JPH0711282Y2 - Electrode steam generator - Google Patents

Electrode steam generator

Info

Publication number
JPH0711282Y2
JPH0711282Y2 JP4362689U JP4362689U JPH0711282Y2 JP H0711282 Y2 JPH0711282 Y2 JP H0711282Y2 JP 4362689 U JP4362689 U JP 4362689U JP 4362689 U JP4362689 U JP 4362689U JP H0711282 Y2 JPH0711282 Y2 JP H0711282Y2
Authority
JP
Japan
Prior art keywords
phase
water
electrode
steam
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4362689U
Other languages
Japanese (ja)
Other versions
JPH02140103U (en
Inventor
正夫 寺島
公之 松本
Original Assignee
東京電機工業株式會社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電機工業株式會社 filed Critical 東京電機工業株式會社
Priority to JP4362689U priority Critical patent/JPH0711282Y2/en
Publication of JPH02140103U publication Critical patent/JPH02140103U/ja
Application granted granted Critical
Publication of JPH0711282Y2 publication Critical patent/JPH0711282Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、三相交流電源の各相に接続した蒸気発生電極
を蒸気発生シリンダの中の水に浸して、蒸気発生電極に
通電すると、水自体が発熱して、蒸気を発生する電極式
蒸気発生装置に関するものである。
[Detailed Description of the Invention] (Industrial field of application) The present invention, when the steam generating electrode connected to each phase of the three-phase AC power source is immersed in water in the steam generating cylinder and the steam generating electrode is energized, The present invention relates to an electrode-type steam generator that generates steam by heating water itself.

(従来の技術) 第3図は従来の電極式蒸気発生装置における蒸気発生シ
リンダの構造及び配管を示すもので、1は水を貯留する
蒸気発生シリンダ(以下「シリンダ」という)、21〜2
12はシリンダ1に内装した12本の蒸気発生電極(以下
「電極」という)で、これ等の電極21〜212はそれぞれ
三相交流電源3(以下「電源3」という)の各相に電力
ユニット4を介して並列に接続されている(第4図参
照)。5はシリンダ1の所定の高さに内装した水位検出
電極(以下「検出電極」という)で、この検出電極5は
制御ユニット6を介して電源3の第3相に並列に接続さ
れている(第4図参照)。7は止水栓8、濾過器9及び
流量調節器10を設けた給水本管、11は給水本管7に設け
た常閉形の給水用電磁弁(以下「給水弁11」という)
で、この給水弁11の開閉は制御ユニット6において制御
される(第4図参照)。12は、シリンダ1の内部圧力を
大気圧に保持するため、シリンダ1の上部の蒸気供給口
1aよりも高い位置に設けた水受け、13はシリンダ1の下
部の給排水口1bを着脱する口と、給水管14を介して水受
け12に接続する口と、排水管15を接続する口とが設けら
れた給排水用分岐管(以下「分岐管」という)、16は排
水管15に設けた常閉形の排水用電磁弁(以下「排水弁」
という)で、この排水弁16の開閉は制御ユニット6にお
いて制御される(第4図参照)。17は水受け12の水が溢
れるのを防止する排水管、18は排水管15或いは17から排
出された水を装置外に排出する排水本管、19はシリンダ
1の上部に設けた蒸気分配器で、この蒸気分配器19はホ
ース20を介してシリンダ1の蒸気供給口1aに接続されて
いる。21は蒸気分配器19に接続した複数の蒸気供給ホー
スであり、シリンダ1で発生した蒸気はホース20、蒸気
分配器19及び蒸気供給ホース21等を介して供給され、
又、蒸気分配器19及び蒸気供給ホース21における結露で
生じた水は給水管14を介してシリンダ1に還流される。
(Prior Art) FIG. 3 shows the structure and piping of a steam generation cylinder in a conventional electrode-type steam generation device, wherein 1 is a steam generation cylinder (hereinafter referred to as “cylinder”) for storing water, and 2 1 to 2
12 to each phase of the steam generating electrode 12 which is furnished to the cylinder 1 (hereinafter referred to as "electrode") in which such electrodes 2 1 to 2 12 each three-phase AC power source 3 (hereinafter referred to as "Power 3") They are connected in parallel via the power unit 4 (see FIG. 4). Reference numeral 5 denotes a water level detection electrode (hereinafter referred to as “detection electrode”) installed at a predetermined height of the cylinder 1, and this detection electrode 5 is connected in parallel to the third phase of the power source 3 via the control unit 6 ( (See FIG. 4). Reference numeral 7 is a water supply main provided with a water stopper 8, a filter 9 and a flow controller 10, and 11 is a normally closed solenoid valve for water supply provided in the water supply main 7 (hereinafter referred to as "water supply valve 11").
The opening / closing of the water supply valve 11 is controlled by the control unit 6 (see FIG. 4). 12 is a steam supply port in the upper part of the cylinder 1 for keeping the internal pressure of the cylinder 1 at atmospheric pressure.
A water receiver provided at a position higher than 1a, 13 is a port for attaching / detaching the water supply / drainage port 1b at the lower part of the cylinder 1, a port for connecting to the water receiver 12 via the water supply pipe 14, and a port for connecting the drainage pipe 15. Water supply / drainage branch pipe (hereinafter referred to as “branch pipe”) provided with 16 and 16 is a normally closed solenoid valve for drainage (hereinafter referred to as “drain valve”) provided in the drain pipe 15.
The opening / closing of the drain valve 16 is controlled by the control unit 6 (see FIG. 4). 17 is a drain pipe for preventing the water in the water receiver 12 from overflowing, 18 is a drain main pipe for discharging the water discharged from the drain pipe 15 or 17 to the outside of the apparatus, and 19 is a steam distributor provided on the upper part of the cylinder 1. The steam distributor 19 is connected to the steam supply port 1a of the cylinder 1 via the hose 20. Reference numeral 21 denotes a plurality of steam supply hoses connected to the steam distributor 19, and the steam generated in the cylinder 1 is supplied through the hose 20, the steam distributor 19 and the steam supply hose 21.
Further, water generated by the dew condensation on the steam distributor 19 and the steam supply hose 21 is returned to the cylinder 1 through the water supply pipe 14.

第4図は従来の電極式蒸気発生装置の制御回路の構成を
示すもので、第3図の符号と同一符号のものは同一部分
を示しており、又、22は三相電源線23(以下「電源線2
3」という)に設けた電源スイッチ、241〜244は電源線2
3から4つに分岐した三相分岐線(以下「分岐線」とい
う)で、これ等の分岐線241〜244の各相にはそれぞれ電
極21〜212が接続されている。25は分岐線241〜244上の
各相に設けたヒューズ、261〜264はトライアック(登録
商標)、サイリスタ等からなる半導体継電器(以下「継
電器」という)で、継電器261は分岐線241の各相に、継
電器262は分岐線242の各相に、継電器263は分岐線243
各相に、継電器264は分岐線244の各相にそれぞれ接続さ
れている。27は設定した湿度に応じて、例えば4〜24A
の範囲の直流電流を出力する湿度調節器、28は、パルス
幅制御方式により、湿度調節器27の出力電流量に応じ
て、一周期毎に出力する一定周波数の交流信号の出力時
間或いは出力波数、即ち交流信号のデューティ比が変化
する比例回路で、この比例回路28には継電器261〜264
ゲート端子が接続されている。29は検出電極5に接続し
た水位検出回路(以下「検出回路」という)で、この検
出回路29は、検出電極5が水に浸り、電極21,22,24,25,
27,28,210及び211と検出電極5との間が導通して、水に
通電されると、検出信号を出力する。30は分岐線241〜2
44の電流量を検出する電流検出コイル(以下「コイル」
という)で、このコイル30は分岐線241〜244と交差する
ように設けられている。31は抵抗器からなる電流設定プ
ラグ(以下「プラグ」という)、32は入力端子に検出回
路29,コイル30及びプラグ31を接続し、出力端子に給水
弁11及び排水弁16を接続した給排水制御回路で、この給
排水制御回路32は、検出回路29が検出信号を出力しない
と、給水信号を出力して給水弁11を開け、又、コイル30
で検出した分岐線241〜244の電流量がプラグ31に流れる
電流量(以下「基準電流量」という)を超えると、所定
の時間だけ排水信号を出力して排水弁16を開ける。33は
200Vから24Vに変圧する電源トランスで、この電源トラ
ンス33は制御ユニット6の電源となる。
FIG. 4 shows the structure of a control circuit of a conventional electrode type steam generator, and those having the same reference numerals as those in FIG. 3 show the same parts, and 22 is a three-phase power supply line 23 (hereinafter "Power line 2
3 ”) power switch, 24 1 to 24 4 are power line 2
Three-phase branch lines branched from three to four (hereinafter referred to as “branch lines”), and electrodes 2 1 to 2 12 are connected to the respective phases of these branch lines 24 1 to 24 4 . 25 fuses provided to each phase of the branch line 24 1-24 4, 26 1 to 26 4 triac, the semiconductor relay having a thyristor or the like (hereinafter referred to as "relay"), relay 26 1 branches Connect each phase of line 24 1 , relay 26 2 to each phase of branch line 24 2 , relay 26 3 to each phase of branch line 24 3 and relay 26 4 to each phase of branch line 24 4. There is. 27 is, for example, 4 to 24 A, depending on the set humidity.
Humidity controller that outputs a DC current in the range of, 28, by the pulse width control method, according to the output current amount of the humidity controller 27, the output time or the output wave number of the constant frequency AC signal that is output in each cycle That is, it is a proportional circuit in which the duty ratio of the AC signal changes, and the gate terminals of the relays 26 1 to 26 4 are connected to the proportional circuit 28. Reference numeral 29 is a water level detection circuit (hereinafter referred to as “detection circuit”) connected to the detection electrode 5. In this detection circuit 29, the detection electrode 5 is immersed in water, and the electrodes 2 1 , 2 2 , 2 4 , 2, 5 5 ,
And conduction between the 2 7, 2 8, 2 10 and 2 11 and the detecting electrode 5, is energized in the water, and outputs a detection signal. 30 is a branch line 24 1-2
4 Current detection coil that detects the current amount of 4 (hereinafter referred to as "coil")
That is, the coil 30 is provided so as to intersect the branch lines 24 1 to 24 4 . 31 is a current setting plug consisting of a resistor (hereinafter referred to as "plug"), 32 is a detection circuit 29, a coil 30 and a plug 31 connected to an input terminal, and a water supply / drainage control in which a water supply valve 11 and a drain valve 16 are connected to an output terminal. In the circuit, if the detection circuit 29 does not output a detection signal, the water supply / drainage control circuit 32 outputs a water supply signal to open the water supply valve 11, and the coil 30
When the amount of current of the branch lines 24 1 to 24 4 detected in (1) exceeds the amount of current flowing through the plug 31 (hereinafter referred to as “reference current amount”), a drain signal is output for a predetermined time and the drain valve 16 is opened. 33 is
This is a power transformer that transforms from 200V to 24V, and this power transformer 33 serves as a power source for the control unit 6.

尚、電力ユニット4は4つの継電器261〜264からなり、
又、制御ユニット6は湿度調節器27、比例回路28、検出
回路29、コイル30、プラグ31及び給排水制御回路32から
なっている。
The power unit 4 is composed of four relays 26 1 to 26 4 ,
The control unit 6 comprises a humidity controller 27, a proportional circuit 28, a detection circuit 29, a coil 30, a plug 31, and a water supply / drainage control circuit 32.

このように構成された従来例において、シリンダ1が空
のときに、電源スイッチ22を投入すると、湿度調節器27
に設定した湿度に応じて継電器261〜264は周期的に或い
は連続して導通するが、電極21〜212の間が非導通なの
で、何れも発熱せず、シリンダ1も空焚きされない。
In the conventional example thus configured, when the power switch 22 is turned on when the cylinder 1 is empty, the humidity controller 27
The relays 26 1 to 26 4 are electrically connected periodically or continuously in accordance with the humidity set in, but since the electrodes 2 1 to 2 12 are not electrically connected, none of them generate heat and the cylinder 1 is not fired. .

又、シリンダ1が空のときには、電極21,22,24,25,27,2
8,210及び211と検出電極5との間が非導通で、検出回路
29から検出信号が出力されないので、給排水制御回路32
は給水信号を出力する。すると、給水弁11は開くが、排
水弁16は閉じたままなので、給水本管7の水は水受け12
から給水管14及び分岐管13を介してシリンダ1に供給さ
れる。そして、シリンダ1の中の水位が上昇して、電極
21〜212が水に浸り、且つ、電極5が水に浸ると、電極2
1,22,24,25,27,28,210及び211と検出電極5との間が導
通して、検出回路29から検出信号が出力されるので、給
排水制御回路32は給水信号の出力を停止する。すると、
給水弁11が閉じて、シリンダ1への給水が停止され、シ
リンダ1の中の水位は所定の高さ以上上昇しなくなる。
Also, when the cylinder 1 is empty, the electrodes 2 1 , 2 2 , 2 4 , 2 5 , 2, 7 2,
There is no conduction between 8 , 2, 10 and 2 11 and the detection electrode 5, and the detection circuit
Since the detection signal is not output from 29, the water supply / drainage control circuit 32
Outputs a water supply signal. Then, the water supply valve 11 is opened, but the drainage valve 16 is still closed.
Is supplied to the cylinder 1 through the water supply pipe 14 and the branch pipe 13. Then, the water level in the cylinder 1 rises, and the electrode
When 2 1 to 2 12 are immersed in water and the electrode 5 is immersed in water, the electrode 2
Since the electrical connection is established between 1 , 2, 2 , 2, 4 , 5 , 5 , 2, 7 , 2, 8 , 10 and 211 and the detection electrode 5, and a detection signal is output from the detection circuit 29, the water supply / drainage control circuit 32 Stops outputting the water supply signal. Then,
The water supply valve 11 is closed, water supply to the cylinder 1 is stopped, and the water level in the cylinder 1 does not rise above a predetermined height.

この間、電極21〜212が水に浸って、電極21〜212の間が
導通すると、湿度調節器27に設定された湿度に対応する
デューティ比の交流信号が比例回路28から出力されて、
継電器261〜264が交流信号のデューティ比に応じた時間
だけ間欠して或いは連続して導通するので、水はジュー
ル熱によって加熱されて、蒸気を発生する。又、水の加
熱中に、湿度調節器27に設定する湿度を変えると、比例
回路28から出力される交流信号のデューティ比が変化し
て、継電器261〜264の導通時間も変化するので、水に供
給される電気エネルギーの量が変化して、蒸気の発生量
が増減する。
During this time, when the electrodes 2 1 to 2 12 are immersed in water and the electrodes 2 1 to 2 12 are electrically connected, an AC signal having a duty ratio corresponding to the humidity set in the humidity controller 27 is output from the proportional circuit 28. hand,
Since the relays 26 1 to 26 4 are intermittently or continuously conducted for a time corresponding to the duty ratio of the AC signal, the water is heated by Joule heat to generate steam. Also, if the humidity set in the humidity controller 27 is changed during heating of water, the duty ratio of the AC signal output from the proportional circuit 28 changes, and the conduction time of the relays 26 1 to 26 4 also changes. The amount of electric energy supplied to water changes, and the amount of steam generated increases or decreases.

ところで、蒸気を発生し続けると、シリンダ1の中の水
位も次第に低下して、検出電極5が空気中に露出するの
で、電極21,22,24,25,27,28,210及び211と検出電極5と
の間が非導通になって、検出回路29から検出信号が出力
されなくなる。すると、給排水制御回路32は給水信号を
再出力して、給水弁11を開け、シリンダ1に水を補給す
るが、検出電極5が水に浸ると、前述の如く、検出回路
29からの検出信号の出力が停止されて、給水弁11が閉じ
るので、シリンダ1への水の補給が停止される。これ以
降、シリンダ1の中の水位が所定の高さより低下する毎
に、給水弁11の開閉をして、シリンダ1に水を補給す
る。
By the way, when the steam is continuously generated, the water level in the cylinder 1 is gradually lowered and the detection electrode 5 is exposed to the air. Therefore, the electrodes 2 1 , 2 2 , 2, 4 , 4 , 5 2, 27 , 28 , between 2 10 and 2 11 and the detection electrode 5 becomes nonconductive, the detection signal from the detection circuit 29 is not outputted. Then, the water supply / drainage control circuit 32 re-outputs the water supply signal, opens the water supply valve 11 and replenishes water to the cylinder 1. However, when the detection electrode 5 is submerged in water, as described above, the detection circuit
Since the output of the detection signal from 29 is stopped and the water supply valve 11 is closed, the supply of water to the cylinder 1 is stopped. After that, every time the water level in the cylinder 1 drops below a predetermined height, the water supply valve 11 is opened and closed to replenish the cylinder 1 with water.

ところで、シリンダ1への水の補給を繰り返しながら、
蒸気を供給し続けると、水に含まれるミネラル等の成分
を次第に濃縮して、水の電気伝導度を上昇させるので、
分岐線241〜244の電流量が次第に増加する。しかし、コ
イル30によって検出される分岐線241〜244の電流量が基
準電流量を超えると、給排水制御回路32は所定の時間だ
け排水信号を出力して、排水弁16を開くので、シリンダ
1の中の水は所定の量だけ排出される。ところが、シリ
ンダ1の中の水が所定の量だけ排出されると、検出電極
5が水から露出して、前述の如く給排水制御回路32から
給水信号が出力されるので、給水弁11が開いて、シリン
ダ1に水を補給する。そして、水位が所定の高さに達し
て、検出電極5が水に浸ると、前述の如く給水弁11が閉
じて、シリンダ1への水の補給が停止される。
By the way, while repeatedly supplying water to the cylinder 1,
If you continue to supply steam, the components such as minerals contained in water will gradually be concentrated, and the electrical conductivity of water will increase.
The current amount of the branch lines 24 1 to 24 4 gradually increases. However, when the current amount of the branch lines 24 1 to 24 4 detected by the coil 30 exceeds the reference current amount, the water supply / drainage control circuit 32 outputs a drainage signal for a predetermined time and opens the drainage valve 16, so that the cylinder The water in 1 is discharged by a predetermined amount. However, when the water in the cylinder 1 is discharged by a predetermined amount, the detection electrode 5 is exposed from the water and the water supply / drainage control circuit 32 outputs the water supply signal as described above, so that the water supply valve 11 is opened. , Supply water to cylinder 1. Then, when the water level reaches a predetermined height and the detection electrode 5 is immersed in water, the water supply valve 11 is closed as described above, and the supply of water to the cylinder 1 is stopped.

尚、コイル30によって検出される分岐線241〜244の電流
量が基準電流量を超えたときの排水量は、排水後に所定
の高さまで水を補給したときの分岐線241〜244の電流量
が基準電流量の80%程度になるように調節すれば、熱効
率は余り低下しない。
When the current amount of the branch lines 24 1 to 24 4 detected by the coil 30 exceeds the reference current amount, the drainage amount of the branch lines 24 1 to 24 4 when the water is replenished to a predetermined height after drainage is If the current amount is adjusted to about 80% of the reference current amount, the thermal efficiency will not decrease so much.

又、蒸気の最大発生量は、プラグ31の抵抗値を変えて、
基準電流量を増減させれば、分岐線241〜244の電流量も
増減して、変化する。
Also, the maximum amount of steam generated can be changed by changing the resistance value of the plug 31.
If the reference current amount is increased / decreased, the current amount of the branch lines 24 1 to 24 4 is also increased / decreased and changed.

(考案が解決しようとする課題) ところで、湿度調節器27に設定した湿度が0%のときに
は、継電器261〜264が非導通になって、電極21,22,24,2
5,27,28,210及び211と検出電極5との間も非導通になる
ので、検出電極5が水に浸っても、即ち所定の高さに達
しても、検出回路29には通電されず、検出回路29は検出
信号を出力しない。このため、給排水制御回路32は給水
信号を出力し続けて、給水弁11を開けた状態に保持する
ので、水がシリンダ1から溢れてしまう、換言するとシ
リンダ1への給水制御が不能になるという問題があっ
た。
(Problems to be solved by the invention) By the way, when the humidity set in the humidity controller 27 is 0%, the relays 26 1 to 26 4 become non-conductive, and the electrodes 2 1 , 2 2 , 2, 4 4 , 2
Since there is also no electrical connection between 5 , 2, 7 , 2, 8 , 10 and 211 and the detection electrode 5, even if the detection electrode 5 is immersed in water, that is, reaches a predetermined height, the detection circuit 29 Is not energized, and the detection circuit 29 does not output a detection signal. Therefore, the water supply / drainage control circuit 32 continues to output the water supply signal and holds the water supply valve 11 in the open state, so that water overflows from the cylinder 1, in other words, the water supply control to the cylinder 1 becomes impossible. There was a problem.

本考案は、この問題に鑑みてなされたもので、湿度調節
器に設定した湿度が0%であっても、シリンダへの給水
制御が確実にできる電極式蒸気発生装置を提供すること
を目的としている。
The present invention has been made in view of this problem, and an object thereof is to provide an electrode-type steam generator capable of reliably controlling water supply to a cylinder even when the humidity set in a humidity controller is 0%. There is.

(課題を解決するための手段) 本考案は、前述の目的を達成するために、半導体継電器
を、三相電源線の第1相及び第3相或いは三相分岐線の
第1相及び第3相にだけ接続したものである。
(Means for Solving the Problem) In order to achieve the above-mentioned object, the present invention provides a semiconductor relay with a first phase and a third phase of a three-phase power line or a first phase and a third phase of a three-phase branch line. It is only connected to the phase.

(作用) 湿度調節器に設定された湿度が0%で、三相電源線の第
1相及び第3相或いは三相分岐線の第1相及び第3相に
接続した半導体継電器が非導通になっても、水位検出電
極が水に浸れば、半導体継電器が接続されていない三相
電源線の第2相或いは三相分岐線の第2相に接続した蒸
気発生電極と水位検出電極との間が導通して、給水用電
磁弁が閉じるので、水が蒸気発生シリンダから溢れ出る
のを確実に防止できる。
(Operation) When the humidity set in the humidity controller is 0%, the semiconductor relays connected to the first and third phases of the three-phase power supply line or the first and third phases of the three-phase branch line become non-conductive. Even so, if the water level detection electrode is immersed in water, between the steam generation electrode and the water level detection electrode connected to the second phase of the three-phase power line to which the semiconductor relay is not connected or the second phase of the three-phase branch line And the water supply solenoid valve is closed, so that water can be reliably prevented from overflowing from the steam generation cylinder.

(実施例) 以下、図面を参照しながら、本考案の実施例を詳細に説
明する。
Embodiment An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本考案の一実施例の構成を示すもので、第3図
及び第4図の符号と同一符号のものは同一部分を示して
おり、又、341〜348はトライアック(登録商標)、サイ
リスタ等からなる半導体継電器(以下「継電器」とい
う)で、継電器341は分岐線241の第1相に、継電器342
は分岐線241の第3相に、継電器343は分岐線242の第1
相に、継電器344は分岐線242の第3相に、継電器345
分岐線243の第1相に、継電器346は分岐線243の第3相
に、継電器347は分岐線244の第1相に、継電器348は分
岐線244の第3相にそれぞれ接続され、又、継電器341
348のゲート端子は比例回路28の出力端子に接続されて
いる。
The first figure shows a configuration of an embodiment of the present invention, those of Figure 3 and Figure 4 reference characters the same shows the same parts, and, 34 1 to 34 8 triac (registered Trademark), a thyristor, etc. semiconductor relay (hereinafter referred to as "relay"). The relay 34 1 is connected to the first phase of the branch line 24 1 and the relay 34 2
Is for the third phase of branch line 24 1 and relay 34 3 is for the first phase of branch line 24 2 .
The phases, the relay 34 4 in the third phase of the branch lines 24 2, relay 34 5 in the first phase of the branch line 24 3, relay 34 6 in the third phase of the branch lines 24 3, relay 34 7 branched the first phase line 24 4, relay 34 8 are respectively connected to the third phase of the branch line 24 4, also relay 34 1 -
The gate terminal 34 8 is connected to the output terminal of the proportional circuit 28.

尚、電力ユニット4は8つの継電器341〜348からなる。The power unit 4 is composed of eight relays 34 1 to 34 8 .

このように構成された本実施例において、分岐線241〜2
44の第2相には半導体継電器が設けられていないので、
湿度調節器に設定した湿度が0%で、継電器341〜348
非導通で、電極21〜212が非導通になっても、検出電極
5が水に浸れば、電極22,25,28及び211と検出電極5と
の間が導通して、検出回路29に必ず通電する。このた
め、シリンダ1の中の水位が上昇して、検出電極5が水
に浸れば、検出回路29が検出信号を出力して、給排水制
御回路32からの給水信号の出力を停止するので、シリン
ダ1の中の水位が所定の高さに達すると、湿度調節器に
設定した湿度が0%であるか否かに拘らず、給水弁11が
閉じて、水がシリンダ1から溢れ出るのを防止する。
In the present embodiment having such a configuration, the branch lines 24 21 to
No semiconductor relay is provided in the second phase of 4 4
Humidity 0% set to humidity control, with relay 34 1-34 8 nonconductive, even electrodes 2 1 to 2 12 becomes non-conductive, if the detection electrode 5 indulge in water, the electrode 2 2, 2 5, 2 8 and 2 11 and by conduction between the detection electrode 5, always energizing the detecting circuit 29. Therefore, if the water level in the cylinder 1 rises and the detection electrode 5 is immersed in water, the detection circuit 29 outputs a detection signal and stops the output of the water supply signal from the water supply / drainage control circuit 32. When the water level in 1 reaches a predetermined height, the water supply valve 11 is closed to prevent water from overflowing the cylinder 1 regardless of whether the humidity set in the humidity controller is 0% or not. To do.

第2図は本考案の他の実施例の構成を示すもので、第1
図及び第4図の符号と同一符号のものは同一部分を示し
ており、電力ユニット4は、分岐線241の各相に接続し
た継電器261と、分岐線242の各相に接続した継電器262
と、分岐線243の各相に接続した継電器263と、分岐線24
4の第1相に接続した継電器347と、分岐線244の第3相
に接続した継電器348とからなるもので、継電器261〜26
3,347及び348のゲート端子は比例回路28に接続されて
いる。
FIG. 2 shows the configuration of another embodiment of the present invention.
The same symbols as those in FIG. 4 and FIG. 4 indicate the same parts, and the power unit 4 is connected to the relay 26 1 connected to each phase of the branch line 24 1 and each phase of the branch line 24 2 . Relay 26 2
And the relay 26 3 connected to each phase of the branch line 24 3 and the branch line 24 3
The relays 34 7 connected to the first phase of 4 and the relays 34 8 connected to the third phase of the branch line 24 4 are composed of the relays 26 1 to 26.
3, 34 7 and 34 8 gate terminals are connected to a proportional circuit 28.

このように構成された本実施例において、分岐線244
第2相には半導体継電器が設けられていないので、湿度
調節器に設定した湿度が0%で、継電器261〜263,347
び348が非導通で、電極21〜212が非導通になっても、検
出電極5が水に浸れば、電極211と検出電極5との間が
導通して、検出回路29に必ず通電する。このため、シリ
ンダ1の中の水位が上昇して、検出電極5が水に浸れ
ば、検出回路29が検出信号を出力して、給排水制御回路
32からの給水信号の出力を停止するので、シリンダ1の
中の水位が所定の高さに達すると、湿度調節器に設定し
た湿度が0%であるか否かに拘らず、給水弁11が閉じ
て、水がシリンダ1から溢れ出るのを防止する。
In this embodiment having such a configuration, since the semiconductor relay is not provided in the second phase of the branch line 24 4 , the humidity set in the humidity controller is 0% and the relays 26 1 to 26 3 and 34 are provided. 7 and 34 8 are non-conductive, even when the electrodes 2 1 to 2 12 nonconductive, the detection electrode 5 if indulge in water and conduction between the electrodes 2 11 and the detecting electrode 5, the detection circuit 29 Be sure to energize. Therefore, when the water level in the cylinder 1 rises and the detection electrode 5 is immersed in water, the detection circuit 29 outputs a detection signal and the water supply / drainage control circuit.
Since the output of the water supply signal from 32 is stopped, when the water level in the cylinder 1 reaches a predetermined height, the water supply valve 11 operates regardless of whether or not the humidity set in the humidity controller is 0%. Close to prevent water from overflowing cylinder 1.

尚、本考案の実施例においては、電源線23を4つに分岐
することにより、12本の電極21〜212でシリンダ1の中
の水を加熱する例で説明したが、電源線23に直接接続し
た3本の蒸気発生電極で、或いは、電源線23を2つ以上
に分岐することにより、3n本(nは分岐の数で、n≧
2)の蒸気発生電極でシリンダ1の中の水を加熱しても
よい。
In the embodiment of the present invention, by branching the supply line 23 into four, it has been described in example for heating the water in the cylinder 1 at twelve electrodes 2 1 to 2 12, the power supply line 23 3n (where n is the number of branches, where n ≧ 3) by branching the power supply line 23 into two or more by three steam generating electrodes directly connected to
The water in the cylinder 1 may be heated by the steam generating electrode of 2).

(考案の効果) 以上説明したように、本考案によれば、湿度調節器に設
定した湿度が0%で、蒸気発生電極の間が非導通になっ
ても、水位検出電極が水に浸れば、三相電源線の第2相
或いは三相分岐線の第2相に接続した蒸気発生電極と水
位検出電極との間が導通して、給水用電磁弁が閉じるの
で、水が蒸気発生シリンダから溢れ出るのを確実に防止
できるという効果を奏するものである。
(Effects of the Invention) As described above, according to the present invention, even if the humidity set in the humidity controller is 0% and the vapor generation electrodes are not electrically connected, if the water level detection electrode is immersed in water. , Since the water supply solenoid valve is closed because the steam generation electrode connected to the second phase of the three-phase power supply line or the second phase of the three-phase branch line and the water level detection electrode are electrically connected, water flows from the steam generation cylinder. This has the effect of reliably preventing overflow.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の電力ユニットの回路図、第
2図は本考案の他の実施例の電力ユニットの回路図、第
3図は従来の電極式蒸気発生装置における蒸気発生シリ
ンダの構造及び配管を示す図、第4図は従来の電極式蒸
気発生装置の制御回路図である。 1……蒸気発生シリンダ、21〜212……蒸気発生電極、
3……三相交流電源、5……水位検出電極、11……給水
用電磁弁、23……三相電源線、241〜244……三相分岐
線、261〜264……半導体継電器、27……湿度調節器、34
1〜348……半導体継電器。
FIG. 1 is a circuit diagram of a power unit according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a power unit according to another embodiment of the present invention, and FIG. 3 is a steam generation cylinder in a conventional electrode-type steam generator. And FIG. 4 is a control circuit diagram of a conventional electrode-type vapor generator. 1 ...... steam generating cylinder, 2 1 to 2 12 ...... steam generator electrode,
3 ... Three-phase AC power supply, 5 ... Water level detection electrode, 11 ... Water supply solenoid valve, 23 ... Three-phase power supply line, 24 1 to 24 4 ... Three-phase branch line, 26 1 to 26 4 ... Semiconductor relay, 27 ... Humidity controller, 34
1 to 34 8 …… Semiconductor relay.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】三相交流電源からの三相電源線の各相或い
は前記三相電源線から複数に分岐した三相分岐線の各相
に接続した蒸気発生電極を蒸気発生シリンダの中の水に
浸して、前記蒸気発生電極に通電すると、前記水が発熱
して、蒸気を発生する電極式蒸気発生装置において、 湿度調節器に設定された湿度に対応する量の電気エネル
ギーが水に供給されるように、前記蒸気発生電極への通
電を制御する半導体継電器は、前記三相電源線の第1相
及び第3相或いは前記三相分岐線の第1相及び第3相に
だけ接続されており、 前記半導体継電器が非導通になっても、前記蒸気発生シ
リンダの中の所定の高さに設けた水位検出電極と前記蒸
気発生電極とが水に浸れば、前記半導体継電器が接続さ
れていない前記三相電源線の第2相或いは前記三相分岐
線の第2相に接続された前記蒸気発生電極と前記水位検
出電極との間が導通して、前記蒸気シリンダへの給水を
制御する給水用電磁弁が閉じるようにした電極式蒸気発
生装置。
1. A steam generator electrode connected to each phase of a three-phase power supply line from a three-phase AC power supply or to each phase of a three-phase branch line branched from the three-phase power supply line into water in a steam generation cylinder. In the electrode-type steam generator, the water is heated to generate steam when the steam generating electrode is energized by supplying electricity to the water in an amount corresponding to the humidity set in the humidity controller. As described above, the semiconductor relay for controlling the power supply to the vapor generating electrode is connected only to the first and third phases of the three-phase power line or the first and third phases of the three-phase branch line. However, even if the semiconductor relay becomes non-conductive, if the water level detection electrode provided at a predetermined height in the steam generation cylinder and the steam generation electrode are immersed in water, the semiconductor relay is not connected. The second phase of the three-phase power line or the three-phase Wherein said steam generating electrode connected to the second phase of 岐線 by conduction between the water level detecting electrode, the electrode steam generator feed water solenoid valve has to close to control the water supply to the steam cylinder.
JP4362689U 1989-04-15 1989-04-15 Electrode steam generator Expired - Fee Related JPH0711282Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4362689U JPH0711282Y2 (en) 1989-04-15 1989-04-15 Electrode steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4362689U JPH0711282Y2 (en) 1989-04-15 1989-04-15 Electrode steam generator

Publications (2)

Publication Number Publication Date
JPH02140103U JPH02140103U (en) 1990-11-22
JPH0711282Y2 true JPH0711282Y2 (en) 1995-03-15

Family

ID=31556199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4362689U Expired - Fee Related JPH0711282Y2 (en) 1989-04-15 1989-04-15 Electrode steam generator

Country Status (1)

Country Link
JP (1) JPH0711282Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723819B1 (en) * 2015-11-20 2017-04-06 김성현 Apparatus for controlling humidity in steam convection oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723819B1 (en) * 2015-11-20 2017-04-06 김성현 Apparatus for controlling humidity in steam convection oven

Also Published As

Publication number Publication date
JPH02140103U (en) 1990-11-22

Similar Documents

Publication Publication Date Title
US8525081B2 (en) Food steamer containers with sequential ohmic water heating
KR101329945B1 (en) Rapid liquid heating
GB2063484A (en) Resistive fluid level detecting system
US3944785A (en) Electrode boiler with automatic control
US5240179A (en) Anti-freeze assist apparatus
CN1918439B (en) Liquid heating apparatus and method
US3780261A (en) Automatic control for electrode boilers
WO2006071513A2 (en) Power supply for electrochemical ion exchange
JPH0711282Y2 (en) Electrode steam generator
US3446937A (en) Water heater for coffee machines
RU203049U1 (en) Automated electrode boiler
KR101381406B1 (en) Heating system using solar heat and ion-electrode heater
JPS6014086Y2 (en) steam generator
JPH09302752A (en) Hot water tank device
JP2007185631A (en) Silver ion generator and bath hot water supply apparatus
JPH0420360Y2 (en)
JPS6014085Y2 (en) steam generator
EP0445089A1 (en) Overboiling protection for a steam generator
JPS6014084Y2 (en) steam generator
KR200185673Y1 (en) A heating device of electrical boiler
JPS6246159A (en) Forced circulation type bath hot-water supplier
SU1763811A1 (en) Electric water heater
JPH04288446A (en) Electrical hot water heating system
GB2160681A (en) Control circuit for water heater
JPH03125847A (en) Electric water heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees