JPH07112436B2 - Method for producing alcohol by repeated batch fermentation - Google Patents

Method for producing alcohol by repeated batch fermentation

Info

Publication number
JPH07112436B2
JPH07112436B2 JP4181637A JP18163792A JPH07112436B2 JP H07112436 B2 JPH07112436 B2 JP H07112436B2 JP 4181637 A JP4181637 A JP 4181637A JP 18163792 A JP18163792 A JP 18163792A JP H07112436 B2 JPH07112436 B2 JP H07112436B2
Authority
JP
Japan
Prior art keywords
fermentation
batch
yeast
liquor
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4181637A
Other languages
Japanese (ja)
Other versions
JPH0689A (en
Inventor
木 隆 斉
木 良 雄 高
正 志 芝
Original Assignee
新エネルギー・産業技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新エネルギー・産業技術総合開発機構 filed Critical 新エネルギー・産業技術総合開発機構
Priority to JP4181637A priority Critical patent/JPH07112436B2/en
Publication of JPH0689A publication Critical patent/JPH0689A/en
Publication of JPH07112436B2 publication Critical patent/JPH07112436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繰り返し回分発酵の繰り
返しを適確に行いアルコールを効率よく製造する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing alcohol efficiently by appropriately repeating batch fermentation.

【0002】更に詳細には、本発明は、発酵排ガスの流
量が発酵液1kl当たり1時間に0.35〜0.1m3
もしくはそれ以下になった時を発酵の終点として次の回
分発酵に移り、アルコールを効率よく製造する方法に関
するものである。
More specifically, the present invention provides that the flow rate of the fermentation exhaust gas is 0.35 to 0.1 m 3 per hour per 1 liter of the fermentation liquor.
Alternatively, the present invention relates to a method for efficiently producing alcohol by moving to the next batch fermentation when the time when the temperature becomes lower than that is set as the end point of fermentation.

【0003】本発明の回分発酵法は従来の回分発酵法に
比してアルコール生産性が高く、きわめて効率的である
ところから、アルコール製造界に寄与するところ大なる
ものがある。
The batch fermentation method of the present invention has a high alcohol productivity and is extremely efficient as compared with the conventional batch fermentation method, and thus has a great contribution to the alcohol production world.

【0004】[0004]

【従来技術及び問題点】一般に、発酵法によるアルコー
ルの製造は回分式発酵法が主流である。近年、これに代
わる繰り返し回分法、半連続法、連続法などの発酵法が
研究され、その一部は実用化されつつある。従来、回分
式又は繰り返し回分式では、発酵の終点を確認する方法
としてアルコール濃度を測定したり、残糖量を測定する
方法が採用されてきた。また、経験的な簡易確認法とし
て発酵液表面から発生してくる発酵排ガスの状態を観察
したり、発酵液の密度を測定したり、発酵液の濁度を観
察又は測定して発酵の終点を確認することも行なわれて
きた。したがって、分析や測定に長時間を要するもの、
判定確認に経験と熟練を要するものが多かった。その原
因としては、発酵液の簡易分析測定技術が立ち後れてい
ること、使用される原料が自然の農産物であり非常に多
くの成分を含んでいることが上げられる。さらに原料の
品質、酵母の活性、混入する雑菌の種類及び数などがそ
のつど微妙に変化するために、同じ方法で行った場合で
も発酵経過のパターンが大きく変動することが原因して
いる。また、従来の発酵工程には回分式が多く、酒母の
使用が1回だけで2回以上使用されるということが殆ど
なかったことから、生成されたアルコールの影響を受け
て酵母の活性が低下しないうちに発酵の終了を迅速に把
握して、次の工程に移らなければならないという必要性
が殆どなかった。さらに、発酵速度そのものを高めよう
という試みや、分析や測定にかかる時間を短縮する方法
の検討はなされてきたが、実用化に至るものは少なかっ
た。最近、広く研究されるようになった繰り返し回分
法、半連続法、連続法などの実用化にあたっては、発酵
管理のための迅速かつ適確な分析測定方法が強く求めら
れているにも拘わらず、分析に時間を要することからサ
ンプリングの回数や試料の数を多くすることのできない
従来法がそのまま採用されている。このことにより高速
で長期間安定的な発酵法の実用化が立ち後れている。
2. Description of the Related Art Generally, batch fermentation is the mainstream method for producing alcohol by fermentation. In recent years, alternative fermentation methods such as a repeated batch method, a semi-continuous method, and a continuous method have been studied, and some of them are being put to practical use. Conventionally, in the batch system or the repeated batch system, as a method of confirming the end point of fermentation, a method of measuring an alcohol concentration or a method of measuring a residual sugar amount has been adopted. Further, as an empirical simple confirmation method, the state of the fermentation exhaust gas generated from the surface of the fermented liquid can be observed, the density of the fermented liquid can be measured, or the turbidity of the fermented liquid can be observed or measured to determine the end point of the fermentation. It has also been confirmed. Therefore, those that require a long time for analysis and measurement,
There were many things that required experience and skill to confirm the judgment. This is due to the fact that the simple analysis and measurement technology of fermentation liquor is behind, and the raw material used is a natural agricultural product and contains an extremely large number of components. Further, since the quality of raw materials, the activity of yeast, the type and number of mixed bacteria, etc. change delicately each time, the pattern of the fermentation process varies greatly even when the same method is used. In addition, the conventional fermentation process has many batch processes, and since the use of liquor is rarely used more than once, the yeast activity is reduced due to the influence of alcohol produced. There was almost no need to grasp the end of fermentation quickly before moving to the next step. Furthermore, attempts have been made to increase the fermentation rate itself, and studies have been made on methods for shortening the time required for analysis and measurement, but few have been put to practical use. Despite the strong demand for rapid and accurate analytical and measurement methods for fermentation control in the practical application of repeated batch methods, semi-continuous methods, continuous methods, etc., which have recently been widely studied. Since the analysis takes time, the conventional method that cannot increase the number of times of sampling or the number of samples is used as it is. Due to this, the practical application of a fast and stable fermentation method has been delayed.

【0005】[0005]

【発明が解決しようとする課題】本発明は、これら従来
法の欠点を克服して、各回分の発酵を高密度の菌体で迅
速に行わせ、しかも発酵の終了を適確かつ迅速に把握し
て次のバッチへ切り替えるという長期間安定した繰り返
し回分発酵法によるアルコール製造法の提供を目的とす
るものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of these conventional methods and allows each batch of fermentation to be carried out rapidly with high-density cells, and the completion of fermentation can be grasped accurately and promptly. The purpose of the present invention is to provide an alcohol production method by a continuous batch fermentation method that is stable for a long period of time and then switches to the next batch.

【課題を解決するための手段】本発明においては、速度
水頭を測る方式のガス流量計を用いることによって回分
発酵の終了を判定することができることを見出したもの
である。
In the present invention, it has been found that the end of batch fermentation can be determined by using a gas flow meter of the type that measures velocity head.

【0006】また、本発明においては、速度水頭を測る
方法のガス流量計を用い、発酵排ガスの流量が、発酵液
1kl当たり1時間に0.35〜0.1m3もしくはそ
れ以下、好ましくは、0.3〜0.15m3になった時
に回分発酵を終了させ、酵母をすみやかに次の回分発酵
に移行させることによってアルコールの効率的生産を達
成することができたものである。
Further, in the present invention, a gas flow meter of the method for measuring the velocity head is used, and the flow rate of the fermentation exhaust gas is 0.35 to 0.1 m 3 or less per hour per fermentation liquid, preferably, Efficient production of alcohol could be achieved by terminating the batch fermentation when it reached 0.3 to 0.15 m 3 and promptly shifting the yeast to the next batch fermentation.

【0007】本発明においては、まず図1の1の酒母槽
に9〜16%の糖濃度となるように原料を送り、加水す
る。90〜120℃の殺菌温度で0.5〜1時間の殺菌
処理を行い冷却する。その後、酵母を接種し、発酵のス
ターターである酒母を仕込む。この酒母仕込みでは、適
当な助成料、例えば硫安を必要に応じて加える。添加量
についてはある程度の目安はあるが、手っ取り早いのは
同じ原料を使用してフラスコ試験を実施し、至適添加濃
度を予め決定しておく方法である。酵母接種にあたって
は、予めフラスコで培養しておいた種酵母を無菌的に添
加し、雑菌の混入を防ぐ。酒母槽については、特に制限
はなく殺菌の加熱条件に耐える材質と構造であればよ
い。一般にスチーム加熱が主流であるが、そのための温
度計、圧力計、安全弁などの付属機器を備えている。通
気については除菌空気が槽底部から糖液全体へ均一に分
散するよう配慮されたものとなっている。攪拌装置は使
用原料が沈降しやすい場合や酒母の粘度が高くなる場合
に必要となる。最近では通気によって生ずる攪拌効果だ
けにとどめ、一般に機械的攪拌は省略されることが多
い。つまり、通気方法が適切であれば必ずしも攪拌装置
は付設されていなくてもよいということである。諸条件
の中でもっとも重要となるのは培養中の温度管理である
が、一般に発酵液の温度は使用する酵母の至適温度付近
に制御される。特殊なものを除くと酵母の至適温度は3
0〜32℃である。温度調節装置としては加熱器、冷却
器をそれぞれ設けるか、あるいは両方の機能を併せ持つ
ものを付設するのが望ましいが、寒冷地を除き一般に温
度センサーと冷却装置の組み合わせだけで、特に加熱装
置は付設されていない。つまり、発酵は発熱反応の一種
であり、普通の状態では発酵液の温度が酵母の生育許容
範囲を上回る温度まで上昇することから発酵槽に冷却器
は必要であっても、発酵期間中は寒冷地を除いては、加
熱器は必ずしも必要としないからである。最大の発熱時
でも温度を許容範囲内に制御できる冷却能力さえあれば
十分である。もし、発酵熱によって温度が異常に上昇
し、管理温度範囲を越えてしまうと、酵母が損傷を受
け、その後の発酵に悪影響を及ぼす。酵母を接種した後
の酒母の培養は0.025〜0.050VVMで24時
間連続通気をしながら30〜32℃で24〜48時間行
う。この後、予め調製しておいた本醪に培養後の酒母を
添加して発酵させ、アルコールを生成させるわけである
が、培養後の酒母を本醪に添加する時期については酒母
中の酵母の増殖経過を考慮して決定する。
In the present invention, first, the raw material is fed to the liquor mother tank 1 shown in FIG. 1 so that the sugar concentration becomes 9 to 16%, and water is added. A sterilization treatment is performed at a sterilization temperature of 90 to 120 ° C. for 0.5 to 1 hour and then cooled. After that, yeast is inoculated and liquor mother, which is a starter of fermentation, is charged. In this liquor mother preparation, an appropriate subsidy agent such as ammonium sulfate is added if necessary. Although there is some guideline for the amount to be added, the quickest method is to carry out a flask test using the same raw material and predetermine the optimum addition concentration. Upon yeast inoculation, seed yeast that has been cultivated in a flask in advance is aseptically added to prevent contamination of various bacteria. The liquor mother tank is not particularly limited as long as it has a material and a structure that can withstand heating conditions for sterilization. Generally, steam heating is the mainstream, but it is equipped with auxiliary equipment such as a thermometer, pressure gauge, and safety valve. Regarding ventilation, consideration was given so that the disinfected air was uniformly dispersed from the bottom of the tank to the entire sugar solution. The stirrer is necessary when the raw materials used tend to settle or when the viscosity of the liquor increases. Recently, mechanical agitation is often omitted, since it is limited to the agitation effect caused by aeration. That is, if the ventilation method is appropriate, the stirring device may not necessarily be attached. Of the various conditions, the most important is temperature control during culture, but generally the temperature of the fermentation broth is controlled near the optimum temperature of the yeast used. The optimum temperature of yeast is 3 excluding special ones.
It is 0 to 32 ° C. It is desirable to install a heater and a cooler as the temperature control device, or to attach a device that has both functions, but except for cold regions, generally only a combination of a temperature sensor and a cooling device, especially a heating device is attached. It has not been. In other words, fermentation is a type of exothermic reaction, and under normal conditions, the temperature of the fermentation liquor rises to a temperature above the permissible range for yeast growth. This is because the heater is not necessarily required except for the ground. A cooling capacity that can control the temperature within an allowable range even with the maximum heat generation is sufficient. If the temperature rises abnormally due to the heat of fermentation and exceeds the control temperature range, the yeast is damaged and the subsequent fermentation is adversely affected. Cultivation of the mother of liquor after inoculation with yeast is carried out at 30 to 32 ° C. for 24 to 48 hours while continuously aerated at 0.025 to 0.050 VVM for 24 hours. After this, the liquor after culturing is added to the main mash prepared in advance and fermented to generate alcohol. Determine by considering the growth process.

【0008】本醪は酒母と同様、所定の糖濃度となるよ
うに原料を図1の2の主発酵槽に投入し、加水して調製
する。本醪の糖濃度は15〜25%程度とするが、使用
する酒母中の酵母数によって調節するのがよく、目標と
しては雑菌による汚染を考慮して生酵母1×108個当
たり0.06〜0.16gの糖量となるように仕込むの
が望ましい。これは繰り返しの1バッチを24時間以内
に終わらせるための目標であるから、これより短時間に
熟成させて次のサイクルに移行するためには、酵母数に
対する糖量を小さい値にしなければならない。本発明の
1バッチのサイクルタイムは24時間を目標としている
が、これは切り替え時の仕込み時間と発酵時間を含むも
ので、実際の工場での生産体制を考えた場合、これが望
ましいからである。また、本醪中の酵母数を調節する方
法としては本醪に対する酒母添加量、つまり酒母使用量
を変える方法もある。酵母については好気の呼吸状態の
時と嫌気の発酵状態の時があるため、発酵管理上考慮す
る必要がある。この二つの状態による差は僅かである
が、発酵時間の遅延または短縮となって表れる。繰り返
し回分発酵ではサイクルを重ねる度に酒母のときよりも
酵母数が徐々に増加してくる。この酵母数増加ペースに
合わせ、しかも上記の酵母数に対する糖量の範囲に入る
ように、本発明ではバッチごとに1〜3%ずつ糖濃度を
上げていく方法を採用している。そして、酵母数がほぼ
最高値となったら菌株のアルコール耐性を考慮して、繰
り返し回分発酵が継続できる上限値に仕込み糖濃度を設
定し、以後その条件での仕込みと発酵を繰り返す。この
間、攪拌は連続で行い、切り替え時の酵母沈降、上澄み
液抜き出しの時だけ停止する。一方、通気については酵
母の状態を見ながら多少変更することもあるが、切り替
え後0.025VVMで1〜4時間行えば十分である。
ただし、呼吸系の代謝をする酵母が多くなりすぎると、
いわゆる“糖の徒食現象”が現れ、糖分が消費されてい
るにもかかわらずアルコールの発酵歩合が上がらないと
いう結果になるから、酵母数が増えてきたら通気量を多
少減らすことが望ましい。なお、繰り返し回分発酵法で
の仕込み糖濃度の上限値は使用する菌株のアルコール耐
性により自ずと決まってくるから、予め確認試験を実施
しておく必要がある。主発酵槽の構造、材質も基本的に
は酒母培養槽と変らないが、本発明の主発酵工程で連続
通気を行うのは原則として1バッチ目だけとしているの
で、通気による攪拌効果が期待できない2バッチ目以降
のことを考えると攪拌装置はあったほうがよい。攪拌を
行わない静置発酵でも発酵は進むが終了時間が遅れるこ
とになる。特に凝集性酵母の場合には攪拌が必要であ
り、その効果は軽視できない。使用する酵母と主発酵槽
の形状を考慮して、最も適した攪拌装置を選び、運転時
の作動条件を決める必要がある。繰り返し回分発酵では
1バッチごとに熟成醪を抜き出すわけであるが、使用す
る酵母、すなわち凝集性酵母と非凝集性酵母の違いによ
って、抜き出し方をそれぞれタンク側面及び底部からと
することが望ましい。また、凝集性酵母を使用する場合
は、次のバッチの酒母として残す20〜30%容量の酒
母沈降部分が観察できるようにサイトグラスを設置する
のが望ましい。酵母の凝集状態、色、沈降性などを観察
するとともに、酵母の活力や総数を目視により推測でき
る。
[0008] This mash is prepared by pouring the raw material into the main fermentation tank of 2 in Fig. 1 and adding water so that the sugar concentration becomes a predetermined value, similar to the sake mash. The sugar concentration of this mash is about 15 to 25%, but it is better to adjust it according to the number of yeasts in the liquor used, and the target is 0.06 per 1 × 10 8 live yeast in consideration of contamination by various bacteria. It is desirable to prepare so that the amount of sugar is about 0.16 g. Since this is the goal to finish one batch of repetition within 24 hours, the sugar amount relative to the number of yeasts must be set to a small value in order to ripen in a shorter time and move to the next cycle. . The cycle time of one batch of the present invention is set to 24 hours, which includes the preparation time and fermentation time at the time of switching, and this is desirable when considering the production system in the actual factory. Further, as a method of controlling the number of yeasts in the main mash, there is a method of changing the amount of liquor added to the main mash, that is, the amount of liquor used. Regarding yeast, there are times when it is in an aerobic respiration state and when it is in an anaerobic fermentation state, so it is necessary to consider it in fermentation management. The difference between the two states is slight, but it appears as a delay or shortening of the fermentation time. With repeated batch fermentation, the number of yeasts gradually increases with each cycle as compared with the case of liquor mother. In the present invention, a method of increasing the sugar concentration by 1 to 3% for each batch is adopted in accordance with the pace of increase in the number of yeasts, and within the range of the amount of sugars relative to the number of yeasts. Then, when the number of yeasts reaches almost the maximum value, considering the alcohol tolerance of the strain, the charged sugar concentration is set to the upper limit value at which repeated batch fermentation can be continued, and thereafter, the charging and fermentation under the conditions are repeated. During this period, stirring is continuously performed and stopped only when the yeast is settled at the time of switching and the supernatant is drawn out. On the other hand, the aeration may be changed a little while observing the yeast condition, but it is sufficient to carry out the aeration at 0.025 VVM for 1 to 4 hours.
However, if too much yeast metabolizes the respiratory system,
The so-called "sugar eating phenomenon" appears, and the result is that the fermentation rate of alcohol does not increase despite the consumption of sugar, so it is desirable to reduce the aeration rate a little when the number of yeasts increases. It should be noted that the upper limit of the concentration of sugar charged in the repeated batch fermentation method is naturally determined by the alcohol resistance of the strain used, and therefore it is necessary to carry out a confirmation test in advance. The structure and material of the main fermentation tank are basically the same as those of the liquor culture tank, but in principle, continuous aeration is performed only in the first batch in the main fermentation process of the present invention, so a stirring effect due to aeration cannot be expected. Considering the second and subsequent batches, it is better to have a stirrer. Even in static fermentation without stirring, fermentation will proceed but the end time will be delayed. Particularly, in the case of a flocculating yeast, stirring is necessary, and the effect cannot be neglected. Considering the yeast used and the shape of the main fermentation tank, it is necessary to select the most suitable stirring device and determine the operating conditions during operation. In the repeated batch fermentation, the ripened mash is extracted for each batch. However, it is desirable to extract the ripened mash from the side and bottom of the tank depending on the yeast used, that is, the aggregating yeast and the non-aggregating yeast. Further, when a flocculating yeast is used, it is desirable to install a sight glass so that a 20 to 30% volume of the liquor settled portion left as the liquor of the next batch can be observed. In addition to observing the agglutination state, color, sedimentation property, etc. of yeast, the vitality and total number of yeast can be estimated visually.

【0009】使用する酵母としては遠心分離機を必要と
しない凝集性酵母が望ましいが、非凝集性酵母でも遠心
分離機を設置して各バッチ終了時に酵母を回収し、これ
を主発酵槽に戻して再利用するという方法をとれば、繰
り返し回分発酵を長期間継続することができる。要する
に、繰り返し回分発酵の回数をなるべく多く重ね、安定
した良好な発酵状態を長期間保持するためには、いかに
酵母の活性と生菌率を高く維持するかが重要なポイント
となる。天然の原料を使用するにあたっては主に培地組
成の変動によって、発酵経過の再現性が得られないこと
が往々にしてある。その他温度、pH、通気、攪拌など
多くの要因も関係することが知られている。したがっ
て、本法のような繰り返し回分法による高速発酵法にお
いては早めに発酵の終了を感知し、速やかに次のバッチ
へ移行することが要求される。このような事情を考慮し
て考案したのがCO2を主成分とする発酵排ガスの流量
を測定することにより、いち早く発酵の終了を感知し、
切り替え操作に移行する本発明の方法である。このよう
な方法についてはフランス特許(特許番号260651
4)にも提唱されているが、このフランス特許はワイン
の回分発酵における進捗及び展開の予測と、発酵の管理
及び制御に炭酸ガスの流量測定を利用するというもので
あるに過ぎない。
As the yeast to be used, a flocculating yeast which does not require a centrifuge is desirable, but a non-flocculating yeast is also provided with a centrifuge to recover the yeast at the end of each batch and return it to the main fermentation tank. By adopting a method of reuse by recycling, batch fermentation can be continued for a long period of time. In short, in order to repeat the batch fermentation as many times as possible and maintain a stable and good fermentation state for a long period of time, how to keep the yeast activity and the viable cell ratio high is an important point. When using natural raw materials, it is often the case that reproducibility of the fermentation process cannot be obtained mainly due to variations in medium composition. It is known that many other factors such as temperature, pH, aeration and stirring are also involved. Therefore, in the rapid batch fermentation method such as the present method, it is required to detect the end of fermentation early and shift to the next batch promptly. In consideration of such circumstances, we devised to detect the end of fermentation as soon as possible by measuring the flow rate of fermentation exhaust gas containing CO 2 as a main component,
It is a method of the present invention to shift to a switching operation. A French patent (Patent No. 260651)
As proposed in 4), this French patent merely uses carbon dioxide flow measurement to predict progress and development in batch fermentation of wine, and to control and control fermentation.

【0010】したがって、このフランス特許は本発明の
いう繰り返し回分発酵法における各サイクルの発酵終了
までの時間の予測と発酵終了の検知のために発酵排ガス
の流量を測定する方法とは目的を異にしている。本発明
は、管中の流体の全圧と静圧の差すなわち動圧を測るこ
とによって流速を知り、次いで、求めた流速と管の断面
積から計算によって流量を求める方式のガス流量計、つ
まり速度水頭を測る方式のガス流量計(「改訂7版 熱
管理技術講義」工業技術院公害資源研究所熱管理技術講
義編集委員会編(丸善)第175−182頁)を新しく
利用するものであって、具体的には、発酵槽の発酵排ガ
ス排気口あるいは排気管中に発酵排ガスの速度水頭を測
る方式のガス流量計のひとつであるピトー管を挿入し、
その全圧及び静圧を測定し、その差から動圧を求めて、
下記表1に示す次式からガスの流量Qを算出するもので
ある。
Therefore, this French patent has a different purpose from the method of measuring the flow rate of fermentation exhaust gas for predicting the time until the end of fermentation of each cycle and detecting the end of fermentation in the repeated batch fermentation method of the present invention. ing. The present invention
Is the difference between the total pressure of the fluid in the pipe and the static pressure, that is, the dynamic pressure.
Know the flow velocity by and then find the flow velocity and the cross section of the pipe
A gas flow meter that calculates the flow rate from the product
Gas flow meter that measures the head of water
Management Technology Lecture "Institute of Pollution Resources, Institute of Industrial Technology, Thermal Management Technology Course
Pp. 175-182) edited by Yoshiyoshi Editorial Committee (Maruzen)
Specifically, the fermentation exhaust gas from the fermenter is used.
The velocity head of the fermentation exhaust gas is measured at the exhaust port or exhaust pipe.
Insert a Pitot tube which is one of the gas flow meters of the
Measure the total pressure and static pressure, find the dynamic pressure from the difference,
The gas flow rate Q is calculated from the following equation shown in Table 1 below.

【0011】[0011]

【表1】 [Table 1]

【0012】また、ピトー管以外にアニューバ流量計を
用いることもできる。このようにして計測した流量を発
酵開始直後から経時的あるいは連続的に記録する。そし
て、画かれたカーブあるいは単位時間当たりの速度の減
少値から発酵終了までの時間が予測できる。さらに、そ
のまま測定を続ければガス流量がゼロに近づいて行くか
ら、発酵の終了を予めガス流量値で定めておくことによ
り、発酵管理の方法を熟知していない人でも容易に、し
かも迅速かつ精確に発酵の終了を感知することができ
る。アルコール発酵をほぼ完了させ、しかも生成した高
濃度アルコールの酵母自身への影響を最小限にくい止め
るためには、発酵排ガス流量が0.1〜0.3m3/k
l・hrになった時点を発酵の終了と見なし、切り替え
操作を開始するのが適切である。ただし、アルコール耐
性の強い菌株を用いる場合や比較的低い糖濃度で発酵さ
せる場合には、さらに低流量まで発酵を継続させてもさ
しつかえない。発酵を継続させるべきか、中断させて切
り替えるべきかの判断は、発酵終了直前の発酵排ガス流
量経過を見て、その曲線が舟底型を示すかどうかで決め
るのも有力な方法である。すなわち、発酵液中の生成ア
ルコールや塩類などの影響により酵母の活力が低下して
きて発酵途中に急激な発酵排ガス流量の減少が起り、そ
の後微量の発酵排ガスの流出が長時間続くという現象が
みとめられたら、そのバッチの発酵を長時間継続しない
ようにし、逆にこの現象が表れる前であれば、発酵時間
の多少の延長はさしつかえない。もっとも、最終バッチ
であれば、それ以上同じ酵母を使用するわけではないの
で同現象が表れても発酵を継続してよいことになる。ピ
トー管の測定範囲が不適切であれば、発酵排ガス管径の
変更あるいは径の異なる複数の排ガス管を使い分ける方
法を採用すればよい。発酵排ガス流量の出力とサイクル
切り替え時に使用する機器、たとえば攪拌機、タイマ
ー、自動バルブ、ポンプなどの入力を制御装置内でシー
ケンスに組めば一連の切り替え作業を自動化することも
できる。
An annubar flow meter may be used instead of the Pitot tube. The flow rate thus measured is recorded with time or continuously immediately after the start of fermentation. Then, the time from the drawn curve or the decrease value of the speed per unit time to the end of fermentation can be predicted. Furthermore, if the measurement is continued as it is, the gas flow rate will approach zero, so by determining the end of fermentation by the gas flow rate value beforehand, even those who are not familiar with the method of fermentation management can easily, quickly and accurately The end of fermentation can be detected. In order to almost complete the alcohol fermentation and to minimize the influence of the produced high-concentration alcohol on the yeast itself, the fermentation exhaust gas flow rate is 0.1 to 0.3 m 3 / k.
It is appropriate to consider the end of fermentation when the time reaches l · hr and start the switching operation. However, when a strain with strong alcohol tolerance is used or when fermentation is carried out at a relatively low sugar concentration, fermentation may be continued to a lower flow rate. It is also an effective method to determine whether to continue the fermentation or to interrupt and switch the fermentation by observing the flow rate of the fermentation exhaust gas immediately before the end of the fermentation and determining whether or not the curve shows the boat bottom type. In other words, the phenomenon that the vitality of yeast is reduced due to the influence of alcohol and salts produced in the fermentation liquor and the flow rate of fermentation exhaust gas rapidly decreases during fermentation, and then a slight amount of fermentation exhaust gas flows out for a long time is observed. However, if the fermentation of the batch is not continued for a long time, and conversely before this phenomenon appears, the fermentation time may be slightly extended. However, in the case of the final batch, the same yeast is not used any more, and thus the fermentation can be continued even if the same phenomenon appears. If the measurement range of the Pitot tube is inappropriate, a method of changing the diameter of the fermentation exhaust gas tube or using a plurality of exhaust gas tubes having different diameters may be adopted. The output of the fermentation exhaust gas flow rate and the equipment used at the time of cycle switching, such as an agitator, a timer, an automatic valve, and an input of a pump, etc., can be automated in a sequence by incorporating them in a sequence in the control device.

【0013】繰り返し回分発酵の場合、本醪の仕込みの
たびに酒母を調製する必要がないという大きな特徴があ
る。しかし、切り替え操作の遅れがあれば生成したアル
コールによって酵母自身が損傷を受け、酵母の生菌数及
び生菌率が共に下がってくるのが一般的である。また、
新しい糖液を加えても逆に雑菌の増殖が活発となり、通
気して賦活処理しても徐々にアルコールの生成量及び発
酵歩合が低下してくる。本発明によれば、繰り返し回分
発酵法を実施するにあたって極めて重要となる切り替え
時期の見極めが適確に行えるので、発酵管理が容易とな
る。さらに、生酵母数に対して糖量が一定以下となるよ
うな糖液調製、すなわち仕込み糖濃度を酵母にとって無
理のないように段階的に変更すれば、アルコール生産性
の良い安定した繰り返し回分発酵法を長期間にわたり継
続することができる。さらに切り替え操作を自動化すれ
ば大幅な省力化を図ることができる。
In the case of repeated batch fermentation, there is a great feature that it is not necessary to prepare the mother liquor every time the main mash is charged. However, if there is a delay in the switching operation, the yeast itself is generally damaged by the produced alcohol, and both the viable cell count and the viable cell rate of the yeast are generally lowered. Also,
On the contrary, even if a new sugar solution is added, the growth of various bacteria becomes active, and even if aeration is performed for activation, the production amount of alcohol and the fermentation rate gradually decrease. According to the present invention, it is possible to accurately determine the switching time, which is extremely important in carrying out the repeated batch fermentation method, so that fermentation management becomes easy. Furthermore, if a sugar solution is prepared so that the amount of sugar is less than a certain amount relative to the number of live yeast, that is, if the concentration of sugar to be fed is changed stepwise so that it is not unreasonable for yeast, stable batch fermentation with good alcohol productivity can be achieved. The law can continue for a long time. Further, if the switching operation is automated, it is possible to save a lot of labor.

【0014】以下、本発明を実施例及び比較例で更に説
明する。
The present invention will be further described below with reference to examples and comparative examples.

【0015】[0015]

【実施例1】[Example 1]

【0016】酒母槽に糖濃度が16%となるように原料
糖みつを加え、さらに硫安を対糖0.25%添加して酒
母を調製した。殺菌冷却後、予め前培養した凝集性酵母
Saccharomyces cerevisiae
ATCC26603株を無菌的に接種し、32℃で24
時間培養した。この間、0.025VVMで連続通気を
行った。本醪1バッチ目の仕込み糖濃度は16.3%と
なり、硫安は0.02%添加した。これに酒母を添加し
主発酵を開始した。通気は酒母添加後、0.025VV
Mで24時間連続とし、攪拌も同様に、24時間続け
た。第2バッチ目以降の通気は切り替え後0.05VV
Mで2時間だけとした。また糖濃度は酵母数を考慮して
第2バッチも17.3%と低くした。ただし、第3バッ
チは20%、第4〜12バッチは多少変動しているが目
標を22%とし、全部で12サイクル行った。発酵排ガ
スの流量は、L型ピトー管とダスタックサンプラーES
−302ET(岡野製作所社製)を用いて連続的に測定
し、各バッチの発酵の終了を0.3m3/kl・hrと
した。発酵終了後は撹拌を止め、酵母を沈降させて上澄
液を抜き出し、新しい糖液を加えて次のバッチに移行し
た。
Raw sugar was added to a liquor tank so that the sugar concentration was 16%, and 0.25% of ammonium sulphate was added to prepare liquor. After sterilization and cooling, pre-cultured aggregating yeast Saccharomyces cerevisiae
Sterilely inoculated with ATCC 26603 strain and kept at 32 ° C for 24 hours
Incubated for hours. During this period, continuous ventilation was performed at 0.025 VVM. The sugar concentration charged in the first batch of the main mash was 16.3%, and ammonium sulfate was added at 0.02%. Sake mother was added to this to start the main fermentation. Aeration is 0.025VV after addition of liquor
M was continuously applied for 24 hours, and stirring was similarly continued for 24 hours. Ventilation after the 2nd batch is 0.05VV after switching
Only 2 hours on M. In addition, the sugar concentration was set as low as 17.3% in the second batch in consideration of the number of yeasts. However, the target for the third batch was 20% and the target for the fourth to twelfth batches was 22% although it varied somewhat, and a total of 12 cycles were performed. The flow rate of fermentation exhaust gas is L-type Pitot tube and Dustuck sampler ES
-302ET (manufactured by Okano Seisakusho) was used for continuous measurement, and the end of fermentation of each batch was set to 0.3 m 3 / kl · hr. After the fermentation was completed, the stirring was stopped, the yeast was allowed to settle, the supernatant was withdrawn, and a new sugar solution was added to transfer to the next batch.

【0017】その結果を図2に、またその時の発酵排ガ
ス流量経過を図3にそれぞれ示す。第4ないし第5バッ
チからは排ガス流量の低下曲線が急勾配を示すようにな
り、良好な発酵経過であったことがわかる。このような
場合、ガス流量計による発酵の終了の判断も容易とな
る。
The results are shown in FIG. 2, and the flow rate of the fermentation exhaust gas at that time is shown in FIG. From the 4th to 5th batches, the decrease curve of the exhaust gas flow rate became steep, indicating that the fermentation process was good. In such a case, it becomes easy to judge the end of fermentation by the gas flow meter.

【0018】[0018]

【比較例1】[Comparative Example 1]

【0019】本発明との比較の意味で、従来法である添
掛法(回分式)による発酵試験を行った。酒母について
は非凝集性酵母Saccharomyces cere
visiae 396株(IFO 0216)を用いて
実施例1と同様に調製した。本醪はいずれも糖濃度16
〜17%を目標に仕込み、酒母添加後約20時間目から
糖濃度約42%の添醪を約20時間かけて添加した。酒
母及び添醪の各添加量はそれぞれ容量比で3%と33%
である。硫安は対糖0.02%添加し、通気及び攪拌と
も酒母添加後3時間(通気量は0.05VVM)とし
た。32℃で発酵させた発酵液の分析結果は表2のとお
りである。発酵を可能なかぎり完結させていることか
ら、発酵歩合を見ると実施例1よりも若干上回ってい
る。しかしながら、発酵日数が少なくとも4日間となっ
ていることを考えると、効率つまりアルコール生産性
(g/l・hr)は実施例1の結果の約1/4となる。
また、この回分式添掛法では酒母及び添醪の調製が毎回
必要となる。実施例1と同じ方法で測定した発酵排ガス
流量経過を平均してみると、図4に示すとおりとなり、
実施例1と比べて発酵経過が遅く、後半のガス発生が微
量ながら長時間続くことがわかる。したがって、本発明
のように発酵の終了を発酵排ガスの流量で見極めること
は困難である。
For the purpose of comparison with the present invention, a fermentation test was carried out by the conventional method of addition (batch method). For sake mother, non-aggregating yeast Saccharomyces cere
It prepared like Example 1 using visiae strain 396 (IFO 0216). The sugar concentration is 16
Approximately 17% was added as a target, and from about 20 hours after the addition of liquor, the additive containing sugar of about 42% was added over about 20 hours. 3% and 33% by volume of the added amount of liquor and soy sauce, respectively.
Is. Ammonium sulfate was added in an amount of 0.02% to sugar, and both aeration and stirring were carried out for 3 hours after the addition of liquor (aeration amount was 0.05 VVM). Table 2 shows the results of analysis of the fermented liquid fermented at 32 ° C. Since the fermentation is completed as much as possible, the fermentation rate is slightly higher than that in Example 1. However, considering that the number of fermentation days is at least 4 days, the efficiency, that is, the alcohol productivity (g / l · hr) is about 1/4 of the result of Example 1.
In addition, this batch-type addition method requires preparation of liquor and soy sauce each time. When the fermentation exhaust gas flow rate course measured by the same method as in Example 1 is averaged, it becomes as shown in FIG.
It can be seen that the fermentation process is slower than in Example 1, and the amount of gas generated in the latter half is small but lasts for a long time. Therefore, it is difficult to determine the end of fermentation by the flow rate of fermentation exhaust gas as in the present invention.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【実施例2】Example 2

【0022】酒母は非凝集性酵母Saccharomy
ces cerevisiae 396株(IFO 0
216)を用いて実施例1と同様に調製した。本醪の調
製も基本的には実施例1と同様に行った。ただし、糖濃
度は1バッチ目、2バッチ目は17%、3バッチ目から
6バッチ目までは20%、7バッチ目は21%とし、8
バッチ目以降17バッチ目まで22%を続けた。酵母の
回収は遠心分離機により1400G・2分の条件で行
い、沈降分離したものを毎回酒母として次のバッチに加
えた。最終バッチの菌体の回収量は約50g/l(湿重
量)であった。その結果を図5に示し、実施例1と同じ
方法で測定した発酵排ガスの流量経過の一部を図6に示
す。これでわかるように、非凝集性酵母でも遠心分離機
を導入することにより実施例1に示した凝集性酵母の場
合と同様、本発明の効果を出すことができる。
Liquor is the non-aggregating yeast Saccharomy
ces cerevisiae 396 strain (IFO 0
216) was used and prepared similarly to Example 1. The preparation of this mash was basically performed in the same manner as in Example 1. However, the sugar concentration is 17% for the first batch, the second batch, 20% for the third batch to the sixth batch, and 21% for the seventh batch.
22% was continued from the batch number to the 17th batch. The yeast was collected by a centrifuge under the conditions of 1400 G for 2 minutes, and the sedimented product was added to the next batch as liquor mother every time. The recovered amount of cells in the final batch was about 50 g / l (wet weight). The results are shown in FIG. 5, and part of the flow rate of the fermentation exhaust gas measured by the same method as in Example 1 is shown in FIG. As can be seen from this, even in the non-aggregating yeast, the effect of the present invention can be obtained by introducing the centrifugal separator, as in the case of the aggregating yeast shown in Example 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において凝集性酵母を用いてアルコール
発酵を行うためのプロセスフロー図である。1:酒母
槽、2:主発酵槽、3:スクラバー、4:酒母移送ポン
プ、5:熟成醪抜き出しポンプ、6:攪拌機、7:流量
計センサー、8:通気ライン、9:原料供給ライン
FIG. 1 is a process flow diagram for carrying out alcoholic fermentation using a flocculating yeast in the present invention. 1: Liquor tank, 2: Main fermentation tank, 3: Scrubber, 4: Liquor transfer pump, 5: Aging mash extraction pump, 6: Stirrer, 7: Flow meter sensor, 8: Aeration line, 9: Raw material supply line

【図2】実施例1における発酵経過を示すグラフであ
る。
FIG. 2 is a graph showing a fermentation process in Example 1.

【図3】実施例1の2,3,4,5,8,12バッチ目
の発酵排ガス流量経過を示すグラフである。
FIG. 3 is a graph showing the flow rate of fermentation exhaust gas in the second, third, fourth, fifth, eighth, and twelfth batches of Example 1.

【図4】比較例1の添掛法によるアルコール発酵排ガス
流量経過を示すグラフである。
FIG. 4 is a graph showing the progress of the alcohol fermentation exhaust gas flow rate by the adding method of Comparative Example 1.

【図5】実施例2における発酵経過を示すグラフであ
る。
FIG. 5 is a graph showing a fermentation process in Example 2.

【図6】実施例2の5,10,16バッチ目の発酵排ガ
ス流量経過を示すグラフである。
FIG. 6 is a graph showing the flow rate of fermentation exhaust gas in the 5th, 10th, and 16th batches of Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 糖質原料又は澱粉質原料を用い、繰り返
し回分発酵法によりアルコールを生産する方法におい
て、速度水頭を測る方式のガス流量計により発酵の終了
を予測または判定することを特徴とするアルコールの製
造法。
1. A method for producing alcohol by a repeated batch fermentation method using a sugar raw material or a starch raw material, characterized in that the end of fermentation is predicted or determined by a gas flow meter of a method of measuring a velocity head. Alcohol production method.
【請求項2】 発酵排ガスの流量が、発酵液1kl当た
り1時間に0.35〜0.1m3もしくはそれ以下にな
る時又はなった時を発酵の終了と判定することを特徴と
する第1項記載のアルコールの製造法。
2. The fermentation is judged to be completed when the flow rate of the fermentation exhaust gas is 0.35 to 0.1 m 3 or less per hour for 1 kl of the fermentation broth or when the flow rate of fermentation flue gas is equal to or less than that. The method for producing alcohol according to the item.
JP4181637A 1992-06-17 1992-06-17 Method for producing alcohol by repeated batch fermentation Expired - Fee Related JPH07112436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4181637A JPH07112436B2 (en) 1992-06-17 1992-06-17 Method for producing alcohol by repeated batch fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4181637A JPH07112436B2 (en) 1992-06-17 1992-06-17 Method for producing alcohol by repeated batch fermentation

Publications (2)

Publication Number Publication Date
JPH0689A JPH0689A (en) 1994-01-11
JPH07112436B2 true JPH07112436B2 (en) 1995-12-06

Family

ID=16104247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4181637A Expired - Fee Related JPH07112436B2 (en) 1992-06-17 1992-06-17 Method for producing alcohol by repeated batch fermentation

Country Status (1)

Country Link
JP (1) JPH07112436B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007032265A1 (en) * 2005-09-15 2009-03-19 有限会社新世紀発酵研究所 Apparatus and method for continuous culture of alcohol-producing bacteria
JP2007124902A (en) * 2005-11-01 2007-05-24 Japan Alcohol Corp Method and apparatus for alcohol production
DE102006058465A1 (en) * 2006-12-12 2008-06-19 Hochschule Anhalt (Fh) Process for the biotechnological production of ethanol
JP5176022B2 (en) * 2007-03-23 2013-04-03 佐賀県 Method for producing high-concentration alcohol
JP5913814B2 (en) * 2011-02-15 2016-04-27 サッポロビール株式会社 Yeast fermentation test method and fermentation test apparatus
WO2014042184A1 (en) * 2012-09-14 2014-03-20 アサヒグループホールディングス株式会社 Method for producing sugar and ethanol by selective fermentation
AU2014272231B2 (en) * 2013-05-28 2016-07-07 Asahi Group Holdings, Ltd. Raw sugar and ethanol production method using selective fermentation

Also Published As

Publication number Publication date
JPH0689A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
Nagodawithana et al. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations
Toma et al. Inhibition of microbial growth and metabolism by excess turbulence
George et al. Comparison of the Baker's yeast process performance in laboratory and production scale
Vardar et al. Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentations
Kida et al. Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion
CN109971663B (en) Thermotolerant yarrowia lipolytica yeast and application thereof
Benz Bioreactor design for chemical engineers
Jones et al. Ethanol fermentation in a continuous tower fermentor
CN103614428B (en) A kind of method of fermenting and producing L tryptophans
JPH07112436B2 (en) Method for producing alcohol by repeated batch fermentation
König et al. Process engineering investigations of penicillin production
CN102876743B (en) Novel process for fermenting coenzyme Q10 based on online oxygen consumption rate control
Taleghani et al. A study on the effect of parameters on lactic acid production from whey
Berraud Production of highly concentrated vinegar in fed-batch culture
Aeschlimann et al. Continuous production of lactic acid from whey permeate by Lactobacillus helveticus in two chemostats in series
Dale et al. Osmotic inhibition of free and immobilized K. marxianus anaerobic growth and ethanol productivity in whey permeate concentrate
Dominguez et al. Determination of kinetic parameters of fermentation processes by a continuous unsteady‐state method: Application to the alcoholic fermentation of D‐xylose by Pichia stipitis
CN107904133B (en) Method for producing rose vinegar by pump reflux method
CN105543112A (en) Culture method of Aspergillus niger seeds
Win et al. Growth kinetics of Saccharomyces cerevisiae in batch and fedbatch cultivation using sugarcane molasses and glucose syrup from cassava starch
Converti et al. Simplified modeling of fed‐batch alcoholic fermentation of sugarcane blackstrap molasses
Carvalho et al. Ethanol production by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through a fed-batch process: optimization by response surface methodology
Laluce et al. Continuous ethanol production in a nonconventional five-stage system operating with yeast cell recycling at elevated temperatures
CN113930409A (en) Method for efficiently producing Rhizomucor miehei lipase by aspergillus oryzae
Guiraud et al. Isolation of a respiratory‐deficient Kluyveromyces fragilis mutant for the production of ethanol from Jerusalem artichoke

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees