JPH07110294A - Sample tool for infrared analysis device - Google Patents

Sample tool for infrared analysis device

Info

Publication number
JPH07110294A
JPH07110294A JP25461193A JP25461193A JPH07110294A JP H07110294 A JPH07110294 A JP H07110294A JP 25461193 A JP25461193 A JP 25461193A JP 25461193 A JP25461193 A JP 25461193A JP H07110294 A JPH07110294 A JP H07110294A
Authority
JP
Japan
Prior art keywords
flat plate
infrared
sample
analysis device
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25461193A
Other languages
Japanese (ja)
Inventor
Koji Matsuzaki
孝二 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25461193A priority Critical patent/JPH07110294A/en
Publication of JPH07110294A publication Critical patent/JPH07110294A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the accuracy in qualitative determination of infrared ray analysis by a liquid sample with specific thickness and position. CONSTITUTION:A first flat plate 1 which has a groove 11 at a specific position and depth and is an infrared ray transparent crystal and a second flat plate 3 which is an infrared ray transparent crystal are stacked opposingly via a groove 11. In this case, at least one of the first flat plate and second flat plate is a visible light transparent crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は赤外分析装置用試料治
具に係り、特に液体試料の試料治具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample jig for an infrared analyzer, and more particularly to a sample jig for a liquid sample.

【0002】[0002]

【従来の技術】赤外分析装置は物質の赤外吸収スペクト
ルを測定して赤外分光分析を行う装置であり、分光手段
の種類によりフーリエ変換型赤外分析装置),回折格子型
赤外分析装置, プリズム型赤外分析装置等の各種の装置
があるが前の二者が主として市販されている。
2. Description of the Related Art An infrared analyzer is an apparatus for measuring an infrared absorption spectrum of a substance and performing an infrared spectroscopic analysis. Depending on the type of spectroscopic means, a Fourier transform infrared analyzer), a diffraction grating infrared analyzer There are various devices such as a device and a prism type infrared analyzer, but the former two are mainly on the market.

【0003】フーリエ変換型赤外分析装置には直径1m
m以下の微小領域を赤外顕微ユニットと組み合わせて測
定するフーリエ変換型顕微赤外分析装置も知られてい
る。フーリエ変換型顕微赤外分析装置は光源からの赤外
光を顕微ユニットで集光して微小試料を照射し、透過し
た赤外光を検知器で電気信号に変換してこの信号をデー
タ処理してフーリエ変換して赤外スペクトルを表示する
装置である。
The Fourier transform infrared analyzer has a diameter of 1 m.
A Fourier transform type infrared microscopic analyzer for measuring a microscopic region of m or less in combination with an infrared microscopic unit is also known. A Fourier transform type infrared microanalyzer collects infrared light from a light source with a microscopic unit to illuminate a micro sample, converts the transmitted infrared light into an electrical signal with a detector, and processes this signal as data. It is a device that displays the infrared spectrum by performing Fourier transform.

【0004】フーリエ変換型顕微赤外分析装置において
は微量の液体試料を分析する場合は赤外用光学結晶平板
の上に液体試料を滴下して測定する。図5は半球状液体
試料を示す断面図である。溶媒中の固体試料も同様の処
理により溶媒が蒸発したあとは同様の形状を示す。赤外
分析装置において良好な赤外スペクトルが得られる試料
の厚さは1ないし20μmの範囲にある。
In the Fourier transform type microscopic infrared analyzer, when a small amount of liquid sample is analyzed, the liquid sample is dropped on the infrared optical crystal flat plate for measurement. FIG. 5 is a sectional view showing a hemispherical liquid sample. The solid sample in the solvent also shows the same shape after the solvent is evaporated by the same treatment. The thickness of the sample that gives a good infrared spectrum in the infrared analyzer is in the range of 1 to 20 μm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来の半球状液体試料は、その厚さを制御すること
ができず、通常数100μmの厚さを示す。さらに試料
の位置は偶然に決まるもので、分析が不可能の位置に固
定される場合もある。この発明は上述の点に鑑みてなさ
れ、その目的は試料治具に改良を加えることにより液体
試料の厚さと位置を制御することが可能な赤外分析装置
用試料治具を提供することにある。
However, the thickness of the conventional hemispherical liquid sample as described above cannot be controlled, and usually exhibits a thickness of several 100 μm. Furthermore, the position of the sample is decided by chance, and it may be fixed at a position where analysis is impossible. The present invention has been made in view of the above points, and an object thereof is to provide a sample jig for an infrared analysis device capable of controlling the thickness and position of a liquid sample by improving the sample jig. .

【0006】[0006]

【課題を解決するための手段】上述の目的はこの発明に
よれば、第一の平板と第二の平板を有し、第一の平板
は、主面に所定の位置と深さの溝を有する赤外透明結晶
であり、第二の平板は、赤外透明結晶であり、第一の平
板と第二の平板の内の少なくとも一つが可視透明結晶で
あり、第一の平板と第二の平板は、第一の平板の溝を介
して相互に対向積層されるものであるとすることにより
達成される。
According to the present invention, there is provided a first flat plate and a second flat plate, the first flat plate having a groove at a predetermined position and a depth on the main surface. Having an infrared transparent crystal, the second flat plate is an infrared transparent crystal, at least one of the first flat plate and the second flat plate is a visible transparent crystal, the first flat plate and the second flat plate. The flat plates are achieved by being laminated so as to face each other via the grooves of the first flat plate.

【0007】[0007]

【作用】第一の平板は、主面に所定の位置と深さの溝を
有するので、赤外分析装置における液体試料の厚さと位
置を正確に制御することができる。可視透明結晶は液体
試料の注入状況を明示する。
Since the first flat plate has the groove at the predetermined position and the predetermined depth on the main surface, the thickness and position of the liquid sample in the infrared analyzer can be accurately controlled. Visible transparent crystals indicate the injection status of the liquid sample.

【0008】[0008]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。図1はこの発明の実施例に係る赤外分析装置用試
料治具を示す断面図である。図2はこの発明の実施例に
係る赤外分析装置用試料治具につき第一の平板を天地を
逆にして示す斜視図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view showing a sample jig for an infrared analyzer according to an embodiment of the present invention. FIG. 2 is a perspective view showing the first flat plate of the sample jig for an infrared analyzer according to the embodiment of the present invention with the top and bottom reversed.

【0009】平板1は臭化カリウムからなる円板であ
り、中心に直径5mmの貫通孔12を有する。平板1の
一方の主面には矩形溝11が中心から放射状に等角度で
穿設される。平板3は臭化カリウムからなる円板であ
る。平板1と平板3は平板1の溝のある面を介して相互
に積層される。
The flat plate 1 is a disk made of potassium bromide, and has a through hole 12 having a diameter of 5 mm at the center. Rectangular grooves 11 are formed in one main surface of the flat plate 1 radially from the center at equal angles. The flat plate 3 is a disk made of potassium bromide. The flat plate 1 and the flat plate 3 are laminated on each other via the grooved surface of the flat plate 1.

【0010】液体試料2は表面張力によりメニスカスを
形成し、溝の一部は液体試料2で完全に満たされる。外
径が10ないし50mmの範囲、厚さが1ないし20m
mの範囲の臭化カリウムの円板が使用できる。内径1な
いし10mmの範囲の貫通孔が穿設される。
The liquid sample 2 forms a meniscus due to the surface tension, and a part of the groove is completely filled with the liquid sample 2. Outer diameter in the range of 10 to 50 mm, thickness of 1 to 20 m
Discs of potassium bromide in the m range can be used. A through hole having an inner diameter of 1 to 10 mm is formed.

【0011】溝幅が1ないし5mmの範囲、溝の深さが
1ないし20μmの範囲の矩形溝が穿設される。一本の
溝の深さは全長にわたり一定である。二枚の円板はとも
に赤外透明な光学結晶で形成される。肉眼に近接する円
板は可視光に対しても透明であることが要求される。液
体試料を確認するためである。赤外透明で且つ可視光に
対しても透明な結晶は臭化カリKBr の他KRS-5,セレン化
亜鉛ZnSeまたは塩化ナトリウムNaClから選定することが
できる。
A rectangular groove having a groove width of 1 to 5 mm and a groove depth of 1 to 20 μm is formed. The depth of one groove is constant over the entire length. Both of the two discs are made of infrared transparent optical crystals. The disc close to the naked eye is required to be transparent to visible light. This is to confirm the liquid sample. Crystals that are transparent to infrared light and transparent to visible light can be selected from potassium bromide KBr, KRS-5, zinc selenide ZnSe, or sodium chloride NaCl.

【0012】肉眼から離れた円板は必ずしも可視光に対
しても透明であることを要しないからシリコンやゲルマ
ニウム等を使用することができる。図3は赤外分析装置
用試料治具に、液体試料を注入する工程を示す斜視図で
ある。液体試料は貫通孔12に挿入されたシリンジ4を
介して注入される。また貫通孔12は矩形溝11内部の
液体試料の他溝への移動を防止する。固体を分散した液
体も同様にして注入される。
Since the disk away from the naked eye does not necessarily need to be transparent to visible light, silicon or germanium can be used. FIG. 3 is a perspective view showing a step of injecting a liquid sample into a sample jig for an infrared analyzer. The liquid sample is injected via the syringe 4 inserted in the through hole 12. Further, the through hole 12 prevents the liquid sample in the rectangular groove 11 from moving to another groove. A liquid in which a solid is dispersed is also injected in the same manner.

【0013】図4はこの発明の実施例に係る顕微赤外ス
ペクトル(b)を従来のもの(a)と対比して示す線図
である。試料は未硬化UV樹脂のフロン113溶媒3%
溶液である。測定に先立ち充分に溶媒が蒸発された。従
来法によって液滴を形成したときは溶媒が飛散したあと
も約500μmの厚さがあり、吸収の強いピークは透過
率ゼロの飽和値を示し、弱い吸収ピークの示す透過率と
の差が消失する。
FIG. 4 is a diagram showing a microscopic infrared spectrum (b) according to an embodiment of the present invention in comparison with a conventional infrared spectrum (a). Sample is uncured UV resin Freon 113 solvent 3%
It is a solution. The solvent was sufficiently evaporated before the measurement. When droplets are formed by the conventional method, there is a thickness of about 500 μm even after the solvent is scattered, the peak of strong absorption shows a saturation value of zero transmittance, and the difference from the transmittance of weak absorption peak disappears. To do.

【0014】本発明による赤外吸収スペクトルは液体試
料の厚さが所定値に制御されているために、各ピークは
それぞれ正しい透過率を示し、分子の部分構造に関し正
確な情報が得られる。
In the infrared absorption spectrum according to the present invention, since the thickness of the liquid sample is controlled to a predetermined value, each peak shows correct transmittance, and accurate information on the partial structure of the molecule can be obtained.

【0015】[0015]

【発明の効果】この発明によれば、第一の平板と第二の
平板を有し、第一の平板は、主面に所定の位置と深さの
溝を有する赤外透明結晶であり、第二の平板は、赤外透
明結晶であり、第一の平板と第二の平板の内の少なくと
も一つが可視透明結晶であり、第一の平板と第二の平板
は、第一の平板の溝を介して相互に対向積層されるもの
であるとするので、第一の平板は、主面に所定の位置と
深さの溝を有して赤外分析装置における液体試料の厚さ
と位置を正確に制御する。その結果正しい透過率と再現
性を示す赤外吸収スペクトルが得られ赤外分析法による
定性定量分析の精度が向上する。
According to the present invention, there are provided a first flat plate and a second flat plate, and the first flat plate is an infrared transparent crystal having grooves at predetermined positions and depths on its main surface, The second flat plate is an infrared transparent crystal, at least one of the first flat plate and the second flat plate is a visible transparent crystal, the first flat plate and the second flat plate of the first flat plate. Since it is assumed that the first flat plate is laminated to face each other through the groove, the first flat plate has a groove of a predetermined position and a depth on the main surface so that the thickness and the position of the liquid sample in the infrared analyzer are Control precisely. As a result, an infrared absorption spectrum showing correct transmittance and reproducibility is obtained, and the accuracy of qualitative and quantitative analysis by infrared analysis is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る赤外分析装置用試料治
具を示す断面図
FIG. 1 is a sectional view showing a sample jig for an infrared analyzer according to an embodiment of the present invention.

【図2】この発明の実施例に係る赤外分析装置用試料治
具につき第一の平板を天地を逆にして示す斜視図
FIG. 2 is a perspective view showing the first plate of the sample jig for an infrared analyzer according to the embodiment of the present invention with the top and bottom reversed.

【図3】赤外分析装置用試料治具に、液体試料を注入す
る工程を示す斜視図
FIG. 3 is a perspective view showing a step of injecting a liquid sample into a sample jig for an infrared analyzer.

【図4】この発明の実施例に係る顕微赤外スペクトルを
従来のものと対比して示す線図
FIG. 4 is a diagram showing a microscopic infrared spectrum according to an example of the present invention in comparison with a conventional infrared spectrum.

【図5】半球状液体試料を示す断面図FIG. 5 is a sectional view showing a hemispherical liquid sample.

【符号の説明】[Explanation of symbols]

1 平板 2 液体試料 3 平板 11 矩形溝 12 貫通孔 1 flat plate 2 liquid sample 3 flat plate 11 rectangular groove 12 through hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一の平板と第二の平板を有し、 第一の平板は、主面に所定の位置と深さの溝を有する赤
外透明結晶であり、 第二の平板は、赤外透明結晶であり、 第一の平板と第二の平板の内の少なくとも一つが可視透
明結晶であり、 第一の平板と第二の平板は、第一の平板の溝を介して相
互に対向積層されるものであることを特徴とする赤外分
析装置用試料治具。
1. A first flat plate and a second flat plate, wherein the first flat plate is an infrared transparent crystal having a groove at a predetermined position and a predetermined depth on the main surface, and the second flat plate is Infrared transparent crystal, at least one of the first flat plate and the second flat plate is a visible transparent crystal, the first flat plate and the second flat plate are mutually connected through the groove of the first flat plate. A sample jig for an infrared analysis device, characterized in that the jigs are laminated facing each other.
【請求項2】請求項1記載の赤外分析装置用試料治具に
おいて、所定の深さは1ないし20μmの範囲にあるこ
とを特徴とする赤外分析装置用試料治具。
2. The sample jig for an infrared analyzer according to claim 1, wherein the predetermined depth is in the range of 1 to 20 μm.
【請求項3】請求項1記載の赤外分析装置用試料治具に
おいて、第一の平板は主面の中心に設けられた貫通口を
有し、溝は前記貫通口より放射状に穿設されてなること
を特徴とする赤外分析装置用試料治具。
3. A sample jig for an infrared analyzer according to claim 1, wherein the first flat plate has a through hole provided at the center of the main surface, and the groove is radially provided from the through hole. A sample jig for an infrared analysis device, characterized in that
【請求項4】請求項1記載の赤外分析装置用試料治具に
おいて、第一の平板と第二の平板は臭化カリKBr ,KRS-
5,セレン化亜鉛ZnSeまたは塩化ナトリウムNaClであるこ
とを特徴とする赤外分析装置用試料治具。 【請求項5 】請求項1記載の赤外分析装置用試料治具に
おいて、赤外分析装置はフーリエ変換型顕微赤外分析装
置であることを特徴とする赤外分析装置用試料治具。
4. The sample jig for an infrared analyzer according to claim 1, wherein the first flat plate and the second flat plate are potassium bromide KBr, KRS-.
5, A sample jig for an infrared analyzer, which is zinc selenide ZnSe or sodium chloride NaCl. 5. The sample jig for an infrared analysis device according to claim 1, wherein the infrared analysis device is a Fourier transform type microscopic infrared analysis device.
JP25461193A 1993-10-13 1993-10-13 Sample tool for infrared analysis device Pending JPH07110294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25461193A JPH07110294A (en) 1993-10-13 1993-10-13 Sample tool for infrared analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25461193A JPH07110294A (en) 1993-10-13 1993-10-13 Sample tool for infrared analysis device

Publications (1)

Publication Number Publication Date
JPH07110294A true JPH07110294A (en) 1995-04-25

Family

ID=17267445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25461193A Pending JPH07110294A (en) 1993-10-13 1993-10-13 Sample tool for infrared analysis device

Country Status (1)

Country Link
JP (1) JPH07110294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507127A (en) * 1995-06-03 1999-06-22 ベーリンガー・マンハイム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Sample carrier used for infrared transmission spectroscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507127A (en) * 1995-06-03 1999-06-22 ベーリンガー・マンハイム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Sample carrier used for infrared transmission spectroscopy

Similar Documents

Publication Publication Date Title
KR100365039B1 (en) Method and device for measuring cell gap of liquid crystal display, liquid crystal display, and retardation plate used for measuring cell gap of liquid crystal display
JP2804073B2 (en) Apparatus and method for measuring the refractive index of a substance
JPH04307312A (en) Measuring method of thickness of gap of liquid crystal cell
JP2008500536A (en) Optical interrogation device for reducing parasitic reflection and method for removing parasitic reflection
US6317208B1 (en) Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
US2829555A (en) Polarimetric method and apparatus
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
JP5122132B2 (en) Method and apparatus for three-dimensional measurement of the refractive index of a transparent or partially transparent layer
US6628389B1 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
JP4528314B2 (en) Polarization direction measuring device and measuring method of polarizing plate for liquid crystal display device
JPH07110294A (en) Sample tool for infrared analysis device
JP3063843B2 (en) Liquid crystal initial alignment angle measuring method and liquid crystal initial alignment angle measuring device
McBain et al. Optical surface thickness of pure water
JPH0682239A (en) Method and apparatus for measuring pretilt angle of liquid crystal material
US20040263854A1 (en) Beam shifting surface plasmon resonance system and method
US3016789A (en) Polarimetric apparatus
JPS6057259A (en) Device for biochemical analysis
US4226534A (en) Micropolarimeter
JPS6058820B2 (en) Surface analysis method for transparent materials
JPH0875652A (en) Raman spectrophotometry
JPH102836A (en) Optical anisotropy measuring device
JPS6013462B2 (en) Transparent substance analysis method
RU2108564C1 (en) Method of conversion of linear polarization through specified angle and gear for its implementation
JPH07190922A (en) Spectrophotometer
SU1698821A1 (en) Magneto-optical head for reading patterns of signals from a magnetic tape