JPH07110337B2 - Air flow type powder mixing method - Google Patents

Air flow type powder mixing method

Info

Publication number
JPH07110337B2
JPH07110337B2 JP63208030A JP20803088A JPH07110337B2 JP H07110337 B2 JPH07110337 B2 JP H07110337B2 JP 63208030 A JP63208030 A JP 63208030A JP 20803088 A JP20803088 A JP 20803088A JP H07110337 B2 JPH07110337 B2 JP H07110337B2
Authority
JP
Japan
Prior art keywords
powder
gas
mixing
mixing tank
gas inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63208030A
Other languages
Japanese (ja)
Other versions
JPH01159039A (en
Inventor
一博 今橋
光正 山崎
正機 三隅
昌宏 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63208030A priority Critical patent/JPH07110337B2/en
Publication of JPH01159039A publication Critical patent/JPH01159039A/en
Publication of JPH07110337B2 publication Critical patent/JPH07110337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • B01F33/406Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、窯業、食品工業、化学工業など粉体の混合を
行う産業において用いられる粉体の混合方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a powder mixing method used in industries such as the ceramic industry, food industry, and chemical industry that mix powders.

[従来の従来] 従来のガスを用いた粉体の混合方法には流動化形の混合
方法があるが、この方法による混合装置の一例を第5図
および第6図に示す。
[Conventional Conventional Method] There is a fluidizing type mixing method as a conventional powder mixing method, and an example of a mixing apparatus according to this method is shown in FIGS. 5 and 6.

まず第5図であるが、粉体の混合室は通気性を持つ多孔
質の仕切板8で、上、下部の2室に分けられている。上
部室9には、複数の粉体供給管4を通じて複数の種類の
粉体5が供給され、仕切板8の上に充填される。下部室
10にはファン11によってガス6が吹込まれ、仕切板8お
よびその上部の粉体層12を通過して、上部室9上部空間
へと導かれる。ガス流が粉体層12を通過するとき、粉体
層12の流動化がもたらされ、これによって粉体の混合が
行われる。流動化した粉体層12へは連続的に粉体5が供
給されているので、混合された粉体の排出は、オーバー
フローによって、粉体排出管13から行われる。ガス6が
粉体層12を通過する速度は、粉体をガス流に浮遊させる
ほど大きくはなく、大部分の粒子は仕切板8上部にとど
まり、極く一部の微小な粒子だけが、ガス流とともにバ
グフィルタなどの集塵装置7に導かれる。
First, as shown in FIG. 5, the powder mixing chamber is divided into upper and lower two chambers by a porous partition plate 8 having air permeability. A plurality of types of powders 5 are supplied to the upper chamber 9 through the plurality of powder supply pipes 4 and filled on the partition plate 8. Lower chamber
The gas 6 is blown into the 10 by the fan 11, passes through the partition plate 8 and the powder layer 12 above it, and is guided to the upper space of the upper chamber 9. As the gas stream passes through the powder bed 12, it causes fluidization of the powder bed 12, which results in the mixing of the powders. Since the powder 5 is continuously supplied to the fluidized powder layer 12, the mixed powder is discharged from the powder discharge pipe 13 by overflow. The speed at which the gas 6 passes through the powder layer 12 is not so high as to suspend the powder in the gas flow, most of the particles remain at the upper part of the partition plate 8, and only a very small number of minute particles are gas. It is guided to the dust collector 7 such as a bag filter along with the flow.

第6図に示した混合器も、第5図と同様の流動化形混合
装置であるが排出方法が異なり、下からの抜き出しによ
る。仕切板8は粉体が流れ落ちやすいようにコーン形状
をとり、流動化された粉体はロータリフィーダなどの抜
き出し装置14によって混合器外に取り出される。
The mixer shown in FIG. 6 is also a fluidizing type mixing device similar to that of FIG. 5, but the discharge method is different, and the mixer is drawn from below. The partition plate 8 has a cone shape so that the powder can easily flow down, and the fluidized powder is taken out of the mixer by an extracting device 14 such as a rotary feeder.

このような流動化形の混合装置は、特に大量の粉体を混
合する場合に用いられる。
Such a fluidized type mixing device is used particularly when a large amount of powder is mixed.

形状の面から言えば、本発明は第7、8図に示すような
セメント製造プラントに用いられている仮焼炉と比較的
同じような形状をしている。逆コーン状の下部15に接続
するガス入口ダクト2aと絞り部18を有する中間部17下端
において、内壁に接するように接地されているガス入口
ダクト2bから少なくとも800℃以上の高温ガスが流入
し、粉体は中間部の粉体供給管4から供給される。さら
にこの仮焼炉にはバーナー26が設けられており、前述の
高温ガスとこのバーナー26から与えられる熱によって、
内部に供給されるセメント原料は脱炭酸反応を起し、上
部の出口ダクト3からガスとともに排出される。しか
し、この仮焼炉は粉体を混合するためではなく、粉体を
仮焼(脱炭酸)するために設置されており、複数の種類
の仮焼されるべき粉体が同時に供給されることはない。
また表に示すように本発明と仮焼炉は全く異なる条件で
運転される。
In terms of shape, the present invention has a shape relatively similar to that of a calcination furnace used in a cement manufacturing plant as shown in FIGS. At the lower end of the intermediate portion 17 having the gas inlet duct 2a connected to the inverted cone-shaped lower portion 15 and the narrowed portion 18, a high temperature gas of at least 800 ° C. or more flows in from the gas inlet duct 2b which is grounded so as to be in contact with the inner wall, The powder is supplied from the powder supply pipe 4 in the middle part. Further, this calcination furnace is provided with a burner 26, and by the above-mentioned high temperature gas and heat given from this burner 26,
The cement raw material supplied inside undergoes a decarboxylation reaction, and is discharged together with the gas from the upper outlet duct 3. However, this calcination furnace is installed not for mixing the powders but for calcination (decarbonation) of the powders, and multiple types of powders to be calcined are supplied at the same time. There is no.
Further, as shown in the table, the present invention and the calcination furnace are operated under completely different conditions.

[発明が解決しようとする課題] 以上述べた従来の混合方法には、次のような問題があ
る。
[Problems to be Solved by the Invention] The conventional mixing method described above has the following problems.

(1)ガスは粉体層を通過して流れるため、風量の割に
圧力損失が高く、ファンの消費電力が大きい。
(1) Since the gas flows through the powder layer, the pressure loss is high relative to the air volume, and the power consumption of the fan is large.

(2)混合効率を高めるためには、粉体の滞留時間を長
くしなければならず、大容量の混合スペースを必要とす
る。
(2) In order to improve the mixing efficiency, the residence time of the powder must be lengthened, and a large capacity mixing space is required.

これらの理由により、建設費などのイニシャルコストが
高く、かつ大きな占有スペースを必要とする。
For these reasons, the initial cost such as construction cost is high and a large occupied space is required.

本発明は、かかる従来の混合方法の持つ問題点を解消
し、ファンの電力消費量を抑え、コンパクトで混合効率
の優れた混合方法を提供することを目的とする。
An object of the present invention is to solve the problems of the conventional mixing method, to suppress the power consumption of the fan, to provide a compact and excellent mixing efficiency.

[課題を解決するための手段] 本発明は、周囲には複数の粉体供給管を有し、下部には
ガス入口ダクトが、上部には出口ダクトが設けられてい
る混合槽において、複数の種類の粉体を前記ガス入口ダ
クトから流入し、前記混合槽内を前記粉体を浮遊させる
ことのできる速度以上で流れるガス中に、前記粉体供給
管から連続的に供給し、ガス流とともに出口ダクトを通
って混合槽外へ運ばれた粉体を、下流に設置されたバグ
フィルタなどの集塵装置で捕集することによって、複数
の粉体を均一に混合することを特徴とする気流式粉体混
合方法である。
[Means for Solving the Problems] In the present invention, a plurality of powder supply pipes are provided in the periphery, a gas inlet duct is provided in a lower portion, and an outlet duct is provided in an upper portion. A kind of powder is introduced from the gas inlet duct, and is continuously supplied from the powder supply pipe into a gas that flows in the mixing tank at a speed at which the powder can be floated or more. An air flow characterized by evenly mixing a plurality of powders by collecting the powders carried out of the mixing tank through the outlet duct with a dust filter such as a bag filter installed downstream. Formula powder mixing method.

本発明では、複数の粉体の混合比(粉体とガスの重量流
量の比)を3〜6[kg粉体/kgガス]として供給するの
が好適である。また、前記ガス入口ダクトからは15〜30
[m/s]の速度でガスが流入するとよい。また、混合槽
内では粉体を浮遊させることのできる速度以上でガスが
流れており、供給された複数の種類の粉体はこのガス流
によって混合作用を受けながら、ガスとともに出口ダク
トを通り混合槽外へ運び出される。ガス流に浮遊する粉
体をサイクロンやバグフィルタなどの集塵装置で捕集す
ることによって、混合された粉体を得ることができる。
In the present invention, it is preferable to supply the mixture ratio of a plurality of powders (ratio of the weight flow rate of powder and gas) as 3 to 6 [kg powder / kg gas]. In addition, 15 to 30 from the gas inlet duct
Gas should flow in at a speed of [m / s]. Also, in the mixing tank, the gas is flowing at a speed that allows the powder to be suspended, and the supplied multiple types of powder are mixed by the gas flow while mixing with the gas through the outlet duct. It is carried out of the tank. A mixed powder can be obtained by collecting the powder floating in the gas flow with a dust collector such as a cyclone or a bag filter.

温度の高い粉体の場合は、混合と同時に冷却することを
目的としてガス入口ダクトから大気あるいは冷風を流入
させる。
In the case of powder having a high temperature, the atmosphere or cold air is introduced from the gas inlet duct for the purpose of cooling at the same time as mixing.

本発明において、ガス入口ダクトにおける風速Vinと混
合槽の圧力損失との間には第9図に示す関係があり、Vi
nが15[m/s]未満あるいは30[m/s]を越えると、混合
槽の圧力損失は急激に増大し、ファンの電力消費量も大
きくなる。また、粉体の混合の度合(混合度)は第10図
のように風速が大きいほど小さく、風速が小さくなるに
つれ増加する。したがって、混合槽の圧力損失と混合度
の2つの面から考えて、入口風速Vinは15〜30[m/s]の
範囲が、低コストで効率的な混合の領域となる。
In the present invention, the wind speed Vin in the gas inlet duct and the pressure loss in the mixing tank have the relationship shown in FIG.
When n is less than 15 [m / s] or exceeds 30 [m / s], the pressure loss in the mixing tank rapidly increases and the power consumption of the fan also increases. Further, the degree of mixing of powders (mixing degree) becomes smaller as the wind speed becomes higher as shown in FIG. 10, and increases as the wind speed becomes lower. Therefore, considering the two aspects of the pressure loss and the degree of mixing of the mixing tank, the range of the inlet wind speed Vin of 15 to 30 [m / s] is a low-cost and efficient mixing region.

一方、粉体の混合比と混合槽の圧力損失には第11図の関
係がある。混合比が6[kg粉体/kgガス]までは混合槽
の圧力損失は直接的に増加するが、それ以上になると急
激な増加傾向を示す。ガス量が一定ならば混合比は粉体
の処理量と同じ意味を持つが、混合比の増加に伴ない混
合槽の圧力損失も大きくなり、ファンの電力消費量も増
えることになる。そこで、縦軸に単位混合粉体当りの電
力量を目盛り、混合比との関係をプロットすると第12図
が得られる。電力原単位は混合比が3〜6[kg粉体/kg
ガス]で最少限を示し、この範囲が最適な混合比の範囲
であることが判る。また、この混合比の範囲では第9
図、第10図に示したVinと混合槽との圧力損失、Vinと混
合度の関係が成立するため、最終的に混合槽の最適運転
条件は、入口風速Vinが15〜30[m/s]、混合比が3〜6
[kg粉体/kgガス]となる。
On the other hand, the powder mixing ratio and the pressure loss in the mixing tank have the relationship shown in FIG. The pressure loss in the mixing tank increases directly up to a mixing ratio of 6 [kg powder / kg gas], but a sharp increase tends to occur above this. If the amount of gas is constant, the mixing ratio has the same meaning as the amount of powder processed, but as the mixing ratio increases, the pressure loss in the mixing tank also increases, and the power consumption of the fan also increases. Therefore, FIG. 12 is obtained by plotting the electric power amount per unit mixed powder on the vertical axis and plotting the relationship with the mixing ratio. Electric power consumption rate is 3 to 6 [kg powder / kg
Gas] shows the minimum, and it is understood that this range is the range of the optimum mixing ratio. Further, in the range of this mixing ratio,
Since the pressure loss between Vin and the mixing tank and the relationship between Vin and the mixing degree shown in Fig. 10 are established, the optimum operating condition of the mixing tank is finally that the inlet wind speed Vin is 15 to 30 [m / s ], The mixing ratio is 3 to 6
It becomes [kg powder / kg gas].

供給する粉体の温度が100〜200℃である場合には、入口
ダクトから大気などの冷風を流入させることにより、混
合と同時に冷却が行われ、粉体を混合、冷却することが
できる。たとえば、前述の運転条件(Vin=15〜30[m/
s]、混合比=3〜6[kg粉体/kgガス])で120℃の粉
体を15℃の大気で混合、冷却した場合、混合槽から排出
された粉体は70℃前後にまで冷却されることになる。ま
た、当然のことながら、本発明は粉体の冷却のみを目的
として適用することも可能である。
When the temperature of the powder to be supplied is 100 to 200 ° C., cold air such as the atmosphere is introduced from the inlet duct to cool the powder at the same time as mixing, so that the powder can be mixed and cooled. For example, the operating conditions described above (Vin = 15 to 30 [m /
s], mixing ratio = 3 to 6 [kg powder / kg gas]), when 120 ° C powder is mixed and cooled in the atmosphere at 15 ° C, the powder discharged from the mixing tank is up to around 70 ° C. It will be cooled. Further, as a matter of course, the present invention can be applied only for cooling the powder.

[作用] 複数の粉体供給管から混合槽内部に供給された2種類以
上の粉体は、供給時の粉体の有するスピードにより、混
合槽中心軸付近まで落下し、混合槽下部に接続している
ガス入口ダクトから流入したガス流と衝突する。このガ
ス流との衝突のために、供給された粉体は分散し、さら
に乱流であるガス流によって混合される。全体が、ガス
入口ダクトから混合槽〜出口ダクトへと一旦拡大したの
ちまた縮小するような形状で、ガス流が混合槽内部にお
いて第4図のような速度分布を持っているために、第3
図に示すように供給粉体の一部はガスとともにガス出口
ダクトを経て、下流のサイクロンやバグフィルタへ運ば
れるが、残りの部分はガス流速の遅い壁面付近より混合
槽下部へと落下し、ふたたびガス入口ダクトから流入す
るガス流によって上方に運ばれる。このようなサイクル
が存在するために、粉体の混合はさらに促進されること
になる。
[Function] Two or more kinds of powders supplied from the plurality of powder supply pipes to the inside of the mixing tank fall near the central axis of the mixing tank and are connected to the lower part of the mixing tank depending on the speed of the powder at the time of supply. Colliding with the gas flow entering from the gas inlet duct that is present. Due to the collision with this gas flow, the supplied powder is dispersed and further mixed by the turbulent gas flow. The entire shape is such that it once expands from the gas inlet duct to the mixing tank to the outlet duct and then contracts again. Since the gas flow has a velocity distribution as shown in FIG.
As shown in the figure, part of the supply powder is carried with the gas through the gas outlet duct to the cyclone or bag filter downstream, but the remaining part falls from the vicinity of the wall with the slow gas flow velocity to the bottom of the mixing tank, It is carried upwards again by the gas flow coming from the gas inlet duct. Due to the existence of such a cycle, the mixing of the powder will be further promoted.

[実施例] 第1,2図に、本発明の実施例の概略を示す。[Embodiment] FIGS. 1 and 2 schematically show an embodiment of the present invention.

すべての実施例において、混合槽1には、ガス入口ダク
ト2と出口ダクト3がそれぞれ下部15、上部16に接続し
ている。また、これらの混合槽1の周囲には、さらに複
数の粉体供給管4が取付けられている。
In all examples, the mixing tank 1 has a gas inlet duct 2 and an outlet duct 3 connected to the lower part 15 and the upper part 16, respectively. Around the mixing tank 1, a plurality of powder supply pipes 4 are attached.

混合槽1は、ガス入口ダクト2と接続する逆コーン状の
下部15、出口ダクト3と接続するコーン状の上部16およ
びそれらをつなぐ円筒状の中間部17から構成される。
又、別の実施例としては、ガス入口ダクト2と接続する
下部15を逆2段コーン状とし、出口ダクト3に接続する
上部16を多段円筒状とし、これらをつなぐコーン状の絞
り部から混合槽1が構成される変形例もある。
The mixing tank 1 is composed of an inverted cone-shaped lower portion 15 connected to the gas inlet duct 2, a cone-shaped upper portion 16 connected to the outlet duct 3, and a cylindrical intermediate portion 17 connecting them.
In another embodiment, the lower part 15 connected to the gas inlet duct 2 has an inverted two-stage cone shape, and the upper part 16 connected to the outlet duct 3 has a multi-stage cylindrical shape, and the mixture is mixed from a cone-shaped throttle portion connecting these. There is also a modified example in which the tank 1 is configured.

以上述べた2つの実施例においては、ガスおよび原料の
流れは同様であり、次のように説明される。混合槽1の
周囲に設置されている粉体供給管4から複数の種類の粉
体5が、混合比3〜6[kg粉体/kgガス]で混合槽1に
供給される。ガス入口ダクト2から混合槽1へのファン
11によって18〜30[m/s]の風速でガス6が流入する。
ガス6は粉体をガス中に浮遊させることができる以上の
速度で混合槽1内を上昇しており、このガス流によって
供給された粉体は混合槽1内で混合され、ガス流ととも
に混合槽外へ運ばれた粉体は、下流に設置されたバグフ
ィルタあるいはサイクロンなどの集塵装置7によって捕
集される。
In the two embodiments described above, the gas and raw material flows are similar and will be described as follows. A plurality of kinds of powders 5 are supplied to the mixing tank 1 from a powder supply pipe 4 installed around the mixing tank 1 at a mixing ratio of 3 to 6 [kg powder / kg gas]. Fan from gas inlet duct 2 to mixing tank 1
Depending on 11, the gas 6 flows in at a wind speed of 18 to 30 [m / s].
The gas 6 rises in the mixing tank 1 at a speed higher than that at which the powder can be suspended in the gas, and the powder supplied by this gas flow is mixed in the mixing tank 1 and mixed with the gas flow. The powder carried to the outside of the tank is collected by a dust collector 7 such as a bag filter or a cyclone installed downstream.

また、粉体の冷却は、ガス入口ダクト2から大気などの
冷風を取入れることにより行う。粉体温度120℃、大気
温度15℃で前述の混合比3〜6[kg粉体/kgガス]およ
び風速条件15〜30[m/s]で運転した場合、粉体70℃前
後にまで冷却される。
Further, the powder is cooled by taking in cold air such as air from the gas inlet duct 2. When the powder temperature is 120 ° C, the atmospheric temperature is 15 ° C, and the mixing ratio is 3 to 6 [kg powder / kg gas] and the wind speed is 15 to 30 [m / s], the powder is cooled down to around 70 ° C. To be done.

[発明の効果] 本発明は以上のとおりであって、ファンの消費電力量を
押え、コンパクトで混合効率の優れた混合方法を提供す
ることができる。例えば処理能力200t/hrにおいて、従
来型の流動化形混合方式と比較した場合、電力原単位は
約1.0kwh/tと同程度の電力原単位であるが、従来型が10
mφ×16mHに対し、本発明では2mφ×7mHとはるかにコン
パクトなサイズになる。又、供給する粉体の温度が高い
場合には、入口ダクトから大気などの冷風を流入させる
ことにより、粉体を混合と同時に冷却することができ
る。
[Advantages of the Invention] The present invention is as described above, and can provide a mixing method that suppresses the power consumption of a fan, is compact, and has excellent mixing efficiency. For example, at a processing capacity of 200 t / hr, when compared with the conventional fluidized type mixing method, the electric power consumption rate is about 1.0 kwh / t, which is about the same as the electric power consumption rate.
In contrast to mφ × 16 mH, the present invention has a much more compact size of 2 mφ × 7 mH. Further, when the temperature of the powder to be supplied is high, the powder can be cooled at the same time as the powder is mixed by inflowing cold air such as air from the inlet duct.

以上まとめると、本発明には次のような効果がある。In summary, the present invention has the following effects.

(1)流動化形混合方式のようにガスが粉体層を通過し
て流れることがないため、圧力損失が小さく、ファンの
消費電力が少ない。
(1) Since the gas does not flow through the powder layer as in the fluidized mixing method, the pressure loss is small and the power consumption of the fan is small.

(2)効率の良い混合が可能であるため、小さなサイズ
の容器で大量の粉体を混合することができる。
(2) Since efficient mixing is possible, a large amount of powder can be mixed in a small-sized container.

(3)ガス入口ダクトより大気などの冷風を取入れるこ
とにより、粉体の混合と冷却を同時に行うことができ
る。
(3) The powder can be mixed and cooled at the same time by taking in cold air such as air from the gas inlet duct.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す正面の断面図、第2図は
第1図の平面の断面図、第3図は混合槽内の粉体の挙動
を表す説明図、第4図は混合槽内の風速分布を表す説明
図、第5、6図は従来の流動化形混合装置、第7図はセ
メント製造プラントに用いられている仮焼炉の一例を示
す概略図、第8図は第7図の平面断面図、第9図はガス
入口ダクトにおける入口風速Vinと混合槽の圧力損失と
の関係を表す説明図、第10図はVinと混合度との関係を
表す説明図、第11図は粉体の混合比と混合槽の圧力損失
の関係を表す説明図、第12図は粉体の混合比とファンの
電力原単位との関係を表す説明図である。 1……混合槽、2、2a、2b……ガス入口ダクト、 3……出口ダクト、4……粉体供給管、5……粉体、 6……ガス、7……集塵装置、8……仕切板、 9……上部室、10……下部室、11……ファン、 12……粉体層、13……粉体排出管、 14……抜き出し装置、15……下部、16……上部、 17……中間部、26……バーナ。
FIG. 1 is a front sectional view showing an embodiment of the present invention, FIG. 2 is a plan sectional view of FIG. 1, FIG. 3 is an explanatory view showing the behavior of powder in a mixing tank, and FIG. Explanatory drawing showing the wind speed distribution in the mixing tank, FIGS. 5 and 6 are conventional fluidized type mixing devices, FIG. 7 is a schematic view showing an example of a calcining furnace used in a cement manufacturing plant, and FIG. Is a plan sectional view of FIG. 7, FIG. 9 is an explanatory view showing the relationship between the inlet wind speed Vin in the gas inlet duct and the pressure loss of the mixing tank, and FIG. 10 is an explanatory view showing the relationship between Vin and the degree of mixing, FIG. 11 is an explanatory diagram showing the relationship between the powder mixing ratio and the pressure loss in the mixing tank, and FIG. 12 is an explanatory diagram showing the relationship between the powder mixing ratio and the electric power consumption rate of the fan. 1 ... Mixing tank, 2, 2a, 2b ... Gas inlet duct, 3 ... Exit duct, 4 ... Powder supply pipe, 5 ... Powder, 6 ... Gas, 7 ... Dust collector, 8 ...... Partition plate, 9 …… Upper chamber, 10 …… Lower chamber, 11 …… Fan, 12 …… Powder layer, 13 …… Powder discharge pipe, 14 …… Pulling device, 15 …… Lower part, 16… … Upper, 17 …… Middle part, 26 …… Burner.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 昌宏 山口県宇部市西本町1丁目12番32号 宇部 興産株式会社宇部本社内 (56)参考文献 特公 昭42−1691(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Maruyama 1-12-32 Nishihonmachi, Ube City, Yamaguchi Prefecture Ube Headquarters, Ube Head Office (56) Reference Japanese Patent Publication No. 42-1691 (JP, B1)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】周囲には複数の粉体供給管4を有し、下部
にはガス入口ダクト2が、上部には出口ダクト3が設け
られている混合槽1において、複数の種類の粉体を、前
記ガス入口ダクト2から流入し前記混合槽1内を前記粉
体を浮遊させることのできる速度以上で流れるガス中
に、前記粉体供給管4から連続的に供給し、ガス流とと
もに出口ダクト3を通って混合槽1外へ運ばれた粉体
を、下流に設置されたバグフィルタなどの集塵装置7で
捕集することによって、複数の粉体を均一に混合するこ
とを特徴とする気流式粉体混合方法。
1. A mixing tank 1 having a plurality of powder supply pipes 4 in the periphery thereof, a gas inlet duct 2 in the lower portion, and an outlet duct 3 in the upper portion, and a plurality of types of powders. Is continuously supplied from the powder supply pipe 4 into a gas flowing from the gas inlet duct 2 and flowing at a speed at which the powder can be suspended in the mixing tank 1, and the gas is flowed out along with the gas flow. The powder carried to the outside of the mixing tank 1 through the duct 3 is collected by a dust collecting device 7 such as a bag filter installed downstream so that a plurality of powders are uniformly mixed. Air flow type powder mixing method.
【請求項2】混合槽1が、ガス入口ダクト2と接続する
逆2段コーン状の下部15、出口ダクト3に接続するコー
ン状の上部16、および前記上部16と下部15に挾まれた円
筒状の中間部17の3つの部分から構成される請求項
(1)記載の気流式粉体混合方法。
2. The mixing tank 1 comprises an inverted two-stage cone-shaped lower portion 15 connected to the gas inlet duct 2, a cone-shaped upper portion 16 connected to the outlet duct 3, and a cylinder sandwiched between the upper portion 16 and the lower portion 15. The air flow type powder mixing method according to claim 1, wherein the air flow type powder mixing method is constituted by three parts of the intermediate portion 17 in the shape of a circle.
【請求項3】高温の粉体を混合槽1内に供給し、ガス入
口ダクト2から流入する冷風によって、粉体の混合およ
び冷却を同時に行う請求項(1)又は(2)記載の気流
式粉体混合方法。
3. An air flow system according to claim 1, wherein high temperature powder is supplied into the mixing tank 1 and the powder is mixed and cooled at the same time by cold air flowing from the gas inlet duct 2. Powder mixing method.
【請求項4】ガス入口速度Vin=15〜30m/s、粉体とガス
の混合比[kg粉体/kgガス]=3〜6の条件で実施する
請求項(1)、(2)又は(3)記載の気流式粉体混合
方法。
4. The method according to claim 1, wherein the gas inlet velocity Vin is 15 to 30 m / s, and the mixture ratio of powder and gas [kg powder / kg gas] is 3 to 6. (3) The airflow type powder mixing method as described above.
JP63208030A 1987-09-09 1988-08-24 Air flow type powder mixing method Expired - Fee Related JPH07110337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208030A JPH07110337B2 (en) 1987-09-09 1988-08-24 Air flow type powder mixing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22403187 1987-09-09
JP62-224031 1987-09-09
JP63208030A JPH07110337B2 (en) 1987-09-09 1988-08-24 Air flow type powder mixing method

Publications (2)

Publication Number Publication Date
JPH01159039A JPH01159039A (en) 1989-06-22
JPH07110337B2 true JPH07110337B2 (en) 1995-11-29

Family

ID=26516600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208030A Expired - Fee Related JPH07110337B2 (en) 1987-09-09 1988-08-24 Air flow type powder mixing method

Country Status (1)

Country Link
JP (1) JPH07110337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210094233A1 (en) * 2018-09-28 2021-04-01 Hewlett-Packard Development Company, L.P. 3d printing system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667800B (en) * 2013-12-03 2016-12-07 河北建筑工程学院 Pressed powder Quick uniform mixer
KR102295368B1 (en) * 2014-12-29 2021-09-01 삼성에스디아이 주식회사 Apparatus for mixing powder and removing fine-powder from powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210094233A1 (en) * 2018-09-28 2021-04-01 Hewlett-Packard Development Company, L.P. 3d printing system

Also Published As

Publication number Publication date
JPH01159039A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
US3199268A (en) Particle-from-gas separators
US7854608B2 (en) Method and apparatus for heat treatment in a fluidized bed
JP2016153123A (en) Process for separating gas in fluidized gas/solid mixture
US2104858A (en) Manufacture of sulphuric acid
US5992041A (en) Raining bed heat exchanger and method of use
US3075580A (en) Heat exchanger and method
CN1039593C (en) Calcining system and technique for fluidized bed-mobile bed mixed reactor
CN205536898U (en) Cyclone nozzle, vibratory liquefaction bed and vibrated fluidized bed drying system
JPH07110337B2 (en) Air flow type powder mixing method
Suleiman et al. Design and fabrication of fluidized-bed reactor
US3172744A (en) Removal of solids from a solid laden gas
EP1070683B1 (en) Apparatus and process for cooling and de-steaming calcined stucco
CN85106397A (en) Light-burned processing method of magnesite gas suspension and device thereof
CN205472697U (en) Oxygen hot method calcium carbide synthesis reactor
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed
US4342576A (en) Particle separator
CN219531747U (en) Cyclone gas-solid flow guiding grading heat exchange device
CN110514019A (en) A kind of high temperature granular material cooling technique and device
CN207002653U (en) Discharge device and gasification system
JPH044013B2 (en)
CN213708115U (en) Device for preparing hollow glass beads by powder method
KR830001535B1 (en) Dust Collector
JPS58176153A (en) Grain body preheating method and device
RU2064850C1 (en) Aerocooler for polydispersing materials
SU1402369A1 (en) Apparatus with fluidized bed for drying and granulating materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees