JPH0711280B2 - Vibrating column pumping device - Google Patents

Vibrating column pumping device

Info

Publication number
JPH0711280B2
JPH0711280B2 JP10549885A JP10549885A JPH0711280B2 JP H0711280 B2 JPH0711280 B2 JP H0711280B2 JP 10549885 A JP10549885 A JP 10549885A JP 10549885 A JP10549885 A JP 10549885A JP H0711280 B2 JPH0711280 B2 JP H0711280B2
Authority
JP
Japan
Prior art keywords
vibrating
tube
liquid
column
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10549885A
Other languages
Japanese (ja)
Other versions
JPS61265399A (en
Inventor
弘之 橋本
Original Assignee
弘之 橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弘之 橋本 filed Critical 弘之 橋本
Priority to JP10549885A priority Critical patent/JPH0711280B2/en
Publication of JPS61265399A publication Critical patent/JPS61265399A/en
Publication of JPH0711280B2 publication Critical patent/JPH0711280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 「産業上の利用分野」 この発明は振動柱揚液装置に関する。詳しくはポンプ及
び気柱・液柱から成る振動系の個有振動数の制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention "Field of Industrial Application" The present invention relates to a vibrating column pumping device. More specifically, the present invention relates to a method for controlling the unique frequency of a vibration system including a pump and an air column / liquid column.

「従来の技術」 第8図は既に出願されている振動柱ポンプ(特願昭57-0
28486号(特開昭58-144700号公報))の縦断面図であつ
て、液2中に直管の振動管3の下端を開放して浸漬し、
振動管3の上端を吐出口18を備えた弁ケーシング17中に
密封して挿通し、弁ケーシング17中にて開口し、不動部
分に一端が当接して弾撥しているばね7の他端にて振動
管3の上端に当接している弁板8を押え、振動管3を長
手方向に加振する加振装置4を備えた振動柱ポンプが示
されている。また、上記発明の出願よりも後に特願昭57
-067668号(特開昭58-183900号公報)の振動柱ポンプが
出願されている。この後の発明は振動管3の下端を直接
液中に沈めないで液中には固設した静止管の下端を沈
め、静止管の上端を振動管の上下動を許すような密封装
置を介して振動管の下端に連結した点が先の発明と異つ
ている。このような揚液を吐出する目的以外の振動柱揚
液装置としては上記に弁装置を設けないで振動管に弁相
当手段を設けた揚液装置がある。
"Prior Art" Fig. 8 shows a vibrating column pump that has already been applied (Japanese Patent Application No. 57-0
28486 (JP-A-58-144700), which is a vertical cross-sectional view in which a lower end of a vibrating tube 3 which is a straight tube is opened and immersed in a liquid 2.
The upper end of the vibrating tube 3 is hermetically inserted into a valve casing 17 having a discharge port 18, is opened in the valve casing 17, and the other end of the spring 7 has one end abutting against a stationary portion and being repelled. 2 shows a vibrating column pump including a vibrating device 4 that presses the valve plate 8 that is in contact with the upper end of the vibrating tube 3 and vibrates the vibrating tube 3 in the longitudinal direction. In addition, Japanese Patent Application No.
-067668 (Japanese Patent Laid-Open No. 58-183900) has been applied for. In the invention after this, the lower end of the vibrating tube 3 is not directly submerged in the liquid, but the lower end of the stationary tube fixed in the liquid is submerged, and the upper end of the stationary tube is inserted through a sealing device which allows the vertical movement of the vibrating tube. It is different from the previous invention in that it is connected to the lower end of the vibrating tube. As a vibrating column pumping device other than the purpose of discharging the pumping liquid, there is a pumping device in which the valve device is not provided and a valve equivalent means is provided in the vibrating pipe.

「発明が解決しようとする問題点」 振動柱ポンプは振動管の下端が液中に直接沈んでいる場
合は振動管、振動管と静止管が密封装置を介して連結さ
れているときは静止管と振動管が吸込管となる。
"Problems to be solved by the invention" A vibrating column pump is a vibrating tube when the lower end of the vibrating tube is directly submerged in the liquid, and a stationary tube when the vibrating tube and the stationary tube are connected via a sealing device. And the vibrating tube becomes the suction tube.

第8図において加振装置4を附勢すると振動管3は上下
動して、振動管3内に液体が上昇し、遂には弁板8と振
動管3の上端の弁シート9間から液体は弁ケーシング17
内に流出して吐出口18から吐出される。このようなポン
プ作用は加振装置4の加振周波数、加振加速度等の加振
条件により変化する。
In FIG. 8, when the vibrating device 4 is energized, the vibrating tube 3 moves up and down, the liquid rises in the vibrating tube 3, and finally the liquid flows between the valve plate 8 and the valve seat 9 at the upper end of the vibrating tube 3. Valve casing 17
It flows into the inside and is discharged from the discharge port 18. Such a pump action changes depending on the vibration condition of the vibration device 4, such as the vibration frequency and the vibration acceleration.

振動柱ポンプの吸込管内に液体が上昇する様子は次の様
である。振動管の附勢により、管内の気柱に圧力変動が
生じ、その気柱圧力が管上端の弁設定圧力より大きくな
つた時弁が開放して、管内気体が流出し、管内液体が上
昇する。これを圧力変動の周期毎にくり返して、液体が
上昇して行く。この様な振動柱ポンプの液体上昇現象
は、管内の気柱・液柱系の共振現象に伴うものである。
ゆえに、振動管を附勢する加振振動数が管内の気柱・液
柱系の固有振動数附近である時は、比較的小さな加振振
幅で大きな気柱圧力の変動が起こるため揚液し易い。従
つて吸込管内に液面を上昇させる最適な加振振動数は管
内気柱・液柱系の固有振動数である。
The manner in which the liquid rises in the suction pipe of the vibrating column pump is as follows. By vibrating the vibrating tube, pressure fluctuations occur in the air column inside the tube, and when the air column pressure exceeds the valve setting pressure at the top of the tube, the valve opens, gas in the tube flows out, and liquid in the tube rises. . This is repeated for each cycle of pressure fluctuation, and the liquid rises. The liquid rising phenomenon of such a vibrating column pump is accompanied by the resonance phenomenon of the air column / liquid column system in the pipe.
Therefore, when the vibration frequency that energizes the vibrating tube is close to the natural frequency of the gas column / liquid column system in the tube, a large fluctuation in air column pressure occurs with a relatively small vibration amplitude, and therefore the pumping is performed. easy. Therefore, the optimum vibration frequency for raising the liquid level in the suction pipe is the natural frequency of the air column / liquid column system in the pipe.

管内の気柱・液柱からなる振動系は第1図(a)の振動
柱ポンプと、第1図(b)のばねSを介して吊下げられ
た重りWに示すように、気柱GがばねSに、液柱Lが重
りWに相当する。第1図(a)からわかるように振動管
3内の液面の高さによつて、管内気柱Gのばね定数k・
液柱Lの質量mは異なる。従つて、管内気柱G・液柱L
系の固有振動数は、振動管3内の液面高さによつて大き
く変化する。理想的には振動管3内の液面高さに応じて
加振振動数を変化させ、常に管内気柱・液柱系の固有振
動数で加振するようにすれば、最少の加振動力で液体を
上昇させることができる。しかし、この方法は装置が複
雑かつ高価となる。もしも、一定の加振振動数で管上端
まで液体を上昇させることができれば、装置は簡単かつ
安価となる。しかも、なるべく加振動力が小さくかつ単
一の加振振動数で揚液できることが実際の機械として重
要である。
An oscillating system consisting of an air column and a liquid column in the pipe is composed of an oscillating column pump shown in FIG. 1 (a) and an air column G as shown by a weight W suspended via a spring S in FIG. 1 (b). Corresponds to the spring S, and the liquid column L corresponds to the weight W. As can be seen from FIG. 1 (a), depending on the height of the liquid surface in the vibrating tube 3, the spring constant k of the air column G in the tube is
The mass m of the liquid column L is different. Therefore, in-pipe air column G and liquid column L
The natural frequency of the system greatly changes depending on the height of the liquid surface in the vibrating tube 3. Ideally, if the vibration frequency is changed according to the liquid level in the vibrating tube 3 and the vibration frequency is always the natural frequency of the air column / liquid column system in the tube, the vibration force will be the minimum. The liquid can be raised with. However, this method makes the device complicated and expensive. If the liquid can be raised to the upper end of the tube with a constant vibration frequency, the device will be simple and inexpensive. Moreover, it is important for an actual machine that the vibration force is as small as possible and that the liquid can be pumped with a single vibration frequency.

この発明は、極めて簡単かつ安価な方法で最適加振振動
数を変化させ、管内液面高さに対する最適加振振動数の
変化を小さくして、単一の加振振動数でかつ小さな加振
動力で液面を上昇させうる振動柱揚液装置を提供するこ
とを目的とする。
The present invention changes the optimum vibration frequency with a very simple and inexpensive method to reduce the change in the optimum vibration frequency with respect to the liquid level in the pipe, and to obtain a single vibration frequency with a small vibration frequency. An object of the present invention is to provide a vibrating column pumping device that can raise the liquid level by force.

〔発明の構成〕[Structure of Invention]

「問題点を解決するための手段」 この発明は下端が液中に通じた振動管を長手方向に加振
する加振装置を有する揚液装置において、複数個の空気
室を設け、振動管の管壁の長手方向適当な場所に配列さ
れ振動管内に向つて開口する複数の連通口と対応する空
気室を連通させた振動柱揚液装置である。
"Means for Solving Problems" The present invention relates to a pumping device having a vibrating device for longitudinally vibrating a vibrating tube whose lower end communicates with the liquid. It is a vibrating column pumping device in which a plurality of communication openings, which are arranged at appropriate places in the longitudinal direction of a pipe wall and open toward the inside of a vibrating pipe, communicate with corresponding air chambers.

「作用」 最適揚液加振振動数に相当する管内の気柱・液柱系の固
有振動数を任意に変化させるためには、ばねSに相当す
る気柱体積あるいは重りWの質量mに相当する液柱の体
積を制御する必要がある。
"Action" In order to arbitrarily change the natural frequency of the air column / liquid column system in the pipe, which corresponds to the optimum pumping vibration frequency, the air column volume corresponding to the spring S or the mass m of the weight W is equivalent. It is necessary to control the volume of the liquid column that operates.

本発明では、気柱の体積を、管壁に空気室に連通する開
口を設けることによつて、管内の液面高さにより急激に
変化させて管内の気柱・液柱系の固有振動数が管内の液
面高さに対してほぼ一定となるようにした。
In the present invention, the volume of the air column is rapidly changed by the height of the liquid level in the tube by providing the opening communicating with the air chamber in the tube wall, and the natural frequency of the air column / liquid column system in the tube is changed. Was set to be almost constant with respect to the liquid level in the tube.

「実施例」 以下、本発明の実施例を図面に従つて説明する。第2図
は縦断面図である。水槽1中の液2中に振動管3の下端
が没し、振動管3は固設した加振装置4の出力部の加振
棒5に固定されて支持されている。振動管3の上端は一
端が固設したばね座6に接するばね7により押圧される
弁板8が当接し、弁シート9となつている。振動管3の
壁面の数ケ所には、空気室10,11,12が固設され、壁面を
貫通して連通口13で振動管3内部と各空気室10,11,12は
連通している。
[Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 2 is a vertical sectional view. The lower end of the vibrating tube 3 is submerged in the liquid 2 in the water tank 1, and the vibrating tube 3 is fixed and supported by the vibrating rod 5 of the output portion of the vibrating device 4 which is fixed. The upper end of the vibrating tube 3 is in contact with a valve plate 8 which is pressed by a spring 7 which is in contact with a spring seat 6 having one end fixed to form a valve seat 9. Air chambers 10, 11, 12 are fixedly installed at several places on the wall surface of the vibrating tube 3, and the inside of the vibrating tube 3 and the respective air chambers 10, 11, 12 are communicated with each other through a communication port 13 through the wall surface. .

加振装置4は一定加振周波数、一定加振加速度のもので
良い。また空気室は3ケとは限らないし、各空気室10,1
1,12はその大きさは後述の作用に適するように異にして
もよい。
The vibration device 4 may have a constant vibration frequency and a constant vibration acceleration. Also, the number of air chambers is not limited to three, and each air chamber 10,1
The sizes of 1, 12 may be different so as to be suitable for the operation described later.

第3図は他の実施例であるが、第2図では空気室が室動
管壁面に固設されていたのに対し、本実施例では、振動
管壁面の連通口13にパイプ14の一端が固定され、パイプ
14の他端はフレキシブルチユーブ15を介して固設した空
気室10あるいは11に連結している。本実施例では空気室
は2ケであるが、2ケとは限定されないし、大きさも同
じとは限らない。本実施例では空気室10,11が別に固設
されているので、加振装置4によつて振動管3を附勢す
る動力は第2図の実施例より小さくて済む利点がある。
Although FIG. 3 shows another embodiment, while the air chamber is fixedly installed on the wall surface of the chamber moving tube in FIG. 2, one end of the pipe 14 is connected to the communication port 13 on the wall surface of the vibrating tube in this embodiment. Fixed on the pipe
The other end of 14 is connected to a fixed air chamber 10 or 11 via a flexible tube 15. In this embodiment, there are two air chambers, but the number of air chambers is not limited to two, and the sizes are not necessarily the same. Since the air chambers 10 and 11 are separately fixed in this embodiment, there is an advantage that the power for energizing the vibrating tube 3 by the vibrating device 4 can be smaller than that in the embodiment of FIG.

空気室の作用を第4図を用いて説明する。第4図の例は
空気室が2ケの場合である。第4図(a)は振動管3内
の液面が下部の空気室10への連通口13より低い時で、こ
の場合の管内気柱の体積は振動管3内のみの気柱の体積
をV0、空気室10の体積をV1、空気室11の体積をV2とすれ
ばV=V0+V1+V2となる。従つて、管内の振動系のばね
定数はこの気柱体積Vに相当した値となり、このばね定
数は空気室V1,V2が付加されない時に比較して小さいの
で管内の振動系の固有振動数(最適揚液加振振動数)は
空気室が無い時に比較して低い値となる。第4図(b)
は管内液面が下部空気室10の連通口13の上壁より高くな
つた場合で、この場合は管内気柱の体積はV=V0+V2
なり、下部の空気室10の連通口13の上壁を管内液面が越
えた瞬間から気柱体積が急激にV1分だけ減少する。従つ
て管内のばね定数は急激に大きくなり、最適揚液加振振
動数も大きくなる。第4図(c)では管内液面が上部の
空気室11の連通口13の上壁より上にあるため管内気柱体
積はV=V0となつて、さらにばね定数は大きくなる。こ
のように、振動管壁面に取付けた空気室は、管内の液面
位置に応じて、管内振動系のばね定数を大きく変化させ
る効果を持つ。
The operation of the air chamber will be described with reference to FIG. The example of FIG. 4 is the case where there are two air chambers. FIG. 4 (a) shows when the liquid level in the vibrating tube 3 is lower than the communication port 13 to the lower air chamber 10, and the volume of the air column in the tube in this case is the volume of the air column only in the vibrating tube 3. If V 0 , the volume of the air chamber 10 is V 1 , and the volume of the air chamber 11 is V 2 , then V = V 0 + V 1 + V 2 . Therefore, the spring constant of the vibration system in the pipe becomes a value corresponding to this air column volume V, and since this spring constant is smaller than when the air chambers V 1 and V 2 are not added, the natural frequency of the vibration system in the pipe is The (optimum pumping vibration frequency) is lower than when there is no air chamber. Fig. 4 (b)
Is the case where the liquid level in the pipe is higher than the upper wall of the communication port 13 of the lower air chamber 10, and in this case the volume of the air column in the pipe is V = V 0 + V 2 , and the communication port 13 of the lower air chamber 10 At the moment when the liquid level in the pipe crosses the upper wall, the volume of the air column suddenly decreases by V 1 minutes. Therefore, the spring constant in the pipe rapidly increases, and the optimum pumping frequency of the pumping liquid also increases. In FIG. 4 (c), since the liquid level in the pipe is above the upper wall of the communication port 13 of the upper air chamber 11, the volume of the air column in the pipe becomes V = V 0 , and the spring constant further increases. Thus, the air chamber attached to the wall surface of the vibrating tube has the effect of greatly changing the spring constant of the in-pipe vibrating system according to the position of the liquid surface in the tube.

第5図(a)は、第8図に示した従来形の振動柱ポンプ
の振動管3内液面の水槽1の開液面からの高さYを横軸
にとり、縦軸に管内振動系の気柱Gのばね定数k、液柱
Lの質量mをとり、その変化を表わした線図である。第
5図(a)に示すように質量mは、管内の液面高さ(水
槽1の液2の開液面基準、以下同じ)Yに比例して変化
するがばね定数kは2次曲線となる。従つて、管内振動
系の固有振動数 は液面高さYによつて異なる。固有振動数fを液面高さ
Yに対して一定にするためには、第5図(a)と同座標
で第5図(b)の線図に示すようにばね定数kをk′の
ように液面高さYに比例する特性に変える必要がある。
こうすればa,bを比例定数として、m=aY,k′=bYとな
つて固有振動数は となり液面高さYに無関係に一定値となる。第5図
(c)は横軸に液面高さYをとり上記ばね定数kとk′
の差△kを縦軸にとつて示した線図である。つまり△k
のばね定数を取り除けば加振周波数は常に固有振動数に
等しくできる。実際には、ばね定数は管内気柱の体積に
相当するから、△kだけばね定数を減少するには、気柱
の体積を相当する体積だけ増加させれば良い。又、第5
図(c)より、液面高さYの小さい部分及び大きい部
分、つまり振動管3の下方と上方で体積増加すれば良い
ことがわかる。
FIG. 5 (a) shows the height Y of the liquid level in the vibrating tube 3 of the conventional vibrating column pump shown in FIG. 8 from the liquid level in the water tank 1 as the horizontal axis and the vertical axis as the vertical axis. FIG. 6 is a diagram showing changes in the spring constant k of the air column G and the mass m of the liquid column L. As shown in FIG. 5 (a), the mass m changes in proportion to the liquid level height in the pipe (reference of the open liquid level of the liquid 2 in the water tank 1, the same applies below) Y, but the spring constant k is a quadratic curve. Becomes Therefore, the natural frequency of the vibration system in the pipe Varies depending on the liquid level height Y. In order to make the natural frequency f constant with respect to the liquid level height Y, as shown in the diagram of FIG. 5 (b) at the same coordinates as in FIG. 5 (a), the spring constant k is set to k '. Therefore, it is necessary to change the characteristics to be proportional to the liquid level height Y.
In this way, the natural frequency is m = aY, k ′ = bY, where a and b are proportional constants. Is a constant value regardless of the liquid level height Y. In FIG. 5 (c), the liquid level height Y is plotted on the horizontal axis, and the spring constants k and k'are set.
It is the diagram which showed the difference (DELTA) k of this on the vertical axis. That is, Δk
If the spring constant of is removed, the excitation frequency can always be made equal to the natural frequency. In practice, the spring constant corresponds to the volume of the air column in the tube, so to decrease the spring constant by Δk, the volume of the air column may be increased by the corresponding volume. Also, the fifth
From FIG. 7C, it can be seen that the volume may be increased at the portion where the liquid level Y is small and the portion where the liquid level Y is large, that is, at the upper and lower portions of the vibrating tube 3.

第6図及び第7図にそれぞれ空気室を2ケ所(第3図)
及び3ケ所(第2図)に取り付けた場合の最適加振振動
数の理論計算値を示す。図中で横軸に液面高さY、縦軸
に最適加振振動数 をとり、実線は空気室を取り付けない場合で破線が空気
室を取り付けた場合である。
Two air chambers are shown in Fig. 6 and Fig. 7, respectively (Fig. 3).
And the theoretically calculated values of the optimum vibration frequency when attached at three locations (Fig. 2) are shown. In the figure, the horizontal axis is the liquid level Y, and the vertical axis is the optimum vibration frequency. The solid line shows the case where the air chamber is not attached, and the broken line shows the case where the air chamber is attached.

第6図においてY1は第3図の空気室10の連通口13の上壁
の水槽1の液面からの高さ、Y2は空気室11の連通口13の
上壁の水槽1の液面からの高さであつて、液柱高さY1,Y
2夫々において最適加振振動数のオフセツトが生じ、全
体として最適加振振動数は平準化の方向に変化してい
る。
6, Y 1 is the height from the liquid surface of the water tank 1 on the upper wall of the communication port 13 of the air chamber 10 in FIG. 3, and Y 2 is the liquid of the water tank 1 on the upper wall of the communication port 13 of the air chamber 11. The height from the surface, and the height of the liquid column Y 1 , Y
The optimum excitation frequency offset occurs in each of the two , and the optimum excitation frequency changes in the direction of leveling as a whole.

第7図においては同線にY1,Y3は第6図と同様であるが
空気室11の連通口13の上壁の液面からの高さY2は第2図
における空気室12の連通口13の上壁の水槽1の液面から
の高さY3と上記Y1との間にあり、液面高さの低い部分で
ばね定数の差△kを小さくできるので一層最適加振振動
数の変化は小さくなる。
In FIG. 7, Y 1 and Y 3 are the same as in FIG. 6, but the height Y 2 from the liquid surface of the upper wall of the communication port 13 of the air chamber 11 is the same as in FIG. It is between the height Y 3 of the upper wall of the communication port 13 from the liquid surface of the water tank 1 and the above Y 1, and the difference Δk of the spring constant can be made small in the portion where the liquid surface height is low, so it is even more optimal vibration. The change in frequency is small.

このように空気室を取り付けると、液面高さYの広い範
囲で最適加振振動数の変化が小さくおさえられ、ほぼ一
定の値になることがわかる。
It can be seen that when the air chamber is attached in this manner, the change in the optimum vibration frequency is suppressed in a wide range of the liquid level height Y, and the value becomes almost constant.

以上の説明は振動管が水槽の液中にあつて上下動する振
動柱ポンプの例についてのべたが従来の技術でのべたよ
うに液中に固設した静止管の下端を沈め、静止管の上端
を振動管の上下動を許すような密封装置を介して振動管
の下端に連結したような形式の振動柱ポンプを含むこと
はいうまでもない処である。
The above explanation is about the example of the vibrating column pump in which the vibrating tube moves up and down in the liquid of the water tank, but as in the conventional technology, the lower end of the stationary pipe fixed in the liquid is sunk and the It goes without saying that a vibrating column pump of the type in which the upper end is connected to the lower end of the vibrating tube via a sealing device that allows the vertical movement of the vibrating tube is included.

この発明は振動柱ポンプだけでなく、振動管中に気柱と
液柱を生起せしめて液柱の変化を計る総ての揚液装置に
適用できるもので例えば上部に弁装置を有しないが振動
管に加えた工夫により第2図、第3図の構成により揚液
可能とし、振動管3中の液位を制御することにより水槽
1の液位の制御を行う液面制御装置等に適用できるもの
である。即ち、気柱と液柱が存在する管を長手方向に振
動することにより揚液する装置は総て含まれるのであ
る。
The present invention can be applied not only to a vibrating column pump, but also to any pumping device that causes changes in a liquid column by causing an air column and a liquid column in a vibrating tube. With the device added to the pipe, the structure shown in FIGS. 2 and 3 can be used to pump the liquid, and the liquid level control device for controlling the liquid level in the water tank 1 by controlling the liquid level in the vibrating pipe 3 can be applied. It is a thing. That is, all the devices for pumping the liquid by vibrating the pipe in which the air column and the liquid column are present in the longitudinal direction are included.

〔発明の効果〕〔The invention's effect〕

この発明は、下端が液中に通じた振動管を長手方向に加
振する加振装置を有する揚液装置において、振動管の管
壁の適当な場所に空気室に連通する複数個の連通口を設
けたもので、本来、管内の液面高さによつて大きく変化
していた最適加振振動数(吸込管内の振動系の固有振動
数)をほぼ一定の値に改善でき、従つて単一の加振振動
数でしかも小さい振幅で揚液可能とすることができる。
さらにこの効果により装置が低価格となる。又、第2
図、第3図のように吸込管が振動管だけで形成されたも
の以外に吸込管が振動部及び静止部から形成されている
場合でも同様の効果がある。本発明は、振動柱ポンプの
他、気柱・液柱系から成る機械装置の固有振動数を任意
に可変するときに応用できる。
This invention relates to a pumping device having a vibrating device for longitudinally vibrating a vibrating tube having a lower end communicating with the liquid, and a plurality of communicating ports communicating with the air chamber at appropriate places on the tube wall of the vibrating tube. With this, the optimum vibration frequency (natural frequency of the vibration system in the suction pipe), which was originally largely changed depending on the liquid level in the pipe, can be improved to a substantially constant value. It is possible to pump liquid with a single vibration frequency and a small amplitude.
Furthermore, this effect results in a low cost device. Also, the second
Similar effects can be obtained even when the suction pipe is formed of the vibrating portion and the stationary portion other than the suction pipe formed of only the vibrating pipe as shown in FIGS. INDUSTRIAL APPLICABILITY The present invention can be applied when the natural frequency of a mechanical device including an air column / liquid column system is arbitrarily changed in addition to a vibrating column pump.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は振動柱ポンプの吸込管内の振動
モデルの説明図、第2図及び第3図は本発明の実施例の
縦断面図、第4図は空気室の作用を示す縦断面図、第5
図(a),(b),(c)は吸込管内の振動系のばね定
数と質量の管内液面高さに対する変化の様子を示す線
図、第6図及び第7図はこの発明の効果を示す理論計算
線図、第8図は従来例の縦断面図である。 1……水槽、2……液、3……振動管、4……加振装
置、5……加振棒、6……ばね座、7……ばね、8……
弁板、9……弁シート、10,11,12……空気室、13……連
通口、14……パイプ、15……フレキシブルチユーブ、17
……弁ケーシング、18……吐出口。
1 (a) and 1 (b) are explanatory views of a vibration model in the suction pipe of a vibrating column pump, FIGS. 2 and 3 are longitudinal sectional views of an embodiment of the present invention, and FIG. 4 is an action of an air chamber. 5 is a vertical sectional view showing
Figures (a), (b) and (c) are diagrams showing changes in the spring constant and mass of the vibration system in the suction pipe with respect to the liquid level in the pipe, and Figs. 6 and 7 show the effects of the present invention. FIG. 8 is a theoretical calculation diagram, and FIG. 8 is a longitudinal sectional view of a conventional example. 1 ... water tank, 2 ... liquid, 3 ... vibration tube, 4 ... excitation device, 5 ... excitation rod, 6 ... spring seat, 7 ... spring, 8 ...
Valve plate, 9 ... Valve seat, 10,11,12 ... Air chamber, 13 ... Communication port, 14 ... Pipe, 15 ... Flexible tube, 17
…… Valve casing, 18 …… Discharge port.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】下端が液中に通じた振動管を長手方向に加
振する加振装置を有する揚液装置において、複数個の空
気室を設け、振動管の管壁の長手方向適当な場所に配列
され振動管内に向つて開口する複数の連通口と対応する
空気室を連通させた振動柱揚液装置。
1. A pumping device having a vibrating device for longitudinally vibrating a vibrating tube having a lower end communicating with the liquid, wherein a plurality of air chambers are provided, and an appropriate location in the longitudinal direction of the vibrating tube wall. A vibrating column pumping device in which a plurality of communication openings arranged in the vibration tube and opening toward the inside of the vibration tube are connected to the corresponding air chambers.
【請求項2】複数の空気室の大きさが異なる特許請求の
範囲第1項記載の振動柱揚液装置。
2. The vibrating column pumping device according to claim 1, wherein the plurality of air chambers have different sizes.
JP10549885A 1985-05-17 1985-05-17 Vibrating column pumping device Expired - Lifetime JPH0711280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10549885A JPH0711280B2 (en) 1985-05-17 1985-05-17 Vibrating column pumping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10549885A JPH0711280B2 (en) 1985-05-17 1985-05-17 Vibrating column pumping device

Publications (2)

Publication Number Publication Date
JPS61265399A JPS61265399A (en) 1986-11-25
JPH0711280B2 true JPH0711280B2 (en) 1995-02-08

Family

ID=14409264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10549885A Expired - Lifetime JPH0711280B2 (en) 1985-05-17 1985-05-17 Vibrating column pumping device

Country Status (1)

Country Link
JP (1) JPH0711280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665366B2 (en) * 1989-02-21 1997-10-22 新技術開発事業団 Vibrating column pump
JPH02283877A (en) * 1989-04-21 1990-11-21 Mitsubishi Kasei Corp Vibrator pump and running method therefor

Also Published As

Publication number Publication date
JPS61265399A (en) 1986-11-25

Similar Documents

Publication Publication Date Title
JPH025916B2 (en)
US4762473A (en) Pumping unit drive system
US20130209280A1 (en) Membrane Pump Having an Inertially Controlled Leakage Compensation Valve
JPH0711280B2 (en) Vibrating column pumping device
JP4083393B2 (en) Tsunami experiment equipment
NZ501725A (en) Depth keeping device for submersible vehicle or array with a variable volume buoyancy chamber
CN111699314B (en) System for generating electrical energy from the wave motion of the ocean
JP3359976B2 (en) Damping device
WO2006062413A1 (en) Method and apparatus for transporting fluid in a conduit
JP2001515173A (en) Energy conversion device from waves
US4842487A (en) Pumping device using pressurized gas
SU1254208A1 (en) Vibratory pump
JP2665367B2 (en) Vibrating column pump
JP2665366B2 (en) Vibrating column pump
Apshtein et al. Stability of a swarm of air bubbles in an oscillating liquid
JPH07101385A (en) Fluid type exciting device
JPS6155379A (en) Vibration column pump
JPS6155714A (en) Liquid level controller of tank
JPS6162000A (en) Vibration column pump
JPS61275600A (en) Vibration column pump
JPH02218898A (en) Vibrating column pump
SU1733071A1 (en) Pulse-action reactor
SU579453A1 (en) Vertical vibration pump
SU207736A1 (en)
EP4448877A1 (en) Installation and removal of subsea foundations