JPH07111152A - Evaluation method for hydrogen storage alloy for electrode - Google Patents

Evaluation method for hydrogen storage alloy for electrode

Info

Publication number
JPH07111152A
JPH07111152A JP5280623A JP28062393A JPH07111152A JP H07111152 A JPH07111152 A JP H07111152A JP 5280623 A JP5280623 A JP 5280623A JP 28062393 A JP28062393 A JP 28062393A JP H07111152 A JPH07111152 A JP H07111152A
Authority
JP
Japan
Prior art keywords
hydrogen storage
plane
storage alloy
lattice
hkl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5280623A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
浩志 渡辺
Takahiro Isono
隆博 礒野
Shin Fujitani
伸 藤谷
Hiroshi Nakamura
宏 中村
Yumiko Nakamura
優美子 中村
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5280623A priority Critical patent/JPH07111152A/en
Priority to EP94115880A priority patent/EP0652601B1/en
Priority to DE69420104T priority patent/DE69420104T2/en
Publication of JPH07111152A publication Critical patent/JPH07111152A/en
Priority to US08/676,574 priority patent/US5688341A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To quickly, accurately evaluate electrode performance by previously making a calibration curve showing the relation of electrode performance to a specific parameter, and comparing the parameter of an objective hydrogen storage alloy with the calibration curve. CONSTITUTION:When the capacity maintenance factor of each test electrode is estimated from a parameter PA, a calibration curve showing correlation between each capacity maintenance factor obtained from actual measurement of test electrodes A1, A3, and A6 and the parameter PA is obtained by a non- linear least square method. The capacity maintenance factors of electrodes A2, A4, and A5 are estimated from the calibration curve, and the capacity maintenance factors estimated are compared with those obtained by actual measurements. The capacity maintenance factors of the electrodes A2, A4, and A5 estimated from the calibration curve extremely approximate to the capacity maintenance factors of the test electrodes. By using the parameter P4, the capacity maintenance factor is estimated with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電極用水素吸蔵合金の評
価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a hydrogen storage alloy for electrodes.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
水素を可逆的に吸蔵、放出することができる水素吸蔵合
金を電極材料として用いた水素吸蔵合金電極が、従来汎
用されている鉛電極、カドミウム電極などに比べて、軽
量で、しかも高容量化の可能性があるため、次世代のア
ルカリ二次電池の負極として脚光を浴びつつある。
2. Description of the Related Art In recent years,
A hydrogen storage alloy electrode that uses a hydrogen storage alloy that can reversibly store and release hydrogen as an electrode material is lighter in weight and higher in capacity than lead electrodes and cadmium electrodes that have been widely used in the past. Because of its potential, it is in the spotlight as a negative electrode for next-generation alkaline secondary batteries.

【0003】水素吸蔵合金電極に用いる水素吸蔵合金
は、一般に室温近傍で可逆的に水素を吸蔵放出し得るも
のでなければならず、斯かる水素吸蔵合金として現在実
用されている主なものは、LaNi5 やMmNi5 を基
本構造とするCaCu5 型合金である。その他、C14Lav
es構造を有するAB2 型合金も、高容量化の可能性があ
るため、その実用化のための研究が精力的になされてい
る。
The hydrogen storage alloy used for the hydrogen storage alloy electrode must generally be capable of reversibly storing and releasing hydrogen in the vicinity of room temperature. The main hydrogen storage alloys currently in practical use are: It is a CaCu 5 type alloy having a basic structure of LaNi 5 or MmNi 5 . Others, C14Lav
Since the AB 2 type alloy having the es structure also has the possibility of increasing the capacity, research for its practical use has been vigorously made.

【0004】ところで、水素吸蔵合金電極では、サイク
ル初期における活性化度、耐食性、初期の電極容量、充
放電サイクル特性(容量維持率)など、種々の特性が重
要視されるが、従来は、これらの電極特性を、その都
度、実際に電極を作製し、電池を組み立て、各種電池試
験を行って評価していた。
By the way, various characteristics such as the degree of activation at the beginning of the cycle, the corrosion resistance, the initial electrode capacity, and the charge / discharge cycle characteristics (capacity retention rate) are regarded as important in the hydrogen storage alloy electrode. Each time, the electrode characteristics were evaluated by actually producing electrodes, assembling batteries, and conducting various battery tests.

【0005】しかしながら、水素吸蔵合金の製造条件、
例えば液体急冷法におけるロール周速度、ガスアトマイ
ズ法におけるガス噴出速度、鋳造法における鋳造時の冷
却水温度などが少しでも異なると、作製される水素吸蔵
合金の物性に変動が生じるため、電極特性にもバラツキ
が生じることになる。このため、品質管理上、各製造ロ
ット毎に評価用電池を実際に組み立てて、水素吸蔵合金
の電極材料としての種々の特性を評価する必要がある
が、この評価には長期間を要する。このようなことか
ら、従来、電極用水素吸蔵合金の電極材料としての特性
を、実際に電池を組み立てることなく、迅速、且つ、高
精度に予測し得る方法の開発が強く待ち望まれていた。
However, the production conditions for hydrogen storage alloys are as follows:
For example, if the roll peripheral speed in the liquid quenching method, the gas ejection speed in the gas atomizing method, the cooling water temperature during casting in the casting method, etc., are slightly different, the physical properties of the hydrogen storage alloy produced will fluctuate. There will be variations. Therefore, for quality control, it is necessary to actually assemble an evaluation battery for each manufacturing lot to evaluate various characteristics of the hydrogen storage alloy as an electrode material, but this evaluation requires a long period of time. For this reason, conventionally, there has been a strong demand for the development of a method capable of quickly and highly accurately predicting the characteristics of an electrode hydrogen storage alloy as an electrode material without actually assembling the battery.

【0006】そこで、このような要望に応えるべく種々
の電極用水素吸蔵合金の物性について鋭意研究した結
果、本発明者らは、水素吸蔵合金の組成や格子定数と電
極特性との間には明確な相関関係は存在しないが、評価
すべき水素吸蔵合金のX線回折測定の結果を基にしたデ
ータを解析することにより得られるところの特定のパラ
メータと電極特性との間には明確な相関関係が存在する
ことを見出した。
Therefore, as a result of earnest studies on the physical properties of various hydrogen storage alloys for electrodes in order to meet such demands, the present inventors have found that the composition or lattice constant of the hydrogen storage alloy and the electrode characteristics are clear. Although there is no significant correlation, there is a clear correlation between specific parameters and electrode characteristics obtained by analyzing data based on the results of X-ray diffraction measurement of the hydrogen storage alloy to be evaluated. Found that there is.

【0007】本発明は、斯かる知見に基づきなされたも
のであって、その目的とするところは、迅速、且つ、高
精度に電極特性を評価することが可能な電極用水素吸蔵
合金の評価方法を提供するにある。
The present invention has been made on the basis of such findings, and an object of the present invention is to evaluate a hydrogen storage alloy for an electrode capable of quickly and highly accurately evaluating the electrode characteristics. To provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る電極用水素吸蔵合金の評価方法は、格子
面(h。k。l。)面に選択配向性を有し、且つ、評価
すべき水素吸蔵合金Eと合金組成を同じくする、合金組
織を互いに異にする複数の検量線作成用水素吸蔵合金M
1 ,M2 ,…,MX についての下式(C)を満足する関
数F(φ)中のパラメータPの値P1 ,P2 ,…,PX
を、前記検量線作成用水素吸蔵合金M1,M2 ,…,M
X と、基準となる水素吸蔵合金Sとの、任意に選択した
格子面(h1 1 1 )面,(h2 2 2 )面,…,
(hX X X )面におけるX線回折ピークの積分強度
比IM1(h1k1l1)/Is(h1k1l1) ,IM2(h2k2l2)/I
s(h2k2l2) ,…,IMX(hXkXlX)/Is(hXkXlX) 、及び、
前記格子面(h1 1 1 )面,(h2 2 2 )面,
…,(hX X X )面と前記格子面(h。k。l。)
面とのなす角φ1 ,φ2 ,…,φX を、それぞれ下式
(C)中のI(hkl) /Is(hkl)及びφに代入することに
より求めるステップ(1)と、前記P1 ,P2 ,…,
x と、前記検量線作成用水素吸蔵合金M1 ,M2 ,…,
X の電極材料としての特性を表す実測値T1 ,T2
, X との対応を示す検量線を作成するステップ
(2)と、前記評価すべき水素吸蔵合金Eについての前
記パラメータPの値PE を、当該評価すべき水素吸蔵合
金Eと、前記基準となる水素吸蔵合金Sとの、任意に選
択した格子面(hE1E1E1)面,(hE2E2E2
面,…,(hEYEYEY)面におけるX線回折ピークの
積分強度比IE1(hE1KE1lE1) /Is(hE1kE1lE1),I
E2(hE2KE2lE2) /Is(hE2kE2lE2),…,I
EY(hEYKEYlEY) /Is(hEYkEYlEY)、及び、前記格子面
(hE1E1E1)面,(hE2E2E2)面,…,(hEY
EYEY)面と前記格子面(h。k。l。)面とのなす
角φE1,φE2,…,φEYを、それぞれ下式(C)中のI
(hkl) /Is(hkl)及びφに代入することにより求めるス
テップ(3)と、前記PE を前記検量線と照合して、前
記評価すべき水素吸蔵合金Eの電極材料としての特性を
推定するステップ(4)とを有してなる。
A method of evaluating a hydrogen storage alloy for an electrode according to the present invention for achieving the above object has a lattice plane (h.k.l.) having a selective orientation. , A hydrogen storage alloy M for making a plurality of calibration curves having the same alloy composition as the hydrogen storage alloy E to be evaluated and different alloy structures from each other
1, M 2, ..., the value P 1 of the parameter P of the function F (phi) in satisfying the following formula (C) for the M X, P 2, ..., P X
Is the hydrogen storage alloys M 1 , M 2 , ..., M for preparing the calibration curve.
An arbitrarily selected lattice plane (h 1 k 1 l 1 ) plane, (h 2 k 2 l 2 ) plane, between X and the reference hydrogen storage alloy S, ...,
Integrated intensity ratio I M1 (h1k1l1) / I s (h1k1l1) , I M2 (h2k2l2) / I of X-ray diffraction peaks on the (h X k X l X ) plane
s (h2k2l2) , ..., I MX (hXkXlX) / I s (hXkXlX) , and
The lattice planes (h 1 k 1 l 1 ) plane, (h 2 k 2 l 2 ) plane,
..., (h X k X l X) plane and the lattice plane (h.k.l.)
The step (1) to obtain by substituting the angles φ 1 , φ 2 , ..., φ X formed with the surface into I (hkl) / I s (hkl) and φ in the following formula (C), respectively, P 1 , P 2 , ... , P
and x, the calibration curve for the hydrogen storage alloy M 1, M 2, ...,
Measured values T 1 , T 2 , representing the characteristics of M X as an electrode material,
, Step (2) of creating a calibration curve showing the correspondence with T X, and the value P E of the parameter P for the hydrogen storage alloy E to be evaluated, the hydrogen storage alloy E to be evaluated, and Arbitrarily selected lattice planes (h E1 k E1 l E1 ), (h E2 k E2 l E2 ) with the reference hydrogen storage alloy S
, ..., (h EY k EY l EY ) X-ray diffraction peak integrated intensity ratio I E1 (hE1KE1lE1) / I s (hE1kE1lE1) , I
E2 (hE2KE2lE2) / Is (hE2kE2lE2) , ..., I
EY (hEYKEYlEY) / Is (hEYkEYlEY) and the lattice planes (h E1 k E1 l E1 ) face, (h E2 k E2 l E2 ) face, ..., (h EY
The angles φ E1 , φ E2 , ..., φ EY formed by the k EY l EY ) plane and the lattice plane (h.k.l.) plane are respectively expressed by I in the following formula (C).
(hkl) / I s (hkl) and the step (3) obtained by substituting for φ, and by comparing the P E with the calibration curve, the characteristics of the hydrogen storage alloy E to be evaluated as an electrode material are evaluated. Estimating step (4).

【0009】 F(φ)=I(hkl) /Is(hkl) …(C)F (φ) = I (hkl) / Is (hkl) (C)

【0010】〔但し、式中、I(hkl) は格子面(hk
l)面における前記検量線作成用水素吸蔵合金M1 ,M
2 ,…,MX 又は前記評価すべき水素吸蔵合金EのX線
回折ピークの積分強度;Is(hkl)は前記基準となる水素
吸蔵合金Sの前記格子面(hkl)面におけるX線回折
ピークの積分強度;F(φ)は、前記検量線作成用水素
吸蔵合金M1 ,M2 ,…,MX 又は前記評価すべき水素
吸蔵合金Eの合金組織に対応して変化し、それらの電極
材料としての特性を一義的に決定するパラメータPを有
するφの関数;φは前記格子面(h。k。l。)面と前
記格子面(hkl)面とのなす角(単位:ラジアン)で
ある。〕
[However, in the equation, I (hkl) is a lattice plane (hk
1) hydrogen storage alloys M 1 and M for preparing the calibration curve on the plane
2 , ..., M X or the integrated intensity of the X-ray diffraction peak of the hydrogen storage alloy E to be evaluated; I s (hkl) is the X-ray diffraction on the lattice plane (hkl) plane of the reference hydrogen storage alloy S. The integrated intensity of the peak; F (φ) changes in accordance with the alloy structure of the hydrogen storage alloys M 1 , M 2 , ..., M X for creating the calibration curve or the hydrogen storage alloy E to be evaluated, and their A function of φ having a parameter P that uniquely determines characteristics as an electrode material; φ is an angle (unit: radian) formed between the lattice plane (h.k.l.) plane and the lattice plane (hkl) plane Is. ]

【0011】格子面(hE1E1E1)面,(hE2E2
E2)面,…,(hEYEYEY)面は、格子面(h1 1
1 )面,(h2 2 2 )面,…,(hX X X
面と全てが異なる格子面であってもよいが、全部又は一
部が同一の格子面であることが好ましい。同じ格子面に
ついては、ステップ(1)で求めた基準となる水素吸蔵
合金SのX線回折ピークの積分強度を、そのままステッ
プ(3)の基準となる水素吸蔵合金SのX線回折ピーク
の積分強度として利用することができるからである。
Lattice planes (h E1 k E1 l E1 ) planes, (h E2 k E2 l
E2 ) plane, ..., (h EY k EY l EY ) plane is a lattice plane (h 1 k 1
l 1 ) plane, (h 2 k 2 l 2 ) plane, ..., (h X k X l X )
The lattice planes may be all different from the planes, but it is preferable that all or some of the lattice planes are the same. For the same lattice plane, the integrated intensity of the reference X-ray diffraction peak of the hydrogen storage alloy S obtained in step (1) is directly used as the integral of the X-ray diffraction peak of the reference hydrogen storage alloy S of step (3). This is because it can be used as strength.

【0012】ステップ(1)におけるP1 ,P2 ,…,
X の値、及び、ステップ(3)におけるPE の値は、
例えば、いくつかのφについて、検量線作成用水素吸蔵
合金又は評価すべき水素吸蔵合金と、基準となる水素吸
蔵合金とのX線回折ピークの積分強度比を求め、これら
のφ及び各φにおける積分強度比を、上式(C)〔F
(φ)=I(hkl) /Is(hkl)〕に代入してP1 ,P2
…,PX 又はPE を未知数とする式をそれぞれ複数個た
て、これらの式のそれぞれについて最小二乗法を適用し
て演算処理したときの最確値として求めることができ
る。
P 1 , P 2 , ..., In step (1)
The value of P X and the value of P E in step (3) are
For example, for some φ, the integrated intensity ratios of the X-ray diffraction peaks of the hydrogen storage alloy for creating a calibration curve or the hydrogen storage alloy to be evaluated and the reference hydrogen storage alloy are obtained, and the φ and each φ The integrated intensity ratio is calculated by the above formula (C) [F
(Φ) = I (hkl) / I s (hkl) ] and substitute P 1 , P 2 ,
, P X or P E are set as unknowns, and the least squares method is applied to each of these formulas to obtain the most probable value.

【0013】先に述べたように、水素吸蔵合金の組成や
格子定数と電極特性との間には明確な相関関係は存在し
ないが、水素吸蔵合金のX線回折測定の結果を基にした
データを解析することにより得られる特定のパラメータ
と電極特性との間には明確な相関関係が存在する。した
がって、斯かるパラメータと電極特性との対応を示した
検量線を予め求めておけば、評価すべき水素吸蔵合金に
ついてのパラメータ値をX線回折測定及び最小二乗法等
の数学的演算を実施することにより求めてこれを検量線
と照合するだけで、当該水素吸蔵合金の電極特性を迅速
に評価することが可能となるのである。
As described above, there is no clear correlation between the composition and lattice constant of the hydrogen storage alloy and the electrode characteristics, but data based on the results of X-ray diffraction measurement of the hydrogen storage alloy. There is a clear correlation between the specific parameters and the electrode characteristics obtained by analyzing Therefore, if a calibration curve showing the correspondence between such parameters and electrode characteristics is obtained in advance, the parameter values of the hydrogen storage alloy to be evaluated are subjected to mathematical calculations such as X-ray diffraction measurement and least squares method. Thus, it is possible to quickly evaluate the electrode characteristics of the hydrogen storage alloy just by comparing the obtained value with the calibration curve.

【0014】とくに、本発明における関数F(φ)とし
て、下式(D)で特定されるPA 及びPB をパラメータ
Pとするφの関数を用いた場合には、活性化度、充放電
サイクル後の容量維持率、耐食性、容量などの電極特性
を、電池についての実機試験と同程度に、精度良く推定
することが可能となる。
In particular, when the function F (φ) in the present invention is a function of φ whose parameters P are P A and P B specified by the following equation (D), the degree of activation and charge / discharge are used. It is possible to accurately estimate the electrode characteristics such as the capacity retention rate after cycle, the corrosion resistance, and the capacity, to the same extent as in the actual machine test of the battery.

【0015】 F(φ)=PA +(1−PA )exp(−PB ・φ2 ) …(D)F (φ) = P A + (1−P A ) exp (−P B · φ 2 ) ... (D)

【0016】〔但し、式中、PA 及びPB は本発明にお
ける検量線作成用水素吸蔵合金M1 ,M2 ,…,Mx
び評価すべき水素吸蔵合金Eの合金組織に対応して変化
し、それらの電極材料としての特性を一義的に決定する
パラメータであり、先に述べた本発明におけるパラメー
タPに相当するものである。また、φは本発明における
格子面(h。k。l。)面と格子面(hkl)面とのな
す角(単位:ラジアン)である。〕
[Wherein P A and P B correspond to the alloy structures of the hydrogen storage alloys M 1 , M 2 , ..., M x for preparing the calibration curve and the hydrogen storage alloy E to be evaluated in the present invention. It is a parameter that changes and uniquely determines the characteristics of the electrode material, and corresponds to the parameter P in the present invention described above. Further, φ is an angle (unit: radian) formed by the lattice plane (h.k.l.) plane and the lattice plane (hkl) plane in the present invention. ]

【0017】本発明における評価すべき水素吸蔵合金E
としては、CaCu5 型(AB5 型)六方晶、MgNi
2 型(AB2 型)六方晶、MgZn2 型(AB2 型)六
方晶、MgCu2 型(AB2 型)立方晶などの各結晶構
造を有するものが代表的なものとして挙げられるが、特
にこれらに限定されない。
Hydrogen storage alloy E to be evaluated in the present invention
As, CaCu 5 type (AB 5 type) hexagonal crystal, MgNi
Typical examples include those having respective crystal structures such as type 2 (AB 2 type) hexagonal crystal, MgZn 2 type (AB 2 type) hexagonal crystal, and MgCu 2 type (AB 2 type) cubic. It is not limited to these.

【0018】上記AB5 型六方晶構造を有する水素吸蔵
合金のA成分としては、La,Ce,Nd,Pr,Sm
などから選ばれた一種又は二種以上の希土類元素及びC
aが例示され、またB成分としては、Cr,Mn,F
e,Co,Ni,Cu,Sn,Alなどから選ばれた一
種又は二種以上の遷移元素が例示される。
As the component A of the hydrogen storage alloy having the AB 5 type hexagonal crystal structure, there are La, Ce, Nd, Pr and Sm.
One or more rare earth elements and C selected from
a is exemplified, and as the B component, Cr, Mn, F
Examples include one or more kinds of transition elements selected from e, Co, Ni, Cu, Sn, Al and the like.

【0019】また、上記AB2 型六方晶構造を有する水
素吸蔵合金のA成分としては、Ti,Zr,Cr,V、
及び、Ca,Mg等のアルカリ土類金属元素から選ばれ
た一種又は二種以上の元素が例示され、B成分として
は、Cr,Mn,Fe,Co,Ni,Cu,Sn,Al
などから選ばれた一種または二種以上の遷移元素が例示
される。
As the A component of the hydrogen storage alloy having the AB 2 type hexagonal crystal structure, Ti, Zr, Cr, V,
One or more elements selected from alkaline earth metal elements such as Ca and Mg are exemplified, and the B component is Cr, Mn, Fe, Co, Ni, Cu, Sn, Al.
One or more transition elements selected from the above are exemplified.

【0020】[0020]

【作用】本発明方法においては、電極特性と特定のパラ
メータPとの対応を示す検量線を予め求めておき、評価
すべき水素吸蔵合金Eのパラメータ値を、前記検量線と
照合して、当該水素吸蔵合金の電極特性を予測する方法
が採られる。このため、評価すべき水素吸蔵合金Eの電
極特性を、実際に電池を組み立てることなく、迅速に推
定することができるようになる。
In the method of the present invention, a calibration curve showing the correspondence between the electrode characteristics and the specific parameter P is obtained in advance, and the parameter value of the hydrogen storage alloy E to be evaluated is collated with the calibration curve, A method of predicting the electrode characteristics of the hydrogen storage alloy is adopted. Therefore, the electrode characteristics of the hydrogen storage alloy E to be evaluated can be quickly estimated without actually assembling the battery.

【0021】[0021]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0022】(実施例1) 〔水素吸蔵合金の作製〕市販のMm(ミッシュメタル:
希土類元素の混合物)、Ni、Co、Mn及びAlを元
素比1.0:3.1:0.9:0.6:0.4で秤量し
て混合した後、アルゴンガス雰囲気中でアーク溶解し
た。次いで、このアーク溶解して得た合金溶湯を、1×
103 cm/sec、2×103 cm/sec、3×1
3 cm/sec、4×103 cm/sec、5×10
3 cm/sec又は6×103 cm/secの各周速度
で高速回転するロール上に落下させて凝固させ(液体急
冷法)、順に組成式MmNi3.1 Co0.9 Mn0.6 Al
0.4 で表される水素吸蔵合金AL1〜AL6を得た。
(Example 1) [Preparation of hydrogen storage alloy] Commercially available Mm (Misch metal:
(Mixture of rare earth elements), Ni, Co, Mn and Al are weighed and mixed in an element ratio of 1.0: 3.1: 0.9: 0.6: 0.4, and then arc melted in an argon gas atmosphere. did. Then, the alloy melt obtained by this arc melting was
10 3 cm / sec, 2 × 10 3 cm / sec, 3 × 1
0 3 cm / sec, 4 × 10 3 cm / sec, 5 × 10
The compositional formula MmNi 3.1 Co 0.9 Mn 0.6 Al was dropped in order to solidify by dropping onto a roll rotating at a high speed at a peripheral speed of 3 cm / sec or 6 × 10 3 cm / sec (liquid quenching method).
Hydrogen storage alloys AL1 to AL6 represented by 0.4 were obtained.

【0023】〔パラメータPA 及びPB の算出〕上記水
素吸蔵合金AL1〜AL6の各X線回折パターン及び基
準となる水素吸蔵合金のX線回折パターンから、水素吸
蔵合金AL1〜AL6と選択配向性を全く有しない基準
となる水素吸蔵合金との種々の格子面(h1 1 1
, (h2 2 2 )面, …,(hX X X )面にお
ける積分強度比を算出し、これらの積分強度比を下式
(E)中のI(hkl) /Is(hkl)に、また水素吸蔵合金A
L1〜AL6の選択配向面(110)面と各格子面(h
1 1 1 )面, (h2 22 )面, …,(hX X
X )面とのなす角φ1 ,φ2 ,…,φX を下式(E)
中のφに代入し、各水素吸蔵合金の選択配向性(合金組
織)に関連するパラメータ値PA 及びPB (H.Traya an
d F.Maruo,Mineralogical Journal, Vol.10(1981)211参
照)を非線型最小二乗法を用いて求めた。ここでは、基
準となる水素吸蔵合金として選択配向性を全く有しない
ものを使用したが、必ずしもその必要はなく、選択配向
性を有するものを使用してもよい。結果を表1に示す。
[Calculation of Parameters P A and P B ] From the X-ray diffraction patterns of the hydrogen storage alloys AL1 to AL6 and the reference X-ray diffraction pattern of the hydrogen storage alloys, the hydrogen storage alloys AL1 to AL6 and the selective orientation are selected. Various lattice planes (h 1 k 1 l 1 ) with a hydrogen storage alloy that is a standard that has no
, (H 2 k 2 l 2 ) plane , ..., (h X k X l x ) plane, the integrated intensity ratios are calculated, and these integrated intensity ratios are I (hkl) / I in the following formula (E). s (hkl) , also hydrogen storage alloy A
L1-AL6 selective orientation planes (110) planes and lattice planes (h
1 k 1 l 1 ) plane , (h 2 k 2 l 2 ) plane , …, (h X k X
The angle φ 1 , φ 2 , ..., φ X formed with the l X ) plane is expressed by the following equation (E).
Parameter values P A and P B (H.Traya an) related to the selective orientation (alloy structure) of each hydrogen storage alloy.
d F. Maruo, Mineralogical Journal, Vol.10 (1981) 211)) was obtained using the nonlinear least squares method. Here, as the reference hydrogen storage alloy, the one having no selective orientation is used, but it is not always necessary, and one having selective orientation may be used. The results are shown in Table 1.

【0024】 I(hkl) /Is(hkl)=PA +(1−PA )exp(−PB ・φ2 ) …(E)I (hkl) / Is (hkl) = P A + (1−P A ) exp (−P B · φ 2 ) ... (E)

【0025】[0025]

【表1】 [Table 1]

【0026】〔試験セルの組立〕水素吸蔵合金AL1〜
AL6を平均粒径約150μmに機械的に粉砕して、6
種の水素吸蔵合金粉末を得た。次いで、これらの各水素
吸蔵合金粉末1g、導電剤としてのニッケル粉末1.2
g、及び、結着剤としてのポリテトラフルオロエチレン
(PTFE)0.2gを混合し、圧延して6種の合金ペ
ーストを得た。しかる後、各合金ペーストの所定量をニ
ッケルメッシュで包み、プレス加工して直径20mmの
円板状の水素吸蔵合金電極A1〜A6を作製した。
[Assembly of Test Cell] Hydrogen Storage Alloy AL1
AL6 is mechanically crushed to an average particle size of about 150 μm,
A seed hydrogen storage alloy powder was obtained. Next, 1 g of each of these hydrogen storage alloy powders and 1.2 nickel powders as a conductive agent
g and polytetrafluoroethylene (PTFE) 0.2 g as a binder were mixed and rolled to obtain 6 kinds of alloy paste. Thereafter, a predetermined amount of each alloy paste was wrapped with nickel mesh and pressed to produce disk-shaped hydrogen storage alloy electrodes A1 to A6 having a diameter of 20 mm.

【0027】次いで、各水素吸蔵合金電極を試験電極
(作用極)とし、この試験電極に対して充分大きな電気
化学容量を有する円筒状の焼結式ニッケル極を対極と
し、板状の焼結式ニッケル極を参照極として、試験セル
を組み立てた。なお、電解液として、30重量%水酸化
カリウム水溶液を用いた。
Next, each hydrogen storage alloy electrode was used as a test electrode (working electrode), and a cylindrical sintered nickel electrode having a sufficiently large electrochemical capacity for this test electrode was used as a counter electrode, and a plate-shaped sintered electrode was used. A test cell was assembled using the nickel electrode as a reference electrode. A 30 wt% potassium hydroxide aqueous solution was used as the electrolytic solution.

【0028】図1は、組み立てた試験セルの模式的斜視
図であり、図示の試験セル1は、円板状のペースト電極
(試験電極;作用極)2、試験電極よりも十分大きな電
気化学容量を持つ円筒状の焼結式ニッケル極(対極)
3、板状の焼結式ニッケル極(参照極)11、絶縁性の
密閉容器(ポリプロピレン製)4などからなる。
FIG. 1 is a schematic perspective view of the assembled test cell. The illustrated test cell 1 includes a disk-shaped paste electrode (test electrode; working electrode) 2 and an electrochemical capacity sufficiently larger than that of the test electrode. Cylindrical Sintered Nickel Electrode (Counter Electrode)
3, a plate-shaped sintered nickel electrode (reference electrode) 11, an insulating closed container (made of polypropylene) 4, and the like.

【0029】焼結式ニッケル極3は、密閉容器4の上面
6に接続された正極リード5により保持されており、ま
たペースト電極2は焼結式ニッケル極3の円筒内略中央
に垂直に位置するように、密閉容器4の上面6に接続さ
れた負極リード7により保持されている。
The sintered nickel electrode 3 is held by a positive electrode lead 5 connected to the upper surface 6 of the hermetically sealed container 4, and the paste electrode 2 is positioned perpendicular to the substantially center of the sintered nickel electrode 3 in the cylinder. Thus, it is held by the negative electrode lead 7 connected to the upper surface 6 of the closed container 4.

【0030】正極リード5及び負極リード7の各端部
は、密閉容器4の上面6を貫通して外部に露出し、それ
ぞれ正極端子5a及び負極端子7aに接続されている。
Each end of the positive electrode lead 5 and the negative electrode lead 7 penetrates the upper surface 6 of the closed container 4 and is exposed to the outside, and is connected to the positive electrode terminal 5a and the negative electrode terminal 7a, respectively.

【0031】ペースト電極2及び焼結式ニッケル極3は
密閉容器4に収容されたアルカリ電解液(30重量%水
酸化カリウム水溶液;図示せず)中に浸漬されており、
またアルカリ電解液の上方空間部には、チッ素ガスが充
填されて、ペースト電極2に所定の圧力がかかるように
されている。
The paste electrode 2 and the sintered nickel electrode 3 are immersed in an alkaline electrolyte (30% by weight potassium hydroxide aqueous solution; not shown) housed in a closed container 4,
The upper space of the alkaline electrolyte is filled with nitrogen gas so that a predetermined pressure is applied to the paste electrode 2.

【0032】また、密閉容器4の上面6の中央部には、
密閉容器4の内圧が所定圧以上に上昇するのを防止する
ために、圧力計8及びリリーフバルブ(逃し弁)9を備
えるリリーフ管10が装着されている。
Further, in the central portion of the upper surface 6 of the closed container 4,
In order to prevent the internal pressure of the closed container 4 from rising above a predetermined pressure, a pressure gauge 8 and a relief pipe 10 including a relief valve 9 are attached.

【0033】〔容量維持率の評価〕各試験セルについ
て、常温(25℃)下で、20mA/gで15時間充電
して1時間休止した後、20mA/gで放電終止電圧
1.0Vまで放電して1時間休止する工程を1サイクル
とする充放電サイクル試験を行い、100サイクル目の
各試験電極の容量維持率(%)を求めた。ここに、容量
維持率とは最大容量(100%)に対する比率である。
[Evaluation of Capacity Retention Ratio] Each test cell was charged at room temperature (25 ° C.) at 20 mA / g for 15 hours, rested for 1 hour, and then discharged at 20 mA / g to a discharge end voltage of 1.0 V. Then, a charge / discharge cycle test in which the step of resting for 1 hour was defined as one cycle, and the capacity retention rate (%) of each test electrode at the 100th cycle was obtained. Here, the capacity retention rate is a ratio to the maximum capacity (100%).

【0034】上記実測により求めた各試験電極の容量維
持率と、水素吸蔵合金AL1〜AL6について求めたパ
ラメータPA 又はPB の値との関係を、それぞれ図2及
び図3に示す。図2は、縦軸に実測により求めた容量維
持率を、また横軸に各水素吸蔵合金のパラメータPA
値をとって示したグラフであり、図3は、縦軸に実測に
より求めた容量維持率を、また横軸に各水素吸蔵合金の
パラメータPB の値をとって示したグラフである。
The relationship between the capacity retention rate of each test electrode obtained by the above-mentioned measurement and the value of the parameter P A or P B obtained for the hydrogen storage alloys AL1 to AL6 is shown in FIGS. 2 and 3, respectively. FIG. 2 is a graph in which the vertical axis shows the capacity retention rate obtained by actual measurement, and the horizontal axis shows the value of the parameter P A of each hydrogen storage alloy. In FIG. 3, the vertical axis shows actual measurement. 6 is a graph showing the capacity retention rate and the value of the parameter P B of each hydrogen storage alloy on the horizontal axis.

【0035】図2及び図3より、実測により求めた容量
維持率と各水素吸蔵合金についてのパラメータPA 又は
B の値との間に略一次関数的(直線的)な相関関係が
存在していることが分かる。
From FIGS. 2 and 3, there is a substantially linear (linear) correlation between the capacity retention obtained by actual measurement and the value of the parameter P A or P B for each hydrogen storage alloy. I understand that.

【0036】そこで、パラメータPA 又はPB の値から
各試験電極の容量維持率を推定すべく、以下の手法を用
いた。
Therefore, in order to estimate the capacity retention rate of each test electrode from the value of the parameter P A or P B , the following method was used.

【0037】先ず、試験電極A1、A3及びA6の実測
により求めた各容量維持率とパラメータPA 及びPB
の相関関係を示す検量線を非線型最小二乗法により求め
た。この検量線を先の図2及び図3中に実線で示す。
First, a calibration curve showing the correlation between each of the capacity maintenance ratios obtained by actual measurement of the test electrodes A1, A3 and A6 and the parameters P A and P B was obtained by the non-linear least square method. This calibration curve is shown by a solid line in FIGS. 2 and 3 above.

【0038】次いで、上記検量線から、試験電極A2、
A4及びA5の容量維持率を推定し、この推定した容量
維持率を、先に実測により求めた容量維持率と比較し
た。推定容量維持率は、水素吸蔵合金AL2、AL4及
びAL5についてのPA 又はPB の値を横軸座標とする
点を検量線上に求め、これらの点の縦軸座標として求め
た。結果を、表2に示す。
Next, from the above calibration curve, the test electrode A2,
The capacity retention rates of A4 and A5 were estimated, and this estimated capacity retention rate was compared with the capacity retention rate previously obtained by actual measurement. The estimated capacity retention rate was obtained as points on the calibration curve with the horizontal axis representing the value of P A or P B for hydrogen storage alloys AL2, AL4, and AL5, and as the vertical axis coordinates of these points. The results are shown in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】表2に示すように、検量線から推定した試
験電極A2、A4及びA5の各容量維持率と実測により
求めたこれら各試験電極の容量維持率とは極めて近似し
ている。このことから、パラメータPA 又はPB を用い
ることにより、容量維持率を高精度に推定し得ることが
分かる。
As shown in Table 2, the capacity maintenance rates of the test electrodes A2, A4 and A5 estimated from the calibration curve and the capacity maintenance rates of the respective test electrodes obtained by actual measurement are very close to each other. From this, it is understood that the capacity maintenance rate can be estimated with high accuracy by using the parameter P A or P B.

【0041】〔活性化度の評価〕各試験セルについて、
20mA/gで15時間充電して1時間休止した後、1
00mA/gで放電終止電圧1.0Vまで放電したとき
の放電容量C1 と、引き続き20mA/gで放電終止電
圧1.0Vまで放電したときの放電容量C2 とを求め、
これら放電容量C1 ,C2 から下式にしたがって活性化
度(%)を求めた。
[Evaluation of Degree of Activation] For each test cell,
After charging for 15 hours at 20mA / g and resting for 1 hour, 1
The discharge capacity C 1 when discharged to a discharge end voltage of 1.0 V at 00 mA / g and the discharge capacity C 2 when discharged to a discharge end voltage of 1.0 V at 20 mA / g are obtained,
The activation degree (%) was determined from these discharge capacities C 1 and C 2 according to the following formula.

【0042】 活性化度=C1 /(C1 +C2 )×100 …(F)Activation degree = C 1 / (C 1 + C 2 ) × 100 (F)

【0043】上記実測により求めた各試験電極の活性化
度と、水素吸蔵合金AL1〜AL6について予め求めて
おいたパラメータPA 又はPB の値との関係を、それぞ
れ図4及び図5に示す。図4は、縦軸に実測により求め
た活性化度を、また横軸に各水素吸蔵合金のパラメータ
A の値をとって示したグラフであり、図5は、縦軸に
実測により求めた活性化度を、また横軸に各水素吸蔵合
金のパラメータPB の値をとって示したグラフである。
The relationship between the activation degree of each test electrode obtained by the above-mentioned actual measurement and the value of the parameter P A or P B previously obtained for the hydrogen storage alloys AL1 to AL6 is shown in FIGS. 4 and 5, respectively. . FIG. 4 is a graph in which the vertical axis represents the measured activation degree and the horizontal axis represents the value of the parameter P A of each hydrogen storage alloy. In FIG. 5, the vertical axis represents the measured value. 6 is a graph showing the degree of activation and the value of the parameter P B of each hydrogen storage alloy on the horizontal axis.

【0044】図4及び図5より、実測により求めた活性
化度と各水素吸蔵合金についてのパラメータPA 又はP
B の値との間に略一次関数的(直線的)な相関関係が存
在していることが分かる。
From FIGS. 4 and 5, the degree of activation obtained by actual measurement and the parameter P A or P for each hydrogen storage alloy were obtained.
It can be seen that there is a substantially linear (linear) correlation with the value of B.

【0045】そこで、パラメータPA 又はPB の値から
各試験電極の活性化度を推定すべく、以下の手法を用い
た。
Therefore, in order to estimate the activation degree of each test electrode from the value of the parameter P A or P B , the following method was used.

【0046】先ず、試験電極A1、A3及びA6の実測
により求めた各活性化度とパラメータPA 及びPB との
相関関係を示す検量線を非線型最小二乗法により求め
た。この検量線を先の図4及び図5中に実線で示す。
First, a calibration curve showing the correlation between each activation degree and the parameters P A and P B obtained by actually measuring the test electrodes A1, A3 and A6 was obtained by the non-linear least square method. This calibration curve is shown by a solid line in FIGS. 4 and 5 above.

【0047】次いで、上記検量線から、試験電極A2、
A4及びA5の活性化度を推定し、この推定した活性化
度を、先に実測により求めた活性化度と比較した。推定
活性化度は、水素吸蔵合金AL2、AL4及びAL5に
ついてのPA 又はPB の値を横軸座標とする点を検量線
上に求め、この点の縦軸座標として求めた。結果を、表
3に示す。
Next, from the above calibration curve, the test electrode A2,
The activation degree of A4 and A5 was estimated, and this estimated activation degree was compared with the activation degree previously obtained by actual measurement. The estimated activation degree was obtained as a vertical axis coordinate of a point on the calibration curve with the horizontal axis representing the value of P A or P B for the hydrogen storage alloys AL2, AL4 and AL5. The results are shown in Table 3.

【0048】[0048]

【表3】 [Table 3]

【0049】表3に示すように、検量線から推定した試
験電極A2、A4及びA5の各活性化度と実測により求
めたこれら各試験電極の活性化度とは極めて近似してい
る。このことから、パラメータPA 又はPB を用いるこ
とにより、活性化度を高精度に推定し得ることが分か
る。
As shown in Table 3, the activation degrees of the test electrodes A2, A4 and A5 estimated from the calibration curve and the activation degrees of these test electrodes obtained by actual measurement are very close to each other. From this, it is understood that the activation degree can be estimated with high accuracy by using the parameter P A or P B.

【0050】(実施例2) 〔水素吸蔵合金の作製〕Ti、Zr、Ni、Co、V及
びMnを元素比0.5:0.5:1.0:0.2:0.
5:0.3で秤量して混合した後、アルゴンガス雰囲気
中でアーク溶解した。次いで、このアーク溶解して得た
合金溶湯を、1×103 cm/sec、2×103 cm
/sec、3×103 cm/sec、4×103 cm/
sec、5×103 cm/sec又は6×103 cm/
secの各周速度で高速回転するロール上に落下させて
凝固させ(液体急冷法)、順に組成式Ti0.5 Zr0.5
NiCo0.2 0.5 Mn0.3 で表される水素吸蔵合金A
L7〜AL12を得た。
(Example 2) [Preparation of hydrogen storage alloy] Ti, Zr, Ni, Co, V and Mn were added in an element ratio of 0.5: 0.5: 1.0: 0.2: 0.
After weighing and mixing at 5: 0.3, arc melting was performed in an argon gas atmosphere. Next, the molten alloy obtained by arc melting was 1 × 10 3 cm / sec, 2 × 10 3 cm
/ Sec, 3 × 10 3 cm / sec, 4 × 10 3 cm /
sec, 5 × 10 3 cm / sec or 6 × 10 3 cm /
It is dropped onto a roll that rotates at high speed at each peripheral speed of sec to solidify (liquid quenching method), and the composition formula Ti 0.5 Zr 0.5
Hydrogen storage alloy A represented by NiCo 0.2 V 0.5 Mn 0.3
L7 to AL12 were obtained.

【0051】〔パラメータPA 及びPB の算出〕上記水
素吸蔵合金AL7〜AL12の各X線回折パターン及び
基準となる水素吸蔵合金のX線回折パターンから、水素
吸蔵合金AL7〜AL12と選択配向性を全く有しない
基準となる水素吸蔵合金との種々の格子面(h1 1
1 )面,(h2 2 2 )面, …,(hX X X )面
における積分強度比を算出し、これらの積分強度比を上
式(E)中のI(hkl) /Is(hkl)に、また水素吸蔵合金
AL7〜AL12の選択配向面(002)面と各格子面
(h1 1 1 )面, (h2 2 2 )面, …,(hX
X X )面とのなす角φ1 ,φ2 ,…,φX を上式
(E)中のφに代入し、各水素吸蔵合金の選択配向性
(合金組織)に関連するパラメータ値PA 及びPB を非
線型最小二乗法を用いて求めた。結果を表4に示す。
[Calculation of Parameters P A and P B ] From the X-ray diffraction patterns of the above hydrogen storage alloys AL7 to AL12 and the reference X-ray diffraction pattern of the hydrogen storage alloys, the hydrogen storage alloys AL7 to AL12 and the selective orientation are selected. Of various lattice planes (h 1 k 1 l
1 ) planes , (h 2 k 2 l 2 ) planes , ..., (h X k X l X ) planes are calculated, and these integrated intensity ratios are calculated as I (hkl) in the above equation (E ). / I s (hkl) , the selective orientation planes (002) planes of the hydrogen storage alloys AL7 to AL12 and the respective lattice planes (h 1 k 1 l 1 ) planes , (h 2 k 2 l 2 ) planes , ..., ( h X
k X l angle phi 1 and X) plane, φ 2, ..., φ X substituted in phi in the formula (E) the relevant parameter values to the selected orientation of each of the hydrogen absorbing alloy (alloy structure) P A and P B were determined using the nonlinear least squares method. The results are shown in Table 4.

【0052】[0052]

【表4】 [Table 4]

【0053】〔容量維持率の評価〕上記水素吸蔵合金A
L7〜AL12を試験電極として用いたこと以外は、実
施例1と同様にして試験セルを組み立て、各試験セルに
ついて充放電サイクル試験を行い、100サイクル目の
各試験電極の容量維持率(%)を求めた。各試験セルの
充放電サイクル試験は、実施例1の充放電サイクル条件
と同じ条件で行った。
[Evaluation of Capacity Maintenance Rate] The above hydrogen storage alloy A
A test cell was assembled in the same manner as in Example 1 except that L7 to AL12 were used as test electrodes, and a charge / discharge cycle test was performed on each test cell to determine the capacity retention rate (%) of each test electrode at the 100th cycle. I asked. The charge / discharge cycle test of each test cell was performed under the same conditions as the charge / discharge cycle conditions of Example 1.

【0054】上記実測により求めた各試験電極の容量維
持率と、水素吸蔵合金AL7〜AL12について求めた
パラメータPA 又はPB の値との関係を、それぞれ図6
及び図7に示す。図6は、縦軸に実測により求めた容量
維持率を、また横軸に各水素吸蔵合金のパラメータPA
の値をとって示したグラフであり、図7は、縦軸に実測
により求めた容量維持率を、また横軸に各水素吸蔵合金
のパラメータPB の値をとって示したグラフである。
The relationship between the capacity retention rate of each test electrode obtained by the above-mentioned actual measurement and the value of the parameter P A or P B obtained for the hydrogen storage alloys AL7 to AL12 is shown in FIG.
7 and FIG. 6, the capacity retention rate was determined by actual measurement on the vertical axis, also the horizontal axis of each of the hydrogen absorbing alloy parameter P A
7 is a graph in which the vertical axis represents the capacity retention rate obtained by actual measurement, and the horizontal axis represents the value of the parameter P B of each hydrogen storage alloy.

【0055】図6及び図7より、実測により求めた容量
維持率と各水素吸蔵合金についてのパラメータPA 又は
B の値との間に略一次関数的(直線的)な相関関係が
存在することが分かる。
From FIGS. 6 and 7, there is a substantially linear (linear) correlation between the capacity retention obtained by actual measurement and the value of the parameter P A or P B for each hydrogen storage alloy. I understand.

【0056】そこで、パラメータPA 又はPB の値から
各試験電極の容量維持率を推定すべく、以下の手法を用
いた。
Therefore, in order to estimate the capacity retention rate of each test electrode from the value of the parameter P A or P B , the following method was used.

【0057】先ず、試験電極A7、A9及びA12の実
測により求めた各容量維持率とパラメータPA 及びPB
との相関関係を示す検量線を非線型最小二乗法により求
めた。この検量線を先の図6及び図7中に実線で示す。
First, each capacity maintenance ratio and the parameters P A and P B obtained by the actual measurement of the test electrodes A7, A9 and A12.
The calibration curve showing the correlation with was obtained by the nonlinear least squares method. This calibration curve is shown by a solid line in FIGS. 6 and 7 above.

【0058】次いで、上記検量線から、試験電極A7、
A9及びA12の容量維持率を推定し、この推定した容
量維持率を、先に実測により求めた容量維持率と比較し
た。推定容量維持率は、水素吸蔵合金AL7、AL9及
びAL12についてのPA 又はPB の値を横軸座標とす
る点を検量線上に求め、この点の縦軸座標として求め
た。結果を、表5に示す。
Next, from the above calibration curve, test electrode A7,
The capacity retention rates of A9 and A12 were estimated, and this estimated capacity retention rate was compared with the capacity retention rate previously obtained by actual measurement. The estimated capacity retention rate was obtained by obtaining a point on the calibration curve having the value of P A or P B for the hydrogen storage alloys AL7, AL9, and AL12 as the abscissa, and the ordinate of this point. The results are shown in Table 5.

【0059】[0059]

【表5】 [Table 5]

【0060】表5に示すように、検量線から推定した試
験電極A7、A9及びA12の各容量維持率と実測によ
り求めたこれら各試験電極の容量維持率とは極めて近似
している。このことから、パラメータPA 又はPB を用
いることにより、容量維持率を高精度に推定し得ること
が分かる。
As shown in Table 5, the capacity retention rates of the test electrodes A7, A9 and A12 estimated from the calibration curve and the capacity retention rates of these test electrodes obtained by actual measurement are very similar. From this, it is understood that the capacity maintenance rate can be estimated with high accuracy by using the parameter P A or P B.

【0061】〔活性化度の評価〕各試験電極の活性化度
(%)を実施例1と同様にして求めた。各試験セルの充
放電は、実施例1で活性化度を評価した際の充放電条件
と同じ条件で行った。
[Evaluation of degree of activation] The degree of activation (%) of each test electrode was determined in the same manner as in Example 1. Charging / discharging of each test cell was performed under the same charging / discharging conditions when the activation degree was evaluated in Example 1.

【0062】上記実測により求めた各試験電極の活性化
度と、水素吸蔵合金AL7〜AL12について求めたパ
ラメータPA 又はPB の値との関係を、それぞれ図8及
び図9に示す。図8は、縦軸に実測により求めた活性化
度を、また横軸に各水素吸蔵合金のパラメータPA の値
をとって示したグラフであり、図9は、縦軸に実測によ
り求めた活性化度を、また横軸に各水素吸蔵合金のパラ
メータPB の値をとって示したグラフである。
The relationship between the activation degree of each test electrode obtained by the above actual measurement and the value of the parameter P A or P B obtained for the hydrogen storage alloys AL7 to AL12 is shown in FIGS. 8 and 9, respectively. FIG. 8 is a graph in which the ordinate represents the measured activation degree and the abscissa represents the value of the parameter P A of each hydrogen storage alloy. In FIG. 9, the ordinate represents the measured value. 6 is a graph showing the degree of activation and the value of the parameter P B of each hydrogen storage alloy on the horizontal axis.

【0063】図8及び図9より、実測により求めた活性
化度と各水素吸蔵合金についてのパラメータPA 又はP
B の値との間に略一次関数的(直線的)な相関関係が存
在することが分かる。
From FIGS. 8 and 9, the degree of activation obtained by actual measurement and the parameter P A or P for each hydrogen storage alloy
It can be seen that there is a substantially linear (linear) correlation with the value of B.

【0064】そこで、パラメータPA 又はPB の値から
各試験電極の活性化度を推定すべく、以下の手法を用い
た。
Therefore, in order to estimate the activation degree of each test electrode from the value of the parameter P A or P B , the following method was used.

【0065】先ず、試験電極A7、A9及びA12の実
測により求めた各活性化度とパラメータPA 及びPB
の相関関係を示す検量線を非線型最小二乗法により求め
た。この検量線を先の図8及び図9中に実線で示す。
First, a calibration curve showing the correlation between the parameters P A and P B and the respective degrees of activation obtained by actually measuring the test electrodes A7, A9 and A12 was obtained by the non-linear least squares method. This calibration curve is shown by a solid line in FIGS. 8 and 9 above.

【0066】次いで、上記検量線から、試験電極A8、
A10及びA11の活性化度を推定し、この推定した活
性化度を、先に実測により求めた活性化度と比較した。
推定活性化度は、水素吸蔵合金AL8、AL10及びA
L11についてのPA 又はPB の値を横軸座標とする点
を検量線上に求め、この点の縦軸座標として求めた。結
果を、表6に示す。
Then, from the above calibration curve, the test electrode A8,
The activation degree of A10 and A11 was estimated, and this estimated activation degree was compared with the activation degree previously obtained by actual measurement.
Estimated activation degree is hydrogen storage alloys AL8, AL10 and A
A point having the value of P A or P B for L11 as the abscissa coordinate was obtained on the calibration curve and obtained as the ordinate coordinate of this point. The results are shown in Table 6.

【0067】[0067]

【表6】 [Table 6]

【0068】表6に示すように、検量線から推定した試
験電極A8、A10及びA11の各活性化度と実測によ
り求めたこれら各試験電極の活性化度とは極めて近似し
ている。このことから、パラメータPA 又はPB を用い
ることにより、活性化度を高精度に推定し得ることが分
かる。
As shown in Table 6, the activation degrees of the test electrodes A8, A10 and A11 estimated from the calibration curve and the activation degrees of the test electrodes obtained by actual measurement are very close to each other. From this, it is understood that the activation degree can be estimated with high accuracy by using the parameter P A or P B.

【0069】実施例1及び実施例2に示したように、合
金組成が同じものについては、共通の検量線を用いて各
水素吸蔵合金の電極特性を推定することが可能である
が、合金組成が変わった場合には、その合金についての
検量線を新たに作成して評価する必要がある。
As shown in Examples 1 and 2, for the same alloy composition, it is possible to estimate the electrode characteristics of each hydrogen storage alloy using a common calibration curve. If the value changes, it is necessary to create a new calibration curve for the alloy and evaluate it.

【0070】また、叙上の実施例では、評価すべき水素
吸蔵合金としてMmNi3.1 Co0.9 Mn0.6 Al0.4
及びTi0.5 Zr0.5 NiCo0.2 0.5 Mn0.3 を例
に挙げて説明したが、本発明は、水素吸蔵合金の種類に
ついては特に問われない。
In the above examples, MmNi 3.1 Co 0.9 Mn 0.6 Al 0.4 was selected as the hydrogen storage alloy to be evaluated.
And Ti 0.5 Zr 0.5 NiCo 0.2 V 0.5 Mn 0.3 have been described as an example, but the present invention does not particularly limit the kind of the hydrogen storage alloy.

【0071】さらに、上記実施例では、本発明を容量維
持率及び活性化度の評価に適用する場合を具体例に挙げ
て説明したが、本発明は、合金の耐食性、初期容量など
の他の電極特性の評価にも好適に適用し得るものであ
る。
Further, in the above-mentioned examples, the case where the present invention is applied to the evaluation of the capacity retention rate and the activation degree was described as a specific example, but the present invention is not limited to the corrosion resistance of the alloy, the initial capacity and the like. It can be suitably applied to evaluation of electrode characteristics.

【0072】さらにまた、上記実施例では、F(φ)=
(hkl) /Is(hkl)を満足する関数F(φ)として、P
A +(1−PA )exp(−PB ・φ2 )を用いたが、
特定のパラメータを介して電極特性を、高精度に決定し
得る関数であれば、特に制限なく用いることができる。
Furthermore, in the above embodiment, F (φ) =
As a function F (φ) that satisfies I (hkl) / I s (hkl) , P
A + (1-P A ) exp (-P B · φ 2 ) was used,
Any function can be used without particular limitation as long as it is a function that can determine the electrode characteristics with high accuracy through specific parameters.

【0073】[0073]

【発明の効果】水素吸蔵合金の電極特性を迅速に評価す
ることができる。
The electrode characteristics of the hydrogen storage alloy can be evaluated quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で組み立てた試験セルの斜視図である。FIG. 1 is a perspective view of a test cell assembled in an example.

【図2】パラメータPA と容量維持率との関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between a parameter P A and a capacity maintenance rate.

【図3】パラメータPB と容量維持率との関係を示すグ
ラフである。
FIG. 3 is a graph showing a relationship between a parameter P B and a capacity retention rate.

【図4】パラメータPA と活性化度との関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between the parameter P A and the degree of activation.

【図5】パラメータPB と活性化度との関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the parameter P B and the degree of activation.

【図6】パラメータPA と容量維持率との関係を示すグ
ラフである。
FIG. 6 is a graph showing a relationship between a parameter P A and a capacity retention rate.

【図7】パラメータPB と容量維持率との関係を示すグ
ラフである。
FIG. 7 is a graph showing a relationship between a parameter P B and a capacity retention rate.

【図8】パラメータPA と活性化度との関係を示すグラ
フである。
FIG. 8 is a graph showing the relationship between the parameter P A and the degree of activation.

【図9】パラメータPB と活性化度との関係を示すグラ
フである。
FIG. 9 is a graph showing the relationship between the parameter P B and the degree of activation.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月15日[Submission date] December 15, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】また、上記AB型六方晶構造或いは立方
晶構造を有する水素吸蔵合金のA成分としては、Ti,
Zr,Cr,V、及び、Ca,Mg等のアルカリ土類金
属元素から選ばれた一種又は二種以上の元素が例示さ
れ、B成分としては、Cr,Mn,Fe,Co,Ni,
Cu,Sn,Alなどから選ばれた一種または二種以上
の遷移元素が例示される。
The AB 2 type hexagonal structure or cubic
As the component A of the hydrogen storage alloy having a crystal structure , Ti,
Zr, Cr, V, and one or more elements selected from alkaline earth metal elements such as Ca and Mg are exemplified. As the B component, Cr, Mn, Fe, Co, Ni,
One or more kinds of transition elements selected from Cu, Sn, Al, etc. are exemplified.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 宏 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 中村 優美子 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── (72) Inventor Hiroshi Nakamura 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Yumiko Nakamura 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. Incorporated (72) Inventor Ikuro Yonezu 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】格子面(h。k。l。)面に選択配向性を
有し、且つ、評価すべき水素吸蔵合金Eと合金組成を同
じくする、合金組織を互いに異にする複数の検量線作成
用水素吸蔵合金M1 ,M2 ,…,MX についての下式
(A)を満足する関数F(φ)中のパラメータPの値P
1 ,P2 ,…,PX を、前記検量線作成用水素吸蔵合金
1 ,M2 ,…,MX と、基準となる水素吸蔵合金Sと
の、任意に選択した格子面(h1 1 1 )面,(h2
2 2 )面,…,(hX X X )面におけるX線回
折ピークの積分強度比IM1(h1k1l1)/Is(h1k1l1) ,I
M2(h2k2l2)/Is(h2k2l2) ,…,IMX(hXkXlX)/I
s(hXkXlX) 、及び、前記格子面(h1 1 1)面,
(h2 2 2 )面,…,(hX X X )面と前記格
子面(h。k。l。)面とのなす角φ1 ,φ2 ,…,φ
X を、それぞれ下式(A)中のI(hkl) /Is(hkl)及び
φに代入することにより求めるステップ(1)と、 前記P1 ,P2 ,…, x と、前記検量線作成用水素吸
蔵合金M1 ,M2 ,…, X の電極材料としての特性を
表す実測値T1 ,T2 ,…, X との対応を示す検量線
を作成するステップ(2)と、 前記評価すべき水素吸蔵合金Eについての前記パラメー
タPの値PE を、当該評価すべき水素吸蔵合金Eと、前
記基準となる水素吸蔵合金Sとの、任意に選択した格子
面(hE1E1E1)面,(hE2E2E2)面,…,(h
EYEYEY)面におけるX線回折ピークの積分強度比I
E1(hE1KE1lE1) /Is(hE1kE1lE1),IE2(hE2KE2lE2)
s(hE2kE2lE2),…,IEY(hEYKEYlEY) /I
s(hEYkEYlEY)、及び、前記格子面(hE1E1E1)面,
(hE2E2E2)面,…,(hEYEYEY)面と前記格
子面(h。k。l。)面とのなす角φE1,φE2,…,φ
EYを、それぞれ下式(A)中のI(hkl) /Is(hkl)及び
φに代入することにより求めるステップ(3)と、 前記PE を前記検量線と照合して、前記評価すべき水素
吸蔵合金Eの電極材料としての特性を推定するステップ
(4)とを有してなる電極用水素吸蔵合金の評価方法。 F(φ)=I(hkl) /Is(hkl) …(A) 〔但し、式中、I(hkl) は格子面(hkl)面における
前記検量線作成用水素吸蔵合金M1 ,M2 ,…,MX
は前記評価すべき水素吸蔵合金EのX線回折ピークの積
分強度;Is(hkl)は前記基準となる水素吸蔵合金Sの前
記格子面(hkl)面におけるX線回折ピークの積分強
度;F(φ)は、前記検量線作成用水素吸蔵合金M1
2 ,…,MX 又は前記評価すべき水素吸蔵合金Eの合
金組織に対応して変化し、それらの電極材料としての特
性を一義的に決定するパラメータPを有するφの関数;
φは前記格子面(h。k。l。)面と前記格子面(hk
l)面とのなす角(単位:ラジアン)である。〕
1. A plurality of calibrations having different orientations in a lattice plane (h.k.l.) and having the same alloy composition as the hydrogen storage alloy E to be evaluated and having a selective orientation. line creation hydrogen storage alloy M 1, M 2, ..., the value of the parameter P of the function F (phi) in satisfying the following formula (a) for the M X P
1, P 2, ..., a P X, the calibration curve for the hydrogen storage alloy M 1, M 2, ..., M X and, between the hydrogen-absorbing alloy S as a reference, arbitrarily selected grid plane (h 1 k 1 l 1 ) plane, (h 2
The integrated intensity ratio I M1 (h1k1l1) / I s (h1k1l1) , I of the X-ray diffraction peaks in the (k 2 l 2 ) plane, ..., (h X k X l X ) plane
M2 (h2k2l2) / I s (h2k2l2) , ..., I MX (hXkXlX) / I
s (hXkXlX) and the lattice plane (h 1 k 1 l 1 ) plane,
, (H 2 k 2 l 2 ) planes, ..., (h x k x l x ) planes and the lattice planes (h.k.l.) planes φ 1 , φ 2 , ..., φ
Step (1), which is obtained by substituting X into I (hkl) / I s (hkl) and φ in the following formula (A), the P 1 , P 2 , ... , P x, and the calibration. line creation hydrogen storage alloy M 1, M 2, ..., Found T 1, T 2 representing the characteristic of the electrode material M X, ..., creating a calibration curve showing a correspondence between T X (2) And a value P E of the parameter P for the hydrogen storage alloy E to be evaluated, the lattice plane (h) of the hydrogen storage alloy E to be evaluated and the reference hydrogen storage alloy S E1 k E1 l E1 ) plane, (h E2 k E2 l E2 ) plane, ..., (h
EY k EY l EY ) X-ray diffraction peak integrated intensity ratio I
E1 (hE1KE1lE1) / Is (hE1kE1lE1) , IE2 (hE2KE2lE2) /
I s (hE2kE2lE2) ,…, I EY (hEYKEYlEY) / I
s (hEYkEYlEY) and the lattice plane (h E1 k E1 l E1 ) plane,
, (H E2 k E2 l E2 ) planes, ..., (h EY k EY l EY ) planes and the lattice planes (h.k.l.) planes φ E1 , φ E2 , ..., φ
EY is substituted into I (hkl) / I s (hkl) and φ in the following formula (A) to obtain (3), and the P E is compared with the calibration curve to perform the evaluation. A method for evaluating a hydrogen storage alloy for an electrode, which comprises the step (4) of estimating the characteristics of the hydrogen storage alloy E to be an electrode material. F (φ) = I (hkl) / I s (hkl) (A) [wherein I (hkl) is the hydrogen storage alloys M 1 and M 2 for creating the calibration curve on the lattice plane (hkl) plane] , M X or the integrated intensity of the X-ray diffraction peak of the hydrogen storage alloy E to be evaluated; I s (hkl) is the X-ray diffraction peak of the reference hydrogen storage alloy S on the lattice plane (hkl) plane. F (φ) is the hydrogen storage alloy M 1 for preparing the calibration curve,
M 2, ..., varies in response to the alloy structure of the M X or said to be evaluated hydrogen storage alloy E, a function of φ having a parameter P which determines the properties as those of the electrode material unambiguously;
φ is the lattice plane (h.k.l.) plane and the lattice plane (hk.l)
l) The angle formed by the plane (unit: radian). ]
【請求項2】前記F(φ)として、下式(B)で特定さ
れるφの関数を用いる請求項1記載の電極用水素吸蔵合
金の評価方法。 F(φ)=PA +(1−PA )exp(−PB ・φ2 ) …(B) 〔但し、式中、PA 及びPB は前記検量線作成用水素吸
蔵合金M1 ,M2 ,…,MX 及び前記評価すべき水素吸
蔵合金Eの合金組織に対応して変化し、それらの電極材
料としての特性を一義的に決定するパラメータであっ
て、いずれも前記パラメータPに相当するもの;φは前
記格子面(h。k。l。)面と前記格子面(hkl)面
とのなす角(単位:ラジアン)である。〕
2. The method for evaluating a hydrogen storage alloy for an electrode according to claim 1, wherein a function of φ specified by the following formula (B) is used as the F (φ). F (φ) = P A + (1-P A ) exp (−P B · φ 2 ) ... (B) [wherein, P A and P B are the hydrogen storage alloy M 1 for preparing the calibration curve, , M X and M 2 and the parameters that change corresponding to the alloy structure of the hydrogen storage alloy E to be evaluated and uniquely determine the characteristics of these as the electrode material. Corresponding thing: φ is an angle (unit: radian) formed by the lattice plane (h.k.l.) plane and the lattice plane (hkl) plane. ]
【請求項3】前記格子面(hE1E1E1)面,(hE2
E2E2)面,…,(hEYEYEY)面の全部又は一部の
格子面が、それぞれ前記格子面(h1 1 1 )面,
(h22 2 )面,…,(hX X X )面と同じ格
子面である請求項1又は2記載の電極用水素吸蔵合金の
評価方法。
3. The lattice planes (h E1 k E1 l E1 ) planes, (h E2 k
E2 l E2 ), ..., (h EY k EY l EY ) all or part of the lattice planes is the lattice plane (h 1 k 1 l 1 ) plane,
The method for evaluating a hydrogen storage alloy for an electrode according to claim 1 or 2, wherein the lattice plane is the same as the (h 2 k 2 l 2 ) plane, ..., (h X k X l X ) plane.
【請求項4】前記ステップ(1)における前記P1 ,P
2 ,…,PX の各値を最小二乗法により求める請求項1
又は2記載の電極用水素吸蔵合金の評価方法。
4. The P 1 , P in the step (1)
2. Each value of 2 , ..., P X is obtained by the least square method.
Alternatively, the method for evaluating a hydrogen storage alloy for an electrode according to item 2.
【請求項5】前記ステップ(3)における前記PE の値
を最小二乗法により求める請求項1又は2記載の電極用
水素吸蔵合金の評価方法。
5. The method for evaluating a hydrogen storage alloy for an electrode according to claim 1, wherein the value of P E in step (3) is determined by a least squares method.
JP5280623A 1993-10-08 1993-10-13 Evaluation method for hydrogen storage alloy for electrode Pending JPH07111152A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5280623A JPH07111152A (en) 1993-10-13 1993-10-13 Evaluation method for hydrogen storage alloy for electrode
EP94115880A EP0652601B1 (en) 1993-10-08 1994-10-07 Method for evaluating hydrogen-absorbing alloys for electrode.
DE69420104T DE69420104T2 (en) 1993-10-08 1994-10-07 Process for the evaluation of hydrogen-absorbing alloys for electrodes.
US08/676,574 US5688341A (en) 1993-10-08 1996-07-01 Hydrogen-absorbing alloy electrode and method for evaluating hydrogen-absorbing alloys for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5280623A JPH07111152A (en) 1993-10-13 1993-10-13 Evaluation method for hydrogen storage alloy for electrode

Publications (1)

Publication Number Publication Date
JPH07111152A true JPH07111152A (en) 1995-04-25

Family

ID=17627635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5280623A Pending JPH07111152A (en) 1993-10-08 1993-10-13 Evaluation method for hydrogen storage alloy for electrode

Country Status (1)

Country Link
JP (1) JPH07111152A (en)

Similar Documents

Publication Publication Date Title
Liu et al. Electrochemical performance of TiVNi-Quasicrystal and AB3-Type hydrogen storage alloy composite materials
Zhang et al. Structure and electrochemical performances of Mg2Ni1− xMnx (x= 0–0.4) electrode alloys prepared by melt spinning
US5376474A (en) Hydrogen-absorbing alloy for a negative electrode and manufacturing method therefor
Huang et al. Reducing the electrochemical capacity decay of milled Mg–Ni alloys: the role of stabilizing amorphous phase by Ti-substitution
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
Kim et al. Effects of F-treatment on degradation of Mg2Ni electrode fabricated by mechanical alloying
US6733724B1 (en) Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
Tang et al. Deterioration of copper-containing mischmetal-nickel-based hydrogen absorption electrode materials
US5688341A (en) Hydrogen-absorbing alloy electrode and method for evaluating hydrogen-absorbing alloys for electrode
Petrii et al. Electrochemistry of hydride-forming intermetallic compounds and alloys
Zhang et al. Hydrogen storage performances of LaMg11Ni+ x wt% Ni (x= 100, 200) alloys prepared by mechanical milling
Tan et al. The performances of La1− xCexNi5 (0≤ x≤ 1) hydrogen storage alloys studied by powder microelectrode
JPH07111152A (en) Evaluation method for hydrogen storage alloy for electrode
JP3301792B2 (en) Hydrogen storage alloy electrode
JP3416347B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3322452B2 (en) Rare earth hydrogen storage alloy for alkaline storage batteries
JP3291356B2 (en) Hydrogen storage alloy electrode
JP3500031B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH09199120A (en) Secondary battery
JPH0949034A (en) Production of hydrogen storage alloy
JP3432866B2 (en) Hydrogen storage alloy electrodes for alkaline storage batteries
JP3432844B2 (en) Evaluation method of hydrogen storage alloy electrode
KR100237137B1 (en) Electrode material alloy for secondary cell composed of ni/mh
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
Shahcheraghi et al. Effects of TiO2 additive on electrochemical hydrogen storage properties of nanocrystalline/amorphous Mg2Ni intermetallic alloy