JPH07111415B2 - Analysis method for polyphenols - Google Patents

Analysis method for polyphenols

Info

Publication number
JPH07111415B2
JPH07111415B2 JP5121542A JP12154293A JPH07111415B2 JP H07111415 B2 JPH07111415 B2 JP H07111415B2 JP 5121542 A JP5121542 A JP 5121542A JP 12154293 A JP12154293 A JP 12154293A JP H07111415 B2 JPH07111415 B2 JP H07111415B2
Authority
JP
Japan
Prior art keywords
polyphenols
present
sample
plant tissue
polyphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5121542A
Other languages
Japanese (ja)
Other versions
JPH07209248A (en
Inventor
哲久 後藤
俊博 向井
秀樹 堀江
道夫 川中
融 下原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORINSUISANSHO YASAI CHAGYO SHIKENJOCHO
Original Assignee
NORINSUISANSHO YASAI CHAGYO SHIKENJOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORINSUISANSHO YASAI CHAGYO SHIKENJOCHO filed Critical NORINSUISANSHO YASAI CHAGYO SHIKENJOCHO
Priority to JP5121542A priority Critical patent/JPH07111415B2/en
Publication of JPH07209248A publication Critical patent/JPH07209248A/en
Publication of JPH07111415B2 publication Critical patent/JPH07111415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリフェノール類の分
析方法に関し、特に食品の溶液中に含まれるポリフェノ
ール類の分析方法に関する。また、本発明はバイオセン
サーによる分析方法に関する。
TECHNICAL FIELD The present invention relates to a method for analyzing polyphenols, and more particularly to a method for analyzing polyphenols contained in a solution of food. The present invention also relates to a biosensor analysis method.

【0002】[0002]

【従来の技術】食品中のポリフェノール類は、酸化に伴
い褐変するため、食品の品質低下に関与する。また、茶
中には多量のポリフェノール類が含まれ、これらは渋み
成分として、重要な味成分となっている。そこで、食品
中のポリフェノール類についての分析法が開発されてい
る。従来のポリフェノール類の分析法は、酒石酸鉄との
混合による発色の強度を比較するもの、リンタングステ
ン−モリブテン酸の還元に伴う発色の強度を比較するも
の、及び高速液体クロマトグラフィー(HPLC)を利
用して、個々のポリフェノールを分別定量するものであ
った。
2. Description of the Related Art Polyphenols in foods turn brown due to oxidation, and are involved in the deterioration of food quality. In addition, tea contains a large amount of polyphenols, which are important taste components as astringency components. Therefore, analytical methods for polyphenols in food have been developed. Conventional polyphenols are analyzed by comparing the intensity of color development due to mixing with iron tartrate, comparing the intensity of color development associated with reduction of phosphotungsten-molybdic acid, and high performance liquid chromatography (HPLC). Then, the individual polyphenols were separately quantified.

【0003】[0003]

【発明が解決しようとする課題】しかし、高速液体クロ
マトグラフィーによる分析方法では、分析試料の前処理
に手間と時間がかかり、また、測定にも1試料あたり1
時間近くの時間が必要になる。一方、比色による方法で
も、高速液体クロマトグラフィーほどではないが、手間
がかかり、さらに試料中に含まれる色素類が測定の障害
となる。本発明は、従来のポリフェノール類の分析法に
おける、前処理の繁雑さや色素の妨害といった問題点を
解決することを目的としている。
However, in the analysis method by high performance liquid chromatography, it takes time and labor to pretreat an analysis sample, and one sample per measurement is required.
You need time close to time. On the other hand, the colorimetric method, though not so much as high-performance liquid chromatography, takes time and the dyes contained in the sample hinder the measurement. An object of the present invention is to solve the problems in the conventional analytical methods for polyphenols, such as the complexity of pretreatment and the interference of dyes.

【0004】[0004]

【課題を解決するための手段】本発明は、色素によって
妨害されることなく、簡便・迅速にポリフェノール類を
容易に分析することを目的としている。すなわち、本発
明は、酸素電極に植物組織片を装着したものをセンサー
とし、試料中のポリフェノールを植物組織片中に存在す
る酵素ポリフェノールオキシダーゼによって酸化し、こ
れに伴う酸素濃度の減少によってポリフェノールを検出
するバイオセンサーを利用したポリフェノール類の分析
方法にある。
The object of the present invention is to analyze polyphenols easily and quickly without being disturbed by dyes. That is, the present invention uses a sensor in which a plant tissue piece is attached to an oxygen electrode, oxidizes polyphenols in a sample by an enzyme polyphenol oxidase present in the plant tissue piece, and detects polyphenols by a decrease in oxygen concentration accompanying this. There is a method for analyzing polyphenols using a biosensor.

【0005】本発明において、利用される植物組織片と
しては、ゴボウの根、バナナ、ブドウ及びモモの実、ヤ
ーコンの芋等の野菜・果実が使用される。また、本発明
において、試料は、例えば茶浸出液、果汁等である。本
発明において、利用される植物組織片の厚さは、センサ
ーの応答時間を短縮するため、比較的薄く調製され、例
えば0.1mm程度に調製されることが好ましい。測定
温度は、植物組織片中の酵素の失活の起こらない程度
で、40℃以下、好ましくは25℃程度で行われる。測
定に用いられる緩衝液は中性から弱酸性が好ましい。
In the present invention, as the plant tissue pieces used, vegetables and fruits such as burdock roots, bananas, grapes and peaches, yacon potatoes and the like are used. Further, in the present invention, the sample is, for example, tea infusion, fruit juice or the like. In the present invention, the thickness of the plant tissue piece used is preferably relatively thin, for example, about 0.1 mm in order to shorten the response time of the sensor. The measurement temperature is 40 ° C. or lower, preferably about 25 ° C., so that the enzyme in the plant tissue piece is not deactivated. The buffer used for the measurement is preferably neutral to weakly acidic.

【0006】また、本発明において、応答性を維持する
ために、測定後の試料はできるだけ速やかに除去するこ
とが好ましい。本発明において、ポリフェノール類が存
在すれば、電流の減少がみられる。この電流の減少は、
ポテンショスタット、微小電流計等によって検出され
る。
Further, in the present invention, in order to maintain responsiveness, it is preferable to remove the sample after measurement as quickly as possible. In the present invention, the presence of polyphenols causes a decrease in current. This decrease in current is
Detected by potentiostat, micro ammeter, etc.

【0007】[0007]

【作用】上記の手段により本発明のポリフェノール類の
分析方法は、植物組織中の酵素を利用してポリフェノー
ル類の測定を行うため、組織として用いる植物の種類を
代えることによって選択性を改変でき、例えば、茶の主
要なポリフェノールであるエピガロカテキンガレートに
対して応答の比較的高いゴボウの根の薄片を用いれば、
茶浸出液中のポリフェノール濃度の測定が可能である。
By the above-mentioned means, the method for analyzing polyphenols of the present invention uses the enzyme in plant tissues to measure polyphenols, so that the selectivity can be modified by changing the type of plants used as tissues. For example, using burdock root slices, which have a relatively high response to epigallocatechin gallate, the major polyphenol of tea,
It is possible to measure the polyphenol concentration in tea infusion.

【0008】[0008]

【実施例】本発明の実施例としては、ポーラロ型酸素電
極、ポテンショスタット、フローセル、レコーダー、チ
ュービングポンプ等を用いた。
EXAMPLES As examples of the present invention, a polaro-type oxygen electrode, a potentiostat, a flow cell, a recorder, a tubing pump and the like were used.

【0009】0.1mmの厚さのゴボウの根の薄片を酸
素電極に装着したセンサーをフローセル内に固定した。
フローセルには、空気混合した緩衝液を流し、空気飽和
の緩衝液中の酸素濃度に対応する電流値をレコーダーに
記録した。次に、同濃度の緩衝液に一定量の(+)−カ
テキンを溶かした溶液を流し、電流値の低下を測定し、
記録した。(+)−カテキン濃度と電流値の関係から、
(+)−カテキンに対する本センサーの検量線が作成さ
れた。この結果を図1に示す。
A sensor having a 0.1 mm thick burdock root slice attached to an oxygen electrode was fixed in a flow cell.
An air-mixed buffer solution was passed through the flow cell, and a current value corresponding to the oxygen concentration in the air-saturated buffer solution was recorded in a recorder. Next, a solution of a certain amount of (+)-catechin dissolved in a buffer solution of the same concentration is flowed to measure the decrease in current value,
Recorded. From the relationship between the (+)-catechin concentration and the current value,
The calibration curve of this sensor for (+)-catechin was created. The result is shown in FIG.

【0010】上記センサーは、(+)−カテキン以外に
も、エピカテキン、エピガロカテキンガレート、クロロ
ゲン酸、カフェー酸等の多種のポリフェノールにも応答
したが、食品中に多く含まれる糖やアミノ酸には応答し
なかった。この結果を表1に示す。
The above-mentioned sensor responded to various polyphenols such as epicatechin, epigallocatechin gallate, chlorogenic acid and caffeic acid in addition to (+)-catechin. Did not respond. The results are shown in Table 1.

【0011】図1の検量線を用いて、茶浸出液中のポリ
フェノール濃度を測定した。温度を変えて抽出した茶浸
出液を、濾過後に緩衝液で数倍に希釈したものを試料と
した。その結果、比色に基づく従来法と非常に良い相関
関係を示した。これを図2に示す。試料の前処理とし
て、濾過と希釈以外の操作は必要とせず、緩衝液に代え
てフローセルに送るだけの操作で、4分以内に測定結果
が得られることが判明した。
The polyphenol concentration in the tea infusion was measured using the calibration curve of FIG. The tea infusion extracted at different temperatures was filtered, diluted several times with a buffer, and used as a sample. As a result, it showed a very good correlation with the conventional method based on colorimetry. This is shown in FIG. It was found that the pretreatment of the sample does not require an operation other than filtration and dilution, and the measurement result can be obtained within 4 minutes by simply sending the sample to the flow cell instead of the buffer solution.

【0012】また、上記試料としてリンゴ果汁の水希釈
液を用いた場合、果汁濃度と比例した電流値の低下がみ
られた。この結果を図3に示す。ゴボウ以外の植物の組
織片を用いたセンサーを作製したところ、バナナやブド
ウ、モモの果実及びヤーコンの芋を用いた場合も、エピ
カテキンやエピガロカテキンガレートに対して応答を示
した。
When an apple juice juice diluted with water was used as the sample, a decrease in current value was observed in proportion to the juice concentration. The result is shown in FIG. A sensor using tissue explants of plants other than burdock was shown to respond to epicatechin and epigallocatechin gallate even when bananas, grapes, peach fruits and yacon potatoes were used.

【0013】[0013]

【発明の効果】以上説明したように本発明のポリフェノ
ール類の分析方法によれば、バイオセンサ一法によって
ポリフェノール類の測定を行うので、色素類による障害
は全く問題にならない。また、非常に簡便で、迅速な測
定が可能である。また本発明においては、用いる植物組
織によってポリフェノール類の選択性が異なるので、植
物組織を代えることによって、センサーの選択性の改変
が可能で、茶浸出液の測定には主要なポリフェノールで
あるエピガロカテキンガレートに対する応答の比較的高
いゴボウの根が適する。
As described above, according to the method for analyzing polyphenols of the present invention, the polyphenols are measured by the biosensor method, so that the problems due to the pigments do not pose any problem. In addition, it is very simple and quick measurement is possible. Further, in the present invention, since the selectivity of polyphenols varies depending on the plant tissue used, the selectivity of the sensor can be modified by changing the plant tissue, and epigallocatechin, which is a major polyphenol for the measurement of tea infusion, is possible. Burdock roots, which have a relatively high response to gallate, are suitable.

【図面の簡単な説明】[Brief description of drawings]

【図1】(+)−カテキンを用いた,本発明によるバイ
オセンサ一の検量線グラフである。
FIG. 1 is a calibration curve graph of a biosensor according to the present invention using (+)-catechin.

【図2】図1の検量線を用いて測定した茶浸出液中のポ
リフェノール濃度で、横軸の従来法の値と比較して示す
グラフである。
FIG. 2 is a graph showing the polyphenol concentration in the tea infusion solution measured using the calibration curve of FIG. 1 in comparison with the value of the conventional method on the horizontal axis.

【図3】本発明によるセンサ一を用いてリンゴ果汁を測
定した結果を示すグラフである。
FIG. 3 is a graph showing the results of measuring apple juice using the sensor according to the present invention.

【表1】 [Table 1]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 27/327 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication G01N 27/327

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸素電極に植物の組織片を装着し、植物
組織内の酵素によるポリフェノールの酸化に伴う酸素濃
度の減少を、酸素電極によって測定することにより、溶
液中に含まれるポリフェノール濃度を定量することを特
徴とするポリフェノール類の分析方法。
1. A polyphenol concentration contained in a solution is quantified by mounting a piece of plant tissue on an oxygen electrode and measuring a decrease in oxygen concentration due to the oxidation of polyphenol by an enzyme in the plant tissue by the oxygen electrode. A method for analyzing polyphenols, comprising:
JP5121542A 1993-05-24 1993-05-24 Analysis method for polyphenols Expired - Lifetime JPH07111415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5121542A JPH07111415B2 (en) 1993-05-24 1993-05-24 Analysis method for polyphenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5121542A JPH07111415B2 (en) 1993-05-24 1993-05-24 Analysis method for polyphenols

Publications (2)

Publication Number Publication Date
JPH07209248A JPH07209248A (en) 1995-08-11
JPH07111415B2 true JPH07111415B2 (en) 1995-11-29

Family

ID=14813831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5121542A Expired - Lifetime JPH07111415B2 (en) 1993-05-24 1993-05-24 Analysis method for polyphenols

Country Status (1)

Country Link
JP (1) JPH07111415B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527328A (en) * 2015-12-02 2016-04-27 浙江树人大学 Construction method and application of electrochemical fingerprint of tea

Also Published As

Publication number Publication date
JPH07209248A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
áJohn Dennis Recent developments in food authentication
Plutowska et al. Aromagrams–Aromatic profiles in the appreciation of food quality
Blasco et al. Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: towards an electrochemical index of natural antioxidants
Echavarría et al. Melanoidins formed by Maillard reaction in food and their biological activity
Gil et al. Study of the compositional changes of mango during ripening by use of nuclear magnetic resonance spectroscopy
Mannino et al. A new method for the evaluation of the ‘antioxidant power’of wines
Jiménez-Atiénzar et al. Kinetic analysis of catechin oxidation by polyphenol oxidase at neutral pH
Karoui et al. Fluorescence spectroscopy measurement for quality assessment of food systems—a review
Türkyılmaz Anthocyanin and organic acid profiles of pomegranate (Punica granatum L.) juices from registered varieties in Turkey
Boscaini et al. Gas chromatography− olfactometry (GC-O) and proton transfer reaction− mass spectrometry (PTR-MS) analysis of the flavor profile of grana padano, parmigiano reggiano, and grana trentino cheeses
Vinas et al. Method development and validation for strobilurin fungicides in baby foods by solid-phase microextraction gas chromatography–mass spectrometry
Roy et al. Automated fluorometric method for the determination of total vitamin C in food products
Polovka et al. Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment
Cam et al. Comparison of chemical characteristics of fresh and pasteurised juice of gilaburu (Viburnum opulus L.)
Jastrzȩbska et al. Application of ion chromatography for the determination of biogenic amines in food samples
Porep et al. Implementation of an on‐line near infrared/visible (NIR/VIS) spectrometer for rapid quality assessment of grapes upon receival at wineries
Uzhel et al. Determination of full organic acid profiles in fruit juices and alcoholic beverages using novel chemically derivatized hyperbranched anion exchanger
Ceymann et al. Rapid high performance screening method using UHPLC-MS to quantify 12 polyphenol compounds in fresh apples
Kitagaki et al. 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging ability of sake during storage
Franca et al. Potential uses of fourier transform infrared spectroscopy (FTIR) in food processing and engineering
JPH07111415B2 (en) Analysis method for polyphenols
Doğan et al. Characterization and inhibition of Rosmarinus officinalis L. polyphenoloxidase
Castañeda et al. Analytical approaches to expanding the use of capillary electrophoresis in routine food analysis
Huang et al. Use of HPLC and FTIR as a tool for analysis of lactic acid in restructured fish products
Chiba et al. Predicting sensory evaluation indices of Cheddar cheese texture by fluorescence fingerprint measurement coupled with an optical fibre

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term