of a part of the method for producing an ultrathin hemisphere of the present invention.

【図2】本発明の超薄肉半球を製造する際の粗半球の減
肉すべき肉厚分布例及び肉厚分布に対応した腐食液に対
する浸漬時間の関連を示す図表。
FIG. 2 is a table showing an example of a wall thickness distribution of a coarse hemisphere to be thinned when manufacturing an ultrathin hemisphere of the present invention, and a relationship of a dipping time to a corrosive solution corresponding to the wall thickness distribution.

【図3】従来の超塑性成形法によって得られる半球の肉
厚分布の説明図。
FIG. 3 is an explanatory diagram of a hemispherical wall thickness distribution obtained by a conventional superplastic forming method.

【図4】1.4mm厚のチタン合金(Ti−6Al−4
V)の均一板材から超塑性成形法によって得られる半球
の肉厚分布の説明図。
FIG. 4 is a 1.4 mm thick titanium alloy (Ti-6Al-4).
Explanatory drawing of the wall thickness distribution of the hemisphere obtained by the superplastic forming method from the uniform plate material of V).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超塑性成形法による加圧限度の厚みの比
強度の高い均一板材を用いて超塑性成形法により粗半球
を成形し、該粗半球の肉厚が均一になるように該粗半球
の各部の腐食液に浸漬する時間をコントロールして化学
腐食させることを特徴とする超薄肉半球の製造法。
1. A rough hemisphere is formed by a superplastic forming method using a uniform plate material having a high specific strength at a thickness of a pressing limit by the superplastic forming method, and the rough hemisphere is made to have a uniform wall thickness. A method for producing ultra-thin hemispheres, characterized by controlling the time of immersion in the corrosive liquid of each part of the hemisphere to perform chemical corrosion.
JP25968693A 1993-10-18 1993-10-18 Production of ultra-thin hemisphere Withdrawn JPH07113183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25968693A JPH07113183A (en) 1993-10-18 1993-10-18 Production of ultra-thin hemisphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25968693A JPH07113183A (en) 1993-10-18 1993-10-18 Production of ultra-thin hemisphere

Publications (1)

Publication Number Publication Date
JPH07113183A true JPH07113183A (en) 1995-05-02

Family

ID=17337512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25968693A Withdrawn JPH07113183A (en) 1993-10-18 1993-10-18 Production of ultra-thin hemisphere

Country Status (1)

Country Link
JP (1) JPH07113183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108436523A (en) * 2018-04-27 2018-08-24 吴江市天龙机械有限公司 Thin-walled spherical work pieces process grease supporting and positioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108436523A (en) * 2018-04-27 2018-08-24 吴江市天龙机械有限公司 Thin-walled spherical work pieces process grease supporting and positioning device

Similar Documents

Publication Publication Date Title
US4220276A (en) Method for fabricating superplastically formed/diffusion bonded structures
CN106410073B (en) A kind of preparation method of aluminum alloy battery lid, aluminum alloy battery lid and electronic equipment
US6199419B1 (en) Method for manufacturing a dome from an undersized blank
CN107287522B (en) A kind of manufacturing method of deep sea manned submersible ballast tank
US6006569A (en) Method for manufacturing a dome from an undersized blank
JPH07113183A (en) Production of ultra-thin hemisphere
US4381942A (en) Process for the production of titanium-based alloy members by powder metallurgy
JP2002146499A (en) Method for forging titanium alloy, forging stock, and forged article
JP3687007B2 (en) Manufacturing method of high-pressure gas container
Vermilyea A film rupture model for stress corrosion cracking
EP3986648A1 (en) Method and compositions for modifying an additively manufactured metal or metal-alloy object
CN106734482A (en) A kind of high intensity high accuracy small-angle method for manufacturing parts
US4303570A (en) Composition for fabricating superplastically formed/diffusion bonded structures
JP2002331313A (en) Spinning work method for highly activated metal material
JPS6356317A (en) Working method for thin hemisphere and the like by ultraplastic forming
CN111015097B (en) Precision machining method of valve assembly for sealing shell
US3476614A (en) Ductility of dispersed phase alloys,particularly al-al2o3
JPH032359A (en) Production of flanged cylindrical member
Swale et al. Applying superplastic forming principles to titanium sheet metal forming problems
KR101227428B1 (en) Oxygen atoms-dispersed metal-based composite material and method for manufacturing the same
US4759804A (en) Manufacture of iron-chromium-aluminum peeling billet
Viswanathan et al. Macro-, micro-and re-entrant shape forming of sheets of alloy Ti-6A1-4V
Niu et al. Superplastic forming and diffusion bonding of aluminium alloy
JP2004314084A (en) Method for manufacturing lightweight two-piece container
KR20000047008A (en) Method for equalizing thickness of super-plastic formed product by preliminary formed body using rotary forming

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226