JPH0710997A - Production of granular polyphenylene sulfide having crushing resistance - Google Patents

Production of granular polyphenylene sulfide having crushing resistance

Info

Publication number
JPH0710997A
JPH0710997A JP5182104A JP18210493A JPH0710997A JP H0710997 A JPH0710997 A JP H0710997A JP 5182104 A JP5182104 A JP 5182104A JP 18210493 A JP18210493 A JP 18210493A JP H0710997 A JPH0710997 A JP H0710997A
Authority
JP
Japan
Prior art keywords
pps
phase
mixture
organic solvent
polar organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5182104A
Other languages
Japanese (ja)
Other versions
JP3209616B2 (en
Inventor
Hiroshi Iizuka
洋 飯塚
Takayuki Katto
卓之 甲藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP18210493A priority Critical patent/JP3209616B2/en
Publication of JPH0710997A publication Critical patent/JPH0710997A/en
Application granted granted Critical
Publication of JP3209616B2 publication Critical patent/JP3209616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To provide the subject production process. CONSTITUTION:This production process comprises subjecting a mixture containing a polyphenylene sulfide, a polar organic solvent and a phase separating agent, the polyphenylene sulfide being in a phase-separated state in which a thin solution phase and a thick solution phase coexist, to a treatment to evaporate at least part of the polar organic solvent and/or the phase separating agent and cooling the mixture to a temperature at which the thick solution phase is solidified or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒状ポリフェニレンス
ルフィドの製造方法に関する。さらに詳しくは、重合終
了後の後処理作業性、溶融加工時の取扱性に優れた、破
砕抵抗性を有する粒状ポリフェニレンスルフィドの製造
方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing granular polyphenylene sulfide. More specifically, it relates to a method for producing granular polyphenylene sulfide having excellent crush resistance, which is excellent in post-treatment workability after completion of polymerization and handleability during melt processing.

【0002】[0002]

【従来の技術】ポリフェニレンスルフィド(以下、PP
Sと略称する)は、耐熱性、機械的特性、耐薬品性、耐
油性、耐熱水性等に優れたエンジニアリング・プラスチ
ックスとして、繊維、シート、フィルム、その他の各種
成形品の材料として、電気・電子分野、自動車分野、機
械・精密機械分野などの広範な分野に用いられている。
PPSの代表的な製造方法は特公昭45ー3368号公
報に開示されている。しかし、この方法で製造されたP
PSは重合度が低くて、フィルム、シート、繊維などに
は成形加工することが困難であった。更に、この方法に
よって得られるPPSは微粉状であって、重合後の後処
理工程、加工工程などに於ける取扱いが厄介であった。
2. Description of the Related Art Polyphenylene sulfide (hereinafter referred to as PP
(Abbreviated as S) is an engineering plastic that has excellent heat resistance, mechanical properties, chemical resistance, oil resistance, hot water resistance, etc., and is used as a material for various molded products such as fibers, sheets, films, and electricity. It is used in a wide range of fields such as the electronic field, automobile field, and mechanical / precision machine field.
A typical method for producing PPS is disclosed in JP-B-45-3368. However, P produced by this method
Since PS has a low degree of polymerization, it was difficult to form PS into a film, sheet, fiber or the like. Further, the PPS obtained by this method is in the form of fine powder, and it is difficult to handle it in the post-treatment step, processing step after polymerization and the like.

【0003】高重合度のPPSを得ることを目的とした
改良重合方法が種々提案されている。最も代表的な方法
として、反応系に重合助剤としてアルカリ金属カルボン
酸塩を添加する、特公昭52ー12240号公報等に開
示された方法を挙げることができる。高重合度の線状P
PSが得られる点以外に、これらの方法で注目すべきこ
とは、PPSが平均粒子径数百ミクロンの顆粒状で得ら
れる点である。PPSが顆粒状で得られることにより、
後処理工程、加工工程などが非常に容易になる。しかし
ながら、特公昭52ー12240号公報等に開示された
方法では、高重合度のPPSを得るためには、高価な酢
酸リチウムや安息香酸ナトリウム等の重合助剤を多量に
使用することが必要である。それ故、製造コストが嵩ん
で工業的に不利になる。またこの方法では処理排水に有
機酸が混入し、公害を生ずる恐れがある。
Various improved polymerization methods have been proposed for the purpose of obtaining PPS having a high degree of polymerization. As the most typical method, there is a method disclosed in Japanese Patent Publication No. 52-12240, in which an alkali metal carboxylate is added to a reaction system as a polymerization aid. High polymerization linear P
Besides the fact that PS is obtained, what is noteworthy in these methods is that PPS is obtained in the form of granules having an average particle diameter of several hundreds of microns. By obtaining PPS in a granular form,
The post-treatment process and processing process become very easy. However, in the method disclosed in Japanese Patent Publication No. 52-12240, it is necessary to use a large amount of expensive polymerization aid such as lithium acetate or sodium benzoate in order to obtain PPS having a high degree of polymerization. is there. Therefore, the manufacturing cost increases, which is industrially disadvantageous. Further, according to this method, organic acid may be mixed into the treated wastewater, which may cause pollution.

【0004】更に改良された重合方法として、特公昭6
3ー33775号公報等に開示された方法を挙げること
ができる。これらの方法では、重合諸条件中、特に共存
水量と反応温度を重合前段と重合後段で顕著に変化させ
る。この方法により著しく高分子量の粒状PPSを、重
合助剤は用いずに、安価に製造することができる。特公
昭52ー12240号公報および特公昭63ー3377
5号公報等に開示された方法に共通する欠点として、こ
れらの方法を電子・電気部品の封止などに使用される低
重合度PPSの製造に適用した場合に、微細で、破砕し
易い粒状PPSしか得られないこと等を挙げることがで
きる。得られたPPSは後処理工程、加工工程で更に微
細化が進み、取扱いが厄介である。
As a further improved polymerization method, Japanese Patent Publication Sho 6
The method disclosed in, for example, JP-A-3-33775 can be mentioned. In these methods, the amount of coexisting water and the reaction temperature are remarkably changed between the pre-polymerization stage and the post-polymerization stage among various polymerization conditions. By this method, extremely high-molecular weight granular PPS can be produced inexpensively without using a polymerization aid. JP-B-52-12240 and JP-B-63-3377
As a drawback common to the methods disclosed in Japanese Patent Publication No. 5 etc., when these methods are applied to the production of low polymerization degree PPS used for sealing electronic / electrical parts, etc., they are fine and easily crushed. It can be mentioned that only PPS can be obtained. The obtained PPS is further miniaturized in the post-treatment process and the processing process, and is difficult to handle.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、取扱い
に適した粒状を有し、後処理工程、加工工程等で破砕し
難い粒状PPSを製造する方法を見いだすことを本発明
の課題とした。
DISCLOSURE OF THE INVENTION It is an object of the present invention to find a method for producing granular PPS which has a granular shape suitable for handling and is difficult to be crushed in a post-treatment step, a processing step and the like. did.

【0006】本発明者らは、特公昭52ー12240号
公報および特公昭63ー33775号公報等に開示され
たPPSの重合方法について鋭意検討した結果、これら
の方法では、工程中に、(1)生成PPSが重合溶媒に
溶解して、PPSの濃度が濃厚な相と希薄な相とが共存
する状態、即ち、相分離状態が出現すること、(2)攪
拌動力により液滴状に分散したPPS濃厚相が、冷却す
る過程で固化し、粒状PPSとして固定されること、お
よび(3)低重合度のPPSを製造する際には、固化し
たPPS濃厚相が、冷却過程で、攪拌動力により粉砕さ
れて更に微細化すること、などを見いだした。
The inventors of the present invention have extensively studied the PPS polymerization methods disclosed in JP-B-52-12240 and JP-B-63-33775, and as a result, in these methods, (1) ) The generated PPS is dissolved in the polymerization solvent, and a state in which a phase having a high concentration of PPS and a phase having a low concentration of PPS coexist, that is, a phase separation state appears. The PPS concentrated phase is solidified in the cooling process and fixed as granular PPS, and (3) when the PPS having a low polymerization degree is produced, the solidified PPS concentrated phase is stirred by the stirring power in the cooling process. It was found that it was crushed and further miniaturized.

【0007】そして、低重合度のPPSでも微細化を起
こし難いPPS粒子を得るためには、前記の相分離状態
(通常、高温・高圧の状態である)にある重合混合物か
ら、極性有機溶媒および/または相分離剤の少なくとも
一部を蒸発させることによって、重合混合物の温度をP
PS濃厚相が固化する温度以下に急冷し、PPS濃厚相
を急速固化させることが有効であることを見いだし、本
発明に到達した。
In order to obtain PPS particles in which PPS having a low degree of polymerization does not easily become fine, a polar organic solvent and a polar organic solvent are added from the polymerization mixture in the phase separation state (usually at high temperature and high pressure). And / or evaporating at least a portion of the phase separation agent to increase the temperature of the polymerization mixture to P
It has been found that it is effective to rapidly solidify the PPS concentrated phase by rapidly cooling it to a temperature below the temperature at which the PS concentrated phase solidifies, and the present invention has been reached.

【0008】[0008]

【課題を解決するための手段】かくして本発明では、ポ
リフェニレンスルフィド、極性有機溶媒および相分離剤
を含み、該ポリフェニレンスルフィドが希薄な溶液相と
濃厚な溶液相とが共存する相分離状態にある混合物(少
なくとも上記の三成分を含む混合物を、以下、PPS混
合物と言う)から、該極性有機溶媒および/または該相
分離剤の少なくとも一部を蒸発させることにより、該P
PS混合物の温度を該濃厚相が固化する温度以下に冷却
することを特徴とする微細化し難い、(即ち、破砕抵抗
性を有する)粒状ポリフェニレンスルフィドの製造方法
が提供される。
Thus, in the present invention, a mixture containing polyphenylene sulfide, a polar organic solvent and a phase separating agent, wherein the polyphenylene sulfide is in a phase separated state in which a dilute solution phase and a concentrated solution phase coexist. (A mixture containing at least the above three components is referred to as a PPS mixture hereinafter), and at least a part of the polar organic solvent and / or the phase separating agent is evaporated to obtain the P
Provided is a method for producing granular polyphenylene sulfide that is resistant to pulverization (that is, has crush resistance), which is characterized by cooling the temperature of the PS mixture to a temperature below the temperature at which the dense phase solidifies.

【0009】以下に、本発明を更に詳しく説明する。 (PPS混合物)本発明の対象となるPPS混合物はP
PS、極性有機溶媒および相分離剤を含む。PPSは、
一般式 −Ph−S− (Phは、フェニレン基を示し、
Sは硫黄原子を示す)で表されるフェニレンスルフィド
繰り返し単位を含有するポリマーであり、p−フェニレ
ンスルフィド単位を50モル%以上含むポリマーが好ま
しい。
The present invention will be described in more detail below. (PPS mixture) The PPS mixture that is the subject of the present invention is P
Includes PS, polar organic solvent and phase separation agent. PPS is
General formula -Ph-S- (Ph shows a phenylene group,
S is a polymer containing a phenylene sulfide repeating unit represented by S), and a polymer containing 50 mol% or more of p-phenylene sulfide units is preferable.

【0010】本発明に於ける極性有機溶媒とは、PPS
を溶解し得る溶媒であり、一例を挙げれば、N−メチル
ー2ーピロリドン(以下、NMPと呼ぶ)、N−エチル
ー2ーピロリドン、ピロリドン、1,3ージメチルー2
ーイミダゾリジノン、カプロラクタム、N−メチルカプ
ロラクタム、ヘキサメチル ホスホール アミド、テト
ラメチル尿素、スルホラン、N,N′ージメチル アセ
トアミド、N ,N′ーエチレン ジピロリドンなどが
ある。この中では、NMP、1,3ージメチルー2ーイ
ミダゾリジノンが好ましい。
The polar organic solvent in the present invention means PPS.
Is a solvent capable of dissolving N-methyl-2-pyrrolidone (hereinafter referred to as NMP), N-ethyl-2-pyrrolidone, pyrrolidone, and 1,3-dimethyl-2.
-Imidazolidinone, caprolactam, N-methylcaprolactam, hexamethylphosphoramide, tetramethylurea, sulfolane, N, N'-dimethylacetamide, N, N'-ethylenedipyrrolidone and the like. Of these, NMP and 1,3-dimethyl-2-imidazolidinone are preferable.

【0011】本発明に於ける相分離剤とは、それ自身単
独でまたは少量の水などの共存下に前記極性有機溶媒に
溶解し、PPSの極性有機溶媒に対する溶解性を低下さ
せる作用を有する化合物である。相分離剤それ自身は、
PPSの溶媒ではない化合物である。一例を挙げれば、
水、メタノール、エタノール、エチレングリコール等の
一価および多価のアルコール類、パラフィン系炭化水素
類、酢酸リチウム、酢酸ナトリウム、プロピオン酸リチ
ウム、プロピオン酸ナトリウム、リチウム 2ーメチル
プロピオネート、ルビジウム ブチレート、リチウム
バレエート、ナトリウム バレエート、セシウム ヘキ
サノエート、リチウム ヘプタノエート、リチウム 2
ーメチルオクタノエート、カリウム ドデカノエート、
ルビジウム 4ーエチル テトラデカノエート、ナトリ
ウム オクタノエート、リチウムシクロヘキサン カル
ボキシレート、安息香酸リチウム、安息香酸ナトリウ
ム、安息香酸カリウムなどのカルボン酸アルカリ金属塩
類、塩化リチウム、弗化カリウム、塩化カルシウムなど
のアルカリ金属またはアルカリ土類金属ハロゲン化物な
どが有る。これらは単独でまたは混合物として使用され
る。
The phase-separating agent in the present invention is a compound which has a function of dissolving PPS in a polar organic solvent by itself or in the presence of a small amount of water or the like and dissolving it in the polar organic solvent. Is. The phase separating agent itself is
It is a compound that is not a solvent for PPS. For example,
Water, monohydric and polyhydric alcohols such as methanol, ethanol and ethylene glycol, paraffin hydrocarbons, lithium acetate, sodium acetate, lithium propionate, sodium propionate, lithium 2-methylpropionate, rubidium butyrate, lithium
Valeate, sodium valeate, cesium hexanoate, lithium heptanoate, lithium 2
-Methyl octanoate, potassium dodecanoate,
Rubidium 4-ethyl tetradecanoate, sodium octanoate, lithium cyclohexane carboxylate, lithium benzoate, sodium benzoate, potassium benzoate and other carboxylic acid alkali metal salts, lithium chloride, potassium fluoride, calcium chloride and other alkali metals or alkalis There are earth metal halides. These are used alone or as a mixture.

【0012】PPS混合物中に含まれるPPS、極性有
機溶媒および相分離剤の比率は、前記の相分離状態を出
現させ得る比率であって、且つ、取扱い易い、適度な粒
状のPPSの製造に適した比率である。例示すれば、極
性有機溶媒1kgに対してPPSは、通常、0.05〜
1kgである。この限定値を外れると、PPS濃度が薄
過ぎたり濃過ぎたりして取扱いが厄介になる。0.1〜
0.8kgであれば好ましく、0.2〜0.6kgであ
れば更に好ましい。相分離剤の使用比率は、使用する相
分離剤の種類によって異なるが、極性有機溶媒1kgに
対して、通常、0.2〜20モルである。この限定値を
外れると、相分離状態が出現し難かったり、PPSが溶
解し難くなったり、費用が嵩んだりして好ましくない。
0.4〜15モルであれば好ましい。尚、PPS混合物
中のPPS、極性有機溶媒および相分離剤は必須成分で
あって、本発明の目的を損なわない範囲ならば、他の物
質を共存させても良い。
The ratio of PPS, polar organic solvent and phase separating agent contained in the PPS mixture is such that the above-mentioned phase separation state can appear, and is suitable for the production of moderately granular PPS which is easy to handle. It is a ratio. For example, 1 kg of polar organic solvent usually has a PPS value of 0.05 to
It is 1 kg. If the PPS concentration is out of this range, the PPS concentration will be too light or too dark, and will be difficult to handle. 0.1-
0.8 kg is preferable, and 0.2 to 0.6 kg is more preferable. The use ratio of the phase separating agent varies depending on the type of the phase separating agent used, but is usually 0.2 to 20 mol per 1 kg of the polar organic solvent. If the value is out of this limit, it is not preferable because a phase separation state is difficult to appear, PPS is difficult to dissolve, and the cost is high.
It is preferably 0.4 to 15 mol. The PPS, the polar organic solvent and the phase separating agent in the PPS mixture are essential components, and other substances may coexist as long as the object of the present invention is not impaired.

【0013】本発明で、好適に使用されるPPS混合物
としては、特公昭45ー3368号公報、特公昭52ー
12240号公報および特公昭63ー337775号公
報等に開示された方法、およびこれらの方法に準じた方
法で製造されたPPS混合物を例示することができる。
これらのPPS混合物が前述の相分離状態を出現させ得
る比率でPPS、極性有機溶媒および相分離剤を含んで
いない場合には、不足成分を追加してから、本発明の粒
状PPSの製造方法を適用すればよい。通常は、極性有
機溶媒または相分離剤を補充することにより目的は達せ
られる。これらの方法のうち、特公昭63ー33775
号公報に開示された方法は特に好ましい。
The PPS mixture preferably used in the present invention includes the methods disclosed in JP-B-45-3368, JP-B-52-12240, JP-B-63-337775, and the like. The PPS mixture manufactured by the method according to the method can be illustrated.
When these PPS mixtures do not contain PPS, the polar organic solvent and the phase separating agent in a ratio that allows the above-mentioned phase separation state to appear, the insufficient components are added, and then the method for producing granular PPS according to the present invention is performed. You can apply. Usually, the purpose is achieved by supplementing the polar organic solvent or the phase separation agent. Among these methods, Japanese Examined Patent Publication No. 63-33775
The method disclosed in the publication is particularly preferable.

【0014】以下に、特公昭63ー33775号公報等
に開示された方法に準じたPPS混合物の製造方法を例
示する。この方法では、アルカリ金属硫化物とジハロ芳
香族化合物とを極性有機溶媒中で反応させてPPSを得
る反応を、少なくとも、以下のように二段階で行う。 (1)仕込アルカリ金属硫化物1モル当たり約0.5〜
10モルの水の存在下、約180〜235℃の温度で、
ジハロ芳香族化合物の転化率約50モル%以上になるま
で反応させる工程、(2)仕込アルカリ金属硫化物1モ
ル当たり約2.5〜10モルの水を共存させ、約245
〜290℃の温度に設定して反応を継続させる工程。
A method for producing a PPS mixture according to the method disclosed in JP-B-63-33775 and the like will be exemplified below. In this method, an alkali metal sulfide and a dihalo aromatic compound are reacted in a polar organic solvent to obtain PPS, at least in two steps as follows. (1) About 0.5 to 1 mol of charged alkali metal sulfide
In the presence of 10 moles of water at a temperature of about 180-235 ° C,
A step of reacting until the conversion of the dihalo-aromatic compound reaches about 50 mol% or more, (2) coexisting with about 2.5 to 10 mol of water per mol of the charged alkali metal sulfide;
A step of setting the temperature at ˜290 ° C. and continuing the reaction.

【0015】アルカリ金属硫化物としては、硫化リチウ
ム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、
硫化セシウムおよびこれらの混合物を例示することがで
きる。これらのアルカリ金属硫化物は、水和物または水
性混合物として、あるいは無水の形で用いることができ
る。これらのアルカリ金属硫化物の中に微量含まれるこ
とがあるアルカリ金属重硫化物と反応させるために、少
量のアルカリ金属水酸化物を添加してこれらをアルカリ
金属硫化物へ転換することができる。尚、アルカリ金属
硫化物の前駆体として、重硫化リチウム、重硫化ナトリ
ウム、重硫化カリウム、重硫化ルビジュウム、重硫化セ
シウムおよびこれらの混合物と等モル量のアルカリ金属
水酸化物とを同時に用いることもできる。これらのアル
カリ金属硫化物およびアルカリ金属重硫化物の中では、
硫化ナトリウム、重硫化ナトリウムが安価であって工業
的には好ましい。
The alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide,
Cesium sulfide and mixtures thereof can be exemplified. These alkali metal sulfides can be used as hydrates or aqueous mixtures or in anhydrous form. In order to react with the alkali metal polysulfide which may be contained in a small amount in these alkali metal sulfides, a small amount of alkali metal hydroxide can be added to convert them into alkali metal sulfides. Incidentally, as a precursor of the alkali metal sulfide, lithium disulfide, sodium disulfide, potassium disulfide, rubidium disulfide, cesium disulfide and a mixture thereof and an alkali metal hydroxide in an equimolar amount may be used at the same time. it can. Among these alkali metal sulfides and alkali metal polysulfides,
Sodium sulfide and sodium disulfide are inexpensive and industrially preferable.

【0016】ジハロ芳香族化合物としては、o−,m
−,p−ジハロベンゼン、2,5ージハロトルエン、
1,4−ジハロナフタリン、1ーメトキシー2,5−ジ
ハロベンゼン、4,4′ージハロビフェニル、3,5−
ジハロ安息香酸、4,4′−ジハロジフェニルエーテ
ル、4,4′−ジハロジフェニルスルホン、4,4′−
ジハロジフェニルスルフォキシド、4,4′−ジハロジ
フェニルケトンなどが例示される。ここでハロゲン原子
は弗素、塩素、臭素および沃素原子をさし、同一分子中
に複数個のハロゲン原子が含まれる場合には異なっても
良いものとする。これらの化合物は、一種または二種以
上を混合して使用することもできる。就中、p−ジクロ
ロベンゼンに代表されるp−ジハロベンゼンを主成分と
するものが好ましい。ジハロ芳香族化合物の使用量は仕
込アルカリ金属硫化物1モル当たり0.90〜1.10
モル、好ましくは0.95〜1.05モルである。
Examples of the dihalo aromatic compound include o- and m
-, P-dihalobenzene, 2,5-dihalotoluene,
1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4′-dihalobiphenyl, 3,5-
Dihalobenzoic acid, 4,4'-dihalodiphenyl ether, 4,4'-dihalodiphenyl sulfone, 4,4'-
Examples thereof include dihalodiphenyl sulfoxide and 4,4'-dihalodiphenyl ketone. Here, the halogen atom refers to fluorine, chlorine, bromine and iodine atoms, which may be different when a plurality of halogen atoms are contained in the same molecule. These compounds may be used alone or in combination of two or more. Above all, those containing p-dihalobenzene represented by p-dichlorobenzene as a main component are preferable. The amount of the dihalo aromatic compound used is 0.90 to 1.10 per mol of the charged alkali metal sulfide.
The molar amount is preferably 0.95 to 1.05 mol.

【0017】極性有機溶媒としては、前記の極性有機溶
媒が使用できる。極性有機溶媒の使用量は仕込アルカリ
金属硫化物1モル当たり約0.2〜2kgである。この
範囲の極性有機溶媒の使用量であれば、前記のPPS混
合物が得られる。
As the polar organic solvent, the above polar organic solvent can be used. The amount of polar organic solvent used is about 0.2 to 2 kg per mol of the charged alkali metal sulfide. When the amount of the polar organic solvent used is in this range, the PPS mixture can be obtained.

【0018】尚、PPSの末端を形成させ、或いは分子
量を調節する目的で、重合反応開始前または重合反応進
行中または重合反応終了後の適切な時期にモノハロ化合
物を添加することができる。モノハロ化合物を例示する
と、モノハロプロパン、モノハロブタン、モノハロヘプ
タン、モノハロヘキサン、アリールハライド、クロロプ
レン等のモノハロ置換飽和および不飽和脂肪族炭化水素
類、モノハロシクロヘキサン、モノハロデカリン等のモ
ノハロ置換飽和環状炭化水素類、モノハロベンゼン、モ
ノハロナフタレン等のモノハロ置換芳香族炭化水素類お
よびハロゲン原子以外にも官能基を有するこれらの置換
体などがある。ここでハロゲン原子は弗素、塩素、臭素
および沃素原子をさす。これらは本発明の目的を損なわ
ない範囲で使用される。
For the purpose of forming a terminal of PPS or controlling the molecular weight, a monohalo compound can be added before the initiation of the polymerization reaction, during the progress of the polymerization reaction, or at an appropriate time after the completion of the polymerization reaction. Examples of the monohalo compound include monohalo-substituted saturated saturated and unsaturated hydrocarbons such as monohalopropane, monohalobutane, monohaloheptane, monohalohexane, aryl halide and chloroprene, and monohalo substituted saturated unsaturated hydrocarbons such as monohalocyclohexane and monohalodecalin. In addition to cyclic hydrocarbons, monohalo-substituted aromatic hydrocarbons such as monohalobenzene and monohalonaphthalene, and substituted products thereof having a functional group in addition to a halogen atom. Here, the halogen atom refers to fluorine, chlorine, bromine and iodine atoms. These are used within a range that does not impair the object of the present invention.

【0019】更に、PPSに架橋または分枝構造を導入
する目的で、またはPPSの末端を形成させる目的で、
重合反応開始前または重合反応進行中または重合反応終
了後の適切な時期にトリハロ以上のポリハロ化合物を添
加することも可能である。ポリハロ化合物を例示する
と、1,2,3ートリハロベンゼン、1,2,4ートリ
ハロベンゼン、1,3,5ートリハロベンゼン、2,
4,6ートリハロトルエン、1,2,3,4ーテトラハ
ロベンゼン、ヘキサハロベンゼン、1,3,5ートリハ
ロー2,4,6ートリメチルベンゼン、2,2′,4,
4′ーテトラハロビフェニル、2,2′,6,6′テト
ラハロー3,3′,5,5′ーテトラメチルビフェニ
ル、1,2,3,4ーテトラハロナフタレン、1,2,
4ートリハロー6ーメチルナフタレンなどおよびこれら
の混合物が挙げられる。ここでハロゲン原子は弗素、塩
素、臭素および沃素原子をさす。尚、同一分子中に複数
個のハロゲン原子が含まれる場合には異なってもよいも
のとする。これらは本発明の目的を損なわない範囲で使
用される。
Further, for the purpose of introducing a crosslinked or branched structure into PPS, or for forming the end of PPS,
It is also possible to add a polyhalo compound of trihalo or more before the initiation of the polymerization reaction, during the progress of the polymerization reaction, or at an appropriate time after the completion of the polymerization reaction. Examples of polyhalo compounds are 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 2,
4,6-trihalotoluene, 1,2,3,4-tetrahalobenzene, hexahalobenzene, 1,3,5-trihalo 2,4,6-trimethylbenzene, 2,2 ', 4
4'-tetrahalobiphenyl, 2,2 ', 6,6' tetrahalo 3,3 ', 5,5'-tetramethylbiphenyl, 1,2,3,4-tetrahalonaphthalene, 1,2,
4-trihalo-6-methylnaphthalene and the like and mixtures thereof. Here, the halogen atom refers to fluorine, chlorine, bromine and iodine atoms. When a plurality of halogen atoms are contained in the same molecule, they may be different. These are used within a range that does not impair the object of the present invention.

【0020】(相分離状態、PPS濃厚相の固化温度)
本発明の方法では、相分離状態にあるPPS混合物か
ら、極性有機溶媒および/または相分離剤の少なくとも
一部を蒸発させる。この操作によって、PPS混合物の
温度は、PPS濃厚相が固化する温度以下に、急激に冷
却されてPPS濃厚相が急速固化し、破砕抵抗性を有す
る粒状PPSが得られる。
(Phase separation state, solidification temperature of PPS rich phase)
In the method of the present invention, at least a part of the polar organic solvent and / or the phase separating agent is evaporated from the PPS mixture in the phase separated state. By this operation, the temperature of the PPS mixture is rapidly cooled below the temperature at which the PPS concentrated phase solidifies, the PPS concentrated phase rapidly solidifies, and granular PPS having crush resistance is obtained.

【0021】本発明で言う相分離状態とは、PPSが極
性有機溶媒に溶解した状態であって、且つ、PPS濃度
が希薄な溶液相と濃厚な溶液相とが共存している状態を
いう。 PPS濃厚相および希薄相中のPPSの濃度
は、用いる極性有機溶媒、相分離剤およびPPSの種類
によって異なる。PPS、NMPおよび水からなるPP
S混合物の例では、PPS濃厚相中のPPS濃度は、通
常、約50重量%前後、希薄相中のPPS濃度は、通
常、5重量%以下になる。
The phase-separated state referred to in the present invention is a state in which PPS is dissolved in a polar organic solvent, and a solution phase having a low PPS concentration and a solution phase having a high PPS coexist. The concentration of PPS in the PPS rich phase and the dilute phase depends on the polar organic solvent, the phase separating agent and the type of PPS used. PP consisting of PPS, NMP and water
In the example of the S mixture, the PPS concentration in the PPS rich phase is usually around 50% by weight, and the PPS concentration in the dilute phase is usually 5% by weight or less.

【0022】本発明で言うPPS濃厚相が固化する温度
とは、PPS混合物の温度が低下するに従って、前述の
PPS濃厚相液滴が固さを帯びてきて、ついには濃厚相
液滴同士が合一、分散できなくなる温度であって、必ず
しもPPS濃厚相中のPPSが結晶化する温度を意味し
ない。PPS濃厚相中でPPSの結晶化が起こる場合に
は、耐圧試料容器を用いて、DSC(示差走査熱量計)
測定すれば、PPS濃厚相の固化温度を容易に知ること
ができる。例えば、直鎖状ポリ(p−フェニレンスルフ
ィド)、NMPおよび水からなるPPS混合物の場合、
約260℃に加熱して相分離状態を出現させた後、降温
しながらDSC測定を行うと、約235℃付近に発熱ピ
ークが観測される。これがPPS濃厚相の固化温度に相
当する。PPS濃厚相の固化温度は、用いる極性有機溶
媒、相分離剤およびPPSの種類等の諸条件によって異
なる。
The temperature at which the PPS rich phase solidifies in the present invention means that the above-mentioned PPS rich phase droplets become solid as the temperature of the PPS mixture decreases, and finally the rich phase droplets are combined. First, it is a temperature at which dispersion is not possible, and does not necessarily mean a temperature at which PPS in the PPS rich phase is crystallized. If crystallization of PPS occurs in the PPS rich phase, use a pressure resistant sample container and use DSC (Differential Scanning Calorimeter).
If measured, the solidification temperature of the PPS concentrated phase can be easily known. For example, in the case of a PPS mixture consisting of linear poly (p-phenylene sulfide), NMP and water:
After heating to about 260 ° C. to cause a phase separation state to appear, DSC measurement is performed while lowering the temperature, and an exothermic peak is observed at about 235 ° C. This corresponds to the solidification temperature of the PPS rich phase. The solidification temperature of the PPS concentrated phase depends on various conditions such as the polar organic solvent used, the phase separating agent, and the type of PPS.

【0023】(極性有機溶媒および/または相分離剤の
蒸発)本発明の方法では、相分離状態にあるPPS混合
物から、極性有機溶媒および/または相分離剤の少なく
とも一部を蒸発させることにより、PPS混合物の温度
をPPS濃厚相の固化温度以下に冷却する。冷却速度が
急激である程、降温幅が大きい程、破砕抵抗性に優れた
粒状PPSが得られる。極性有機溶媒および/または相
分離剤の蒸発によるPPS混合物の降温幅は、用いる極
性有機溶媒、相分離剤の熱的性質の違いなどによって異
なる。従って、本発明の方法に於いて、極性有機溶媒お
よび/または相分離剤の少なくとも一部を蒸発させると
は、PPS濃厚相の固化を引き起こすのに必要な降温幅
に相当する量の極性有機溶媒および/または相分離剤を
蒸発させるという程度の意味に解釈されるべきである。
蒸発方法としては、相分離状態にあるPPS混合物(通
常、高温・高圧の状態にある)を、低圧力の空間に噴出
させる方法(フラッシュ法)が一般的である。相分離状
態にあるPPS混合物をフラッシュすることにより、極
性有機溶媒および/または相分離剤の少なくとも一部が
蒸発し、残りのPPS混合物の温度はPPS濃厚相の固
化温度以下に冷却される。PPS濃厚相が固化し、PP
S粒子を含んだスラリーが得られる。
(Evaporation of Polar Organic Solvent and / or Phase Separating Agent) In the method of the present invention, at least a part of the polar organic solvent and / or the phase separating agent is evaporated from the PPS mixture in the phase separated state. The temperature of the PPS mixture is cooled below the solidification temperature of the PPS rich phase. The more rapid the cooling rate and the larger the temperature drop width, the more granular PPS with excellent crush resistance can be obtained. The temperature lowering range of the PPS mixture due to evaporation of the polar organic solvent and / or the phase separating agent varies depending on the polar organic solvent used, the difference in thermal properties of the phase separating agent, and the like. Therefore, in the method of the present invention, evaporating at least a part of the polar organic solvent and / or the phase separating agent means that the polar organic solvent is in an amount corresponding to the temperature drop width required to cause the solidification of the PPS rich phase. And / or should be construed to the extent of evaporating the phase separation agent.
As an evaporation method, a method (flash method) in which a PPS mixture in a phase-separated state (usually in a high temperature / high pressure state) is jetted into a low pressure space is generally used. By flushing the PPS mixture in the phase separated state, at least a part of the polar organic solvent and / or the phase separation agent is evaporated, and the temperature of the remaining PPS mixture is cooled below the solidification temperature of the PPS rich phase. The PPS rich phase solidifies and PP
A slurry containing S particles is obtained.

【0024】(PPS粒子の回収)PPS粒子を回収す
るには、通常の方法、特公昭63ー33775号公報等
に開示された方法に従えば良い。即ち、該スラリーを冷
却後、適度な孔眼寸法の篩を用いてPPS粒子を回収
し、有機溶媒による洗浄、水による洗浄、および酸性の
水溶液または酸性の有機溶媒での洗浄等を適度に行った
後、乾燥すればよい。
(Recovery of PPS Particles) In order to recover PPS particles, a usual method, a method disclosed in JP-B-63-33775 or the like may be used. That is, after cooling the slurry, PPS particles were recovered using a sieve having an appropriate pore size, and washing with an organic solvent, washing with water, and washing with an acidic aqueous solution or an acidic organic solvent were appropriately performed. Then, it may be dried.

【0025】フラッシュした相分離状態にあるPPS混
合物を、スラリー状態を経ないで、直ちに篩等に導い
て、PPS粒子を有機溶媒から分離した後、前記の洗
浄、乾燥等を行えば、より破砕抵抗性を有するPPS粒
子が得られるので好ましい。以下の推測は何等本発明を
限定するものでは無いが、フラッシュにより生成したス
ラリーを、そのまま高温下に置くことにより、得られた
PPS粒子の結晶化が進み、PPS粒子は破砕し易くな
るものと考えられる。
The flushed PPS mixture in the phase-separated state is immediately introduced into a sieve or the like without passing through the slurry state to separate the PPS particles from the organic solvent, and then washed and dried as described above to further crush the particles. It is preferable because PPS particles having resistance can be obtained. The following speculations do not limit the present invention in any way, but by placing the slurry produced by flashing at high temperature as it is, crystallization of the obtained PPS particles proceeds, and the PPS particles are easily crushed. Conceivable.

【0026】[0026]

【発明の効果】本発明の方法により、適度な粒度分布を
有し、破砕抵抗性を有する粒状PPSが得られる。この
PPSでは、微細化したPPS粒子による、濾過時のフ
ィルターの眼詰まり・眼抜け、乾燥時の粉立ち等が起こ
らないので、PPS重合後の後処理工程が容易になる。
又、乾燥粉体の取扱い時などにも、微細化せず、粉立ち
しないので成形加工工程が容易になる。
Industrial Applicability According to the method of the present invention, granular PPS having an appropriate particle size distribution and crush resistance can be obtained. In this PPS, the fine PPS particles do not cause clogging or omission of the filter during filtration or dusting during drying, so that the post-treatment process after PPS polymerization is facilitated.
Further, even when handling the dry powder, the molding process is facilitated because the powder does not become fine and does not stand up.

【0027】[0027]

【実施例】以下に実施例を示すが、本発明はこれらのみ
に限定されるものではない。 (平均粒子径)粒状PPSの平均粒子径は、次のように
して測定した。先ず、日本工業規格JIS K0069
の試験方法に準じて、試料の粒子径分布を測定し、積算
百分率グラフに表す。次いで、積算百分率が50%にな
る点をグラフ上から読み取って、平均粒子径とした。
EXAMPLES Examples will be shown below, but the present invention is not limited thereto. (Average particle diameter) The average particle diameter of the granular PPS was measured as follows. First, Japanese Industrial Standard JIS K0069
The particle size distribution of the sample is measured in accordance with the test method of 1 and is shown in an integrated percentage graph. Then, the point at which the cumulative percentage became 50% was read from the graph and used as the average particle size.

【0028】(粉化率)PPS粒子の破砕抵抗性の目安
として、以下の定義による粉化率を用いた。予めJIS
−100メッシュの篩を用いて回収した、粒状PPS試
料50gをJIS−100メッシュのステンレス製篩に
移して、振盪機で10分間振盪し、篩を通過した試料の
重量、即ち、振盪により破砕されたPPSの重量を計
り、次式に従って粉化率を計算した。尚、振盪機による
振盪回数は約300回/分である。粉化率の低いPPS
程、破砕抵抗性が高い。
(Powdering rate) The pulverizing rate defined below was used as a measure of the crush resistance of PPS particles. JIS beforehand
50 g of granular PPS sample recovered using a -100 mesh sieve was transferred to a JIS-100 mesh stainless sieve and shaken with a shaker for 10 minutes, and the weight of the sample that passed through the sieve, that is, crushed by shaking. The PPS was weighed and the pulverization rate was calculated according to the following formula. The shaking frequency with the shaker is about 300 times / minute. PPS with low powdering rate
The higher the crush resistance.

【0029】粉化率(%)={篩を通過した試料の重量
(g)/50(g)}×100
Powdering rate (%) = {weight of sample passed through sieve (g) / 50 (g)} × 100

【0030】(PPS混合物の合成例)耐圧オートクレ
ーブに硫化ナトリウム3800g(22.43モル、純
度46.06重量%)、およびNMP6700gを仕込
み、攪拌しながら200℃まで徐々に昇温した。この結
果、水1561g、NMP916gを含む溜出液249
6gをオートクレーブから留去した。この操作の結果、
オートクレーブ内には、硫化ナトリウム21.90モ
ル、水約27.2モル、NMP5784gが残ったこと
が分析の結果判明した。オートクレーブ内混合物に、p
−ジクロロベンゼン3413g(23.21モル)、水
102g、NMP4071gを添加し、220℃で4時
間30分間反応させた。ひき続きオートクレーブ内混合
物に、水986gを添加し、255℃に昇温して5時間
反応を継続した後、攪拌しながら室温まで冷却し、PP
S混合物(A)を得た。
(Example of Synthesis of PPS Mixture) 3800 g (22.43 mol, purity 46.06% by weight) of sodium sulfide and 6700 g of NMP were charged into a pressure-resistant autoclave and gradually heated to 200 ° C. with stirring. As a result, distillate 249 containing 1561 g of water and 916 g of NMP
6 g was distilled off from the autoclave. As a result of this operation,
The analysis revealed that 21.90 mol of sodium sulfide, about 27.2 mol of water, and 5784 g of NMP remained in the autoclave. To the mixture in the autoclave, p
-3413 g (23.21 mol) of dichlorobenzene, 102 g of water, and 4071 g of NMP were added and reacted at 220 ° C for 4 hours and 30 minutes. Subsequently, 986 g of water was added to the mixture in the autoclave, the temperature was raised to 255 ° C. and the reaction was continued for 5 hours.
An S mixture (A) was obtained.

【0031】前記のPPS混合物(A)の約半分から、
JISー100メッシュのステンレス製篩を用いて,粒
状PPSポリマーを回収した。回収ポリマーをアセトン
で3回、水で3回洗浄し、次いで、空気中105℃で1
6時間乾燥し、溶融粘度160ポイズ(310℃、剪断
速度1200/sec)の粒状PPS(B)を得た。平
均粒子径は320μm、粉化率は6.82%であった。
From about half of the PPS mixture (A) above,
The granular PPS polymer was recovered using a JIS-100 mesh stainless steel sieve. The recovered polymer was washed 3 times with acetone, 3 times with water, then 1 at 105 ° C. in air.
After drying for 6 hours, granular PPS (B) having a melt viscosity of 160 poise (310 ° C., shear rate of 1200 / sec) was obtained. The average particle size was 320 μm, and the pulverization rate was 6.82%.

【0032】(実施例1)底部に抜き出し口の付いた耐
圧オートクレーブに、前記の粒状PPS(B)100
g、NMP500g、水72gを仕込、空間部分を窒素
置換した後、255℃に1時間保って、相分離状態を出
現させた。相分離状態にあるPPS混合物を、底部の抜
き出し口より抜き出し、別つのステンレス製容器中に、
大気圧下、噴出せさた。蒸発したNMP、水はコンデン
サーで凝縮・回収した。次いで、粒状PPSを含むスラ
リーから、JISー100メッシュの篩を用いて、直ち
に、粒状PPSを分離・回収した。回収PPSをアセト
ンで3回、水で3回洗浄し、次いで、空気中105℃で
16時間乾燥した。PPSの回収率は93.5%、平均
粒子径は460μm、粉化率は1.8%であった。
(Example 1) The above-mentioned granular PPS (B) 100 was placed in a pressure-resistant autoclave having an outlet at the bottom.
g, NMP (500 g) and water (72 g) were charged, the space was replaced with nitrogen, and the mixture was kept at 255 ° C. for 1 hour to allow a phase separation state to appear. The PPS mixture in the phase-separated state was extracted from the extraction port at the bottom and placed in another stainless steel container,
It spewed out under atmospheric pressure. The evaporated NMP and water were condensed and collected by a condenser. Next, the granular PPS was immediately separated and recovered from the slurry containing the granular PPS using a JIS-100 mesh sieve. The recovered PPS was washed 3 times with acetone and 3 times with water, then dried in air at 105 ° C. for 16 hours. The PPS recovery rate was 93.5%, the average particle size was 460 μm, and the pulverization rate was 1.8%.

【0033】(実施例2)底部に抜き出し口の付いた耐
圧オートクレーブに、前記の粒状PPS(B)100
g、NMP500g、水72gを仕込、空間部分を窒素
置換した後、255℃に1時間保って、相分離状態を出
現させた。相分離状態にあるPPS混合物を、底部の抜
き出し口より抜き出し、別つのオートクレーブ中に、大
気圧下、噴出せさた。蒸発したNMP、水はコンデンサ
ーで凝縮・回収した。次いで、粒状PPSを含むスラリ
ーが入ったオートクレーブを200℃に昇温した後、攪
拌しながら室温まで冷却した。JISー100メッシュ
の篩を用いて、粒状PPSを分離・回収し、アセトンで
3回、水で3回洗浄し、次いで、空気中105℃で16
時間乾燥した。PPSの回収率は84.6%、平均粒子
径は360μm、粉化率は4.8%であった。
(Embodiment 2) The granular PPS (B) 100 was placed in a pressure resistant autoclave having an outlet at the bottom.
g, NMP (500 g) and water (72 g) were charged, the space was replaced with nitrogen, and the mixture was kept at 255 ° C. for 1 hour to allow a phase separation state to appear. The PPS mixture in the phase-separated state was taken out from the bottom outlet and jetted into another autoclave under atmospheric pressure. The evaporated NMP and water were condensed and collected by a condenser. Then, the autoclave containing the slurry containing granular PPS was heated to 200 ° C. and then cooled to room temperature with stirring. Granular PPS was separated and collected using a JIS-100 mesh sieve, washed with acetone three times and water three times, and then in air at 105 ° C. for 16 times.
Dried for hours. The PPS recovery rate was 84.6%, the average particle size was 360 μm, and the pulverization rate was 4.8%.

【0034】(実施例3)底部に抜き出し口の付いた耐
圧オートクレーブに、前記の粒状PPS(B)100
g、NMP500g、水72gを仕込、空間部分を窒素
置換した後、255℃に1時間保って、相分離状態を出
現させた。相分離状態にあるPPS混合物を、底部の抜
き出し口より抜き出し、直接、JISー100メッシュ
の篩上にフラッシュした。この操作により、PPS濃厚
相が固化すると同時に、粒状PPSは液状成分から分離
された。回収PPSをアセトンで3回、水で3回洗浄
し、次いで、空気中105℃で16時間乾燥した。PP
Sの回収率は95.2%、平均粒子径は620μm、粉
化率は0.93%であった。
(Example 3) The above-mentioned granular PPS (B) 100 was placed in a pressure-resistant autoclave having an outlet at the bottom.
g, NMP (500 g) and water (72 g) were charged, the space was replaced with nitrogen, and the mixture was kept at 255 ° C. for 1 hour to allow a phase separation state to appear. The PPS mixture in the phase-separated state was extracted from the extraction port at the bottom and directly flushed on a JIS-100 mesh screen. By this operation, the PPS concentrated phase was solidified, and at the same time, the granular PPS was separated from the liquid component. The recovered PPS was washed 3 times with acetone and 3 times with water, then dried in air at 105 ° C. for 16 hours. PP
The recovery rate of S was 95.2%, the average particle size was 620 μm, and the pulverization rate was 0.93%.

【0035】(比較例1)底部に抜き出し口の付いた耐
圧オートクレーブに、前記の粒状PPS(B)100
g、NMP500g、水72gを仕込、空間部分を窒素
置換した後、255℃に1時間保って、相分離状態を出
現させた。次いで、攪拌を継続しながら室温まで放冷し
た。JISー100メッシュの篩を用いて、粒状PPS
を回収した。回収PPSをアセトンで3回、水で3回洗
浄し、次いで、空気中105℃で16時間乾燥した。P
PSの回収率は79.3%、平均粒子径は320μm、
粉化率は7.1%であった。
(Comparative Example 1) The granular PPS (B) 100 was placed in a pressure resistant autoclave having an outlet at the bottom.
g, NMP (500 g) and water (72 g) were charged, the space was replaced with nitrogen, and the mixture was kept at 255 ° C. for 1 hour to allow a phase separation state to appear. Then, the mixture was allowed to cool to room temperature while continuing stirring. Granular PPS using a JIS-100 mesh screen
Was recovered. The recovered PPS was washed 3 times with acetone and 3 times with water, then dried in air at 105 ° C. for 16 hours. P
PS recovery rate is 79.3%, average particle size is 320 μm,
The pulverization rate was 7.1%.

【0036】(実施例4)底部に抜き出し口の付いた耐
圧オートクレーブに、前記のPPS混合物(A)750
gを仕込、空間部分を窒素置換した後、255℃に1時
間保って、相分離状態を出現させた。相分離状態にある
PPS混合物を、底部の抜き出し口より抜き出し、別つ
のステンレス製容器中に、大気圧下、噴出せさた。蒸発
したNMP、水はコンデンサーで凝縮・回収した。次い
で、粒状PPSを含むスラリーから、JISー100メ
ッシュの篩を用いて、直ちに、粒状PPSを分離・回収
した。回収PPSをアセトンで3回、水で3回洗浄し、
次いで、空気中105℃で16時間乾燥した。回収PP
Sの平均粒子径は430μm、粉化率は1.6%であっ
た。
(Example 4) A PPS mixture (A) 750 was placed in a pressure-resistant autoclave having an outlet on the bottom.
After charging g and purging the space with nitrogen, the temperature was maintained at 255 ° C. for 1 hour to allow a phase separation state to appear. The PPS mixture in the phase-separated state was extracted from the bottom outlet and spouted into another stainless steel container under atmospheric pressure. The evaporated NMP and water were condensed and collected by a condenser. Next, the granular PPS was immediately separated and recovered from the slurry containing the granular PPS using a JIS-100 mesh sieve. The recovered PPS was washed 3 times with acetone and 3 times with water,
Then, it was dried in air at 105 ° C. for 16 hours. Recovery PP
The average particle size of S was 430 μm, and the pulverization rate was 1.6%.

【0037】(実施例5)底部に抜き出し口の付いた耐
圧オートクレーブに、前記のPPS混合物(A)750
gを仕込、空間部分を窒素置換した後、255℃に1時
間保って、相分離状態を出現させた。相分離状態にある
PPS混合物を、底部の抜き出し口より抜き出し、直
接、JISー100メッシュの篩上にフラッシュした。
この操作により、PPS濃厚相が固化すると同時に、粒
状PPSは液状成分から分離された。回収PPSをアセ
トンで3回、水で3回洗浄し、次いで、空気中105℃
で16時間乾燥した。回収PPSの平均粒子径は510
μm、粉化率は1.02%であった。
(Example 5) A PPS mixture (A) 750 was placed in a pressure-resistant autoclave having an outlet on the bottom.
After charging g and purging the space with nitrogen, the temperature was maintained at 255 ° C. for 1 hour to allow a phase separation state to appear. The PPS mixture in the phase-separated state was extracted from the extraction port at the bottom and directly flushed on a JIS-100 mesh screen.
By this operation, the PPS concentrated phase was solidified, and at the same time, the granular PPS was separated from the liquid component. The recovered PPS was washed 3 times with acetone and 3 times with water, then in air at 105 ° C.
And dried for 16 hours. The average particle size of the recovered PPS is 510
μm, and the pulverization rate was 1.02%.

【0038】(比較例2)底部に抜き出し口の付いた耐
圧オートクレーブに、前記のPPS混合物(A)750
gを仕込、空間部分を窒素置換した後、255℃に1時
間保って、相分離状態を出現させた。次いで、攪拌を継
続しながら室温まで放冷した。JISー100メッシュ
の篩を用いて、粒状PPSを回収した。回収PPSをア
セトンで3回、水で3回洗浄し、次いで、空気中105
℃で16時間乾燥した。回収PPSの平均粒子径は31
0μm、粉化率は6.9%であった。
Comparative Example 2 A PPS mixture (A) 750 was placed in a pressure-resistant autoclave having a bottom with an outlet.
After charging g and purging the space with nitrogen, the temperature was maintained at 255 ° C. for 1 hour to allow a phase separation state to appear. Then, the mixture was allowed to cool to room temperature while continuing stirring. Granular PPS was recovered using a JIS-100 mesh screen. The recovered PPS is washed 3 times with acetone, 3 times with water, then 105 in air.
It was dried at ℃ for 16 hours. The average particle size of the recovered PPS is 31.
The particle size was 0 μm and the pulverization rate was 6.9%.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポリフェニレンスルフィド、極性有機溶媒
および相分離剤を含み、該ポリフェニレンスルフィドが
希薄な溶液相と濃厚な溶液相とが共存する相分離状態に
ある混合物から、該極性有機溶媒および/または該相分
離剤の少なくとも一部を蒸発させて、該混合物の温度を
該濃厚相が固化する温度以下に冷却することを特徴とす
る破砕抵抗性を有する粒状ポリフェニレンスルフィドの
製造方法。
1. A mixture containing polyphenylene sulfide, a polar organic solvent and a phase separating agent, wherein the polyphenylene sulfide is in a phase separated state in which a dilute solution phase and a concentrated solution phase coexist, and the polar organic solvent and / or A method for producing granular polyphenylene sulfide having crush resistance, which comprises cooling at least a part of the phase separating agent to lower the temperature of the mixture to a temperature at which the dense phase solidifies.
【請求項2】ポリフェニレンスルフィド、極性有機溶媒
および相分離剤を含む混合物が、極性有機溶媒中で硫黄
とアルカリ金属およびアルカリ土類金属から選ばれた少
なくとも一種の金属との化合物とジハロ芳香族化合物と
を脱ハロゲン化/硫化反応させることによリ生成した混
合物である請求項1の破砕抵抗性を有する粒状ポリフェ
ニレンスルフィドの製造方法。
2. A mixture of polyphenylene sulfide, a polar organic solvent and a phase separating agent is a compound of sulfur and at least one metal selected from alkali metals and alkaline earth metals in a polar organic solvent, and a dihaloaromatic compound. The method for producing granular polyphenylene sulfide having crush resistance according to claim 1, which is a mixture formed by dehalogenation / sulfurization of and.
【請求項3】相分離状態にある前記の混合物をより低圧
力の雰囲気下へ噴出させることにより、該極性有機溶媒
および/または該相分離剤の少なくとも一部を蒸発さ
せ、該混合物の温度を該濃厚相が固化する温度以下に冷
却することを特徴とする請求項1、2記載の破砕抵抗性
を有する粒状ポリフェニレンスルフィドの製造方法。
3. At least a part of the polar organic solvent and / or the phase-separating agent is evaporated by jetting the mixture in a phase-separated state into an atmosphere of lower pressure, and the temperature of the mixture is raised. The method for producing granular polyphenylene sulfide having crush resistance according to claim 1, wherein the concentrated phase is cooled to a temperature at which it solidifies or lower.
【請求項4】相分離状態にある前記の混合物をより低圧
力の雰囲気下へ噴出させて、該濃厚相を固化させた後、
固化した該濃厚相を直ちに分離・回収する請求項3記載
の破砕抵抗性を有する粒状ポリフェニレンスルフィドの
製造方法。
4. The phase-separated mixture is jetted under an atmosphere of lower pressure to solidify the concentrated phase,
The method for producing granular polyphenylene sulfide having crush resistance according to claim 3, wherein the solidified concentrated phase is immediately separated and recovered.
JP18210493A 1993-06-29 1993-06-29 Method for producing granular polyphenylene sulfide having crush resistance Expired - Lifetime JP3209616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18210493A JP3209616B2 (en) 1993-06-29 1993-06-29 Method for producing granular polyphenylene sulfide having crush resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18210493A JP3209616B2 (en) 1993-06-29 1993-06-29 Method for producing granular polyphenylene sulfide having crush resistance

Publications (2)

Publication Number Publication Date
JPH0710997A true JPH0710997A (en) 1995-01-13
JP3209616B2 JP3209616B2 (en) 2001-09-17

Family

ID=16112413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18210493A Expired - Lifetime JP3209616B2 (en) 1993-06-29 1993-06-29 Method for producing granular polyphenylene sulfide having crush resistance

Country Status (1)

Country Link
JP (1) JP3209616B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293940A (en) * 2001-03-30 2002-10-09 Petroleum Energy Center Method for polyarylene sulfide production
WO2003029328A1 (en) * 2001-09-27 2003-04-10 Kureha Chemical Industry Company, Limited Process for production of polyarylene sulfide
WO2003095527A1 (en) * 2002-05-08 2003-11-20 Idemitsu Kosan Co., Ltd. Process for continuous production of branched polyarylene sulfides
EP1375541A1 (en) * 2001-03-12 2004-01-02 Idemitsu Petrochemical Co., Ltd. Process for producing polyarylene sulfide
JP2007314803A (en) * 2007-08-09 2007-12-06 Kureha Corp Manufacturing process for polyarylene sulfide
WO2010010760A1 (en) * 2008-07-22 2010-01-28 株式会社クレハ Process for production of polyarylene sulfide having reduced terminal halogen group content
WO2010013545A1 (en) * 2008-07-31 2010-02-04 株式会社クレハ Process for production of granular polyarylene sulfide
WO2018164009A1 (en) * 2017-03-06 2018-09-13 株式会社クレハ Apparatus for recovering polyarylene sulfide
KR20190082955A (en) 2017-02-07 2019-07-10 가부시끼가이샤 구레하 Process for preparing granular polyarylene sulfide and process for producing granular polyarylene sulfide

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375541A1 (en) * 2001-03-12 2004-01-02 Idemitsu Petrochemical Co., Ltd. Process for producing polyarylene sulfide
EP1375541A4 (en) * 2001-03-12 2005-05-11 Idemitsu Kosan Co Process for producing polyarylene sulfide
JP2002293940A (en) * 2001-03-30 2002-10-09 Petroleum Energy Center Method for polyarylene sulfide production
WO2003029328A1 (en) * 2001-09-27 2003-04-10 Kureha Chemical Industry Company, Limited Process for production of polyarylene sulfide
US7569656B2 (en) 2001-09-27 2009-08-04 Kureha Corporation Process for production of polyarylene sulfide
WO2003095527A1 (en) * 2002-05-08 2003-11-20 Idemitsu Kosan Co., Ltd. Process for continuous production of branched polyarylene sulfides
US7060785B2 (en) 2002-05-08 2006-06-13 Idemitsu Kosan Co., Ltd. Process for continuous production of branched polyarylene sulfides
JP2007314803A (en) * 2007-08-09 2007-12-06 Kureha Corp Manufacturing process for polyarylene sulfide
WO2010010760A1 (en) * 2008-07-22 2010-01-28 株式会社クレハ Process for production of polyarylene sulfide having reduced terminal halogen group content
US8680230B2 (en) 2008-07-22 2014-03-25 Kureha Corporation Production process of poly(arylene sulfide) whose content of terminal halogen group has been reduced
JP5731196B2 (en) * 2008-07-22 2015-06-10 株式会社クレハ Process for producing polyarylene sulfide having a reduced content of terminal halogen groups
WO2010013545A1 (en) * 2008-07-31 2010-02-04 株式会社クレハ Process for production of granular polyarylene sulfide
JPWO2010013545A1 (en) * 2008-07-31 2012-01-12 株式会社クレハ Method for producing granular polyarylene sulfide
US8609790B2 (en) 2008-07-31 2013-12-17 Kureha Corporation Production process of granular poly(arylene sulfide)
JP5623277B2 (en) * 2008-07-31 2014-11-12 株式会社クレハ Method for producing granular polyarylene sulfide
KR20190082955A (en) 2017-02-07 2019-07-10 가부시끼가이샤 구레하 Process for preparing granular polyarylene sulfide and process for producing granular polyarylene sulfide
WO2018164009A1 (en) * 2017-03-06 2018-09-13 株式会社クレハ Apparatus for recovering polyarylene sulfide

Also Published As

Publication number Publication date
JP3209616B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
EP0259984B1 (en) Process for producing a polyarylene sulfide
CN107636045B (en) Process for producing polyarylene sulfide in pellet form, and polyarylene sulfide in pellet form
KR101758039B1 (en) Process for producing polyarylene sulfide
JP5623277B2 (en) Method for producing granular polyarylene sulfide
KR101470723B1 (en) Process for production of polyarylene sulfides, and polyarylene sulfides
US8680230B2 (en) Production process of poly(arylene sulfide) whose content of terminal halogen group has been reduced
KR101109955B1 (en) Polyarylene sulfide and process for producing the same
JP4310279B2 (en) Method for producing polyarylene sulfide, method for washing, and method for purifying organic solvent used for washing
US6201098B1 (en) Process for preparing sulphurous polymers
JP6419311B2 (en) Method for producing finely divided polyarylene sulfide and finely divided polyarylene sulfide
JP3894496B2 (en) Process for producing polyarylene sulfide
WO2010134445A1 (en) Polyarylene sulfide and manufacturing method therefor
JP6418852B2 (en) Method for producing polyarylene sulfide and polyarylene sulfide
JP3209616B2 (en) Method for producing granular polyphenylene sulfide having crush resistance
US11661482B2 (en) Separation and purification method of polyarylene sulfide
JP6456742B2 (en) Process for producing finely divided polyarylene sulfide and finely divided polyarylene sulfide
TWI797389B (en) Separation and recovery method of polyarylene sulfide and preparation method of polyarylene sulfide
JP2007262341A (en) Purification method of polyarylene sulfide resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

EXPY Cancellation because of completion of term