JPH07109548A - Alustenitic stainless steel excellent in hot workability - Google Patents

Alustenitic stainless steel excellent in hot workability

Info

Publication number
JPH07109548A
JPH07109548A JP25128693A JP25128693A JPH07109548A JP H07109548 A JPH07109548 A JP H07109548A JP 25128693 A JP25128693 A JP 25128693A JP 25128693 A JP25128693 A JP 25128693A JP H07109548 A JPH07109548 A JP H07109548A
Authority
JP
Japan
Prior art keywords
steel
hot workability
less
stainless steel
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25128693A
Other languages
Japanese (ja)
Inventor
Koji Oya
耕二 大矢
Tomohito Iikubo
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25128693A priority Critical patent/JPH07109548A/en
Publication of JPH07109548A publication Critical patent/JPH07109548A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an austenitic stainless steel for seawatet resistance excellent in hot workability and free from deterioration in corrosion resistance and mechanical properties even in a thick or round product by specifying the chemical components in a steel and controlling its structure. CONSTITUTION:This steel has a compsn. contg., by weight, <=0.040% C, 40.80% Si, 1.00 to 5.00% Mn, <=0.040% P, <=0.030% S, <=1.00% Cu, 18.0 to 22.0% Ni, 20.0 to 28.0% Cr, 4.0 to 8.0% Mo, 0.15 to 0.40% N, 0.001 to 0.10% Mg, and the balance substantial Fe and has a structure in which the content of delta ferrite is regulated to <=10%. Thus, the austenitic stainless steel for seawater resistance excellent in hot workability can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間加工性の優れた耐
海水用オーステナイト系ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel for seawater having excellent hot workability.

【0002】[0002]

【従来の技術】ステンレス鋼は耐食性が優れているた
め、多くの分野で使用されている。しかしながら、海水
のごとき塩素イオンの存在化での使用にあたっては、例
えば、SUS316、SUS316Lなどでは孔食を発
生したり、隙間腐食が生じやすいなどの問題点がある。
このため、より耐孔食性を有する材料が求められてい
る。
2. Description of the Related Art Stainless steel is used in many fields because of its excellent corrosion resistance. However, when used in the presence of chlorine ions such as seawater, for example, SUS316 and SUS316L have problems such as pitting corrosion and crevice corrosion.
Therefore, a material having more pitting corrosion resistance is required.

【0003】そこで、Mo、Crの含有量を高めるとと
もに、Nを添加して耐食性を高めたFe−20Cr−2
5Ni−7Mo−0.1Nのようなステンレス鋼が開発
されている。しかし、Mo、Cr、N等の合金元素を多
量に添加し、高合金化することにより、熱間加工性を阻
害するという欠点をともない、分解圧延、分解鍛造等の
高温における加工が困難となる。
Therefore, Fe-20Cr-2 in which the contents of Mo and Cr are increased and N is added to improve the corrosion resistance.
Stainless steels such as 5Ni-7Mo-0.1N have been developed. However, by adding a large amount of alloying elements such as Mo, Cr, N, etc. and making them highly alloyed, there is a drawback that hot workability is impaired, and processing at high temperatures such as decomposition rolling and decomposition forging becomes difficult. .

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
のような事情を背景としてなされたもので、塩素イオン
を含む腐食環境でも十分な耐食性を有し、熱間加工性に
優れ、かつ、肉厚あるいは太丸製品を製造する場合にも
耐食性、機械的性質を損うことのない耐海水用オーステ
ナイト系ステンレス鋼を提供することである。
SUMMARY OF THE INVENTION The object of the present invention has been made in view of the above circumstances, and it has sufficient corrosion resistance even in a corrosive environment containing chloride ions, and has excellent hot workability. It is an object of the present invention to provide an austenitic stainless steel for seawater resistance that does not impair corrosion resistance and mechanical properties even when manufacturing thick or thick round products.

【0005】[0005]

【課題を解決するための手段】本発明の熱間加工性に優
れた耐海水用オーステナイト系ステンレス鋼は、合金元
素の含有率が重量%で、C :0.040%以下、S
i:0.80%以下、Mn:1.00〜5.00%、P
:0.040%以下、S :0.030%以下、C
u:1.00%以下、Ni:18.00〜22.00
%、Cr:20.00〜28.00%、Mo:4.00
〜8.00%、N :0.15〜0.40%、およびM
g:0.001〜0.10%であって、残部Feおよび
不可避的不純物からなり、10%以下のδフェライト相
を含むことを特徴とする。
The austenitic stainless steel for seawater having excellent hot workability according to the present invention has an alloying element content of wt%, C: 0.040% or less, S
i: 0.80% or less, Mn: 1.00 to 5.00%, P
: 0.040% or less, S: 0.030% or less, C
u: 1.00% or less, Ni: 18.0 to 22.00
%, Cr: 20.00 to 28.00%, Mo: 4.00
~ 8.00%, N: 0.15-0.40%, and M
g: 0.001 to 0.10%, the balance Fe and unavoidable impurities, and 10% or less of the δ ferrite phase.

【0006】本発明のステンレス鋼は上述の合金元素に
加えて、下記の合金元素のいずれか一方または両方を含
有することができる。 1)重量%で、Sn:0.02〜0.10%、Ti:
0.10〜2.00%、Nb:0.10〜2.00%、
Ta:0.10〜2.00%、Co:0.10〜3.0
0%、およびW :0.10〜3.00%のうち、いず
れか1種または2種以上、ならびに 2)重量%で、Ca:0.001〜0.020%、A
l:0.01〜0.07%、およびB :0.001〜
0.10%のうち、いずれか1種または2種以上。
The stainless steel of the present invention may contain one or both of the following alloy elements in addition to the above alloy elements. 1) wt%, Sn: 0.02 to 0.10%, Ti:
0.10 to 2.00%, Nb: 0.10 to 2.00%,
Ta: 0.10 to 2.00%, Co: 0.10 to 3.0
0%, and W: 0.10 to 3.00%, and any one or more of them, and 2)% by weight, Ca: 0.001 to 0.020%, A
1: 0.01-0.07%, and B: 0.001-
Any one or more of 0.10%.

【0007】以下に各合金成分の限定理由について説明
する。 C:0.040%以下 Cは強力なオーステナイト形成元素であり、高価なNi
を省くのに有効であるが、炭化物を形成して鋼の耐食
性、靭性を劣化させるため、本発明では上限を0.04
0%とする。
The reasons for limiting the alloy components will be described below. C: 0.040% or less C is a strong austenite forming element and expensive Ni
Although it is effective in omitting the above, since the carbides are formed to deteriorate the corrosion resistance and toughness of the steel, the upper limit is 0.04 in the present invention.
0%

【0008】Si:0.80%以下 Siは鋼の脱酸剤として有効であるが、金属間化合物の
形成を助長するため、上限を0.80%とする。 Mn:1.00〜5.00% Mnはオーステナイト形成元素として働くほか、鋼の脱
酸剤として有効である。また、Nを安定化させるための
成分として有効なので1%以上を添加する。しかし、過
剰に添加すると鋼の耐食性を劣化させるので上限を5.
00%とする。
Si: 0.80% or less Si is effective as a deoxidizing agent for steel, but since it promotes the formation of intermetallic compounds, the upper limit is 0.80%. Mn: 1.00 to 5.00% Mn acts as an austenite forming element and is also effective as a deoxidizing agent for steel. Further, since it is effective as a component for stabilizing N, 1% or more is added. However, if added excessively, the corrosion resistance of steel deteriorates, so the upper limit is set to 5.
00%.

【0009】P:0.040%以下 Pは応力腐食われを助長し、また耐食性を劣化させるた
め0.040%以下とする必要がある。望ましくは0.
020%以下とする。 S:0.030%以下 Sは耐食性、熱間加工性を著しく劣化させるため0.0
30%以下とする必要がある。望ましくは0.005%
とする。
P: 0.040% or less P promotes stress corrosion damage and deteriorates corrosion resistance, so P must be 0.040% or less. Desirably 0.
020% or less. S: 0.030% or less Since S remarkably deteriorates corrosion resistance and hot workability, 0.0
It should be 30% or less. Desirably 0.005%
And

【0010】Cu:1.00%以下 Cuは特に低pH領域における耐食性向上に有効である
が、pH8程度の海水環境ではそれほど多量に添加する
必要はなく、むしろ熱間加工性を劣化させるので、本発
明においては上限を1.00%とする。 Ni:18.00〜22.00% Niはオーステナイト形成元素として有効であり、必要
不可欠である。耐海水用として高い耐食性が要求される
場合にCr、Moとともに用いられる。Ni含有率が高
いほど耐食性、耐酸化性が向上するが、多量の添加は鋼
の金属組織をオーステナイト単相となし、熱間加工性を
低下するので、本発明の鋼においては鋼の熱間加工性の
向上に好ましいδフェライト相を確保するためにNi含
有率を18.00〜22.00%とする。
Cu: 1.00% or less Cu is particularly effective in improving the corrosion resistance in a low pH region, but it is not necessary to add Cu in such a large amount in a seawater environment having a pH of about 8 and rather deteriorates the hot workability. In the present invention, the upper limit is 1.00%. Ni: 18.0 to 22.00% Ni is effective as an austenite forming element and is indispensable. Used together with Cr and Mo when high corrosion resistance is required for seawater resistance. Corrosion resistance and oxidation resistance are improved as the Ni content is higher, but a large amount of addition makes the metal structure of the steel an austenite single phase and reduces hot workability. The Ni content is set to 18.0 to 22.00% in order to secure a δ ferrite phase preferable for improving workability.

【0011】Cr:20.00〜28.00% Crは耐食性を向上させ、特に海水環境での孔食、隙間
腐食に対して有効な元素である。また、本発明の鋼にお
いて熱間加工性を向上するために必要なδフェライト相
を形成する。そのため、含有率20.00%以上を添加
する。しかし過剰に添加すれば、金属間化合物を形成し
て鋼の脆化をもたらし、また、δフェライト相を必要以
上に多量に晶出して鋼の熱間加工性を損うので、含有率
の上限を28.00%とする。
Cr: 20.00 to 28.00% Cr is an element which improves the corrosion resistance and is particularly effective against pitting corrosion and crevice corrosion in a seawater environment. Further, in the steel of the present invention, it forms a δ ferrite phase necessary for improving hot workability. Therefore, a content rate of 20.00% or more is added. However, if added excessively, an intermetallic compound is formed to cause embrittlement of the steel, and the δ ferrite phase is crystallized in an unnecessarily large amount to impair the hot workability of the steel. Is 28.00%.

【0012】Mo:4.00〜8.00% Moは耐食性に関してCr以上の効果をもち、フェライ
ト形成元素である。本発明では耐食性の向上と、δフェ
ライト相による熱間加工性の向上とのために含有率4.
00%以上を添加する。しかし、Moは金属間化合物の
形成速度を高めるので、過剰の添加は鋼の脆化を招き、
さらに、δフェライト相を必要以上に多量に晶出して鋼
の熱間加工性を害するうえ、コストの上昇を招くので、
含有率の上限は8.00%とする。
Mo: 4.00 to 8.00% Mo has an effect of more than Cr on the corrosion resistance and is a ferrite forming element. In the present invention, the content ratio is 4. because the corrosion resistance is improved and the hot workability due to the δ ferrite phase is improved.
Add more than 00%. However, Mo increases the rate of formation of intermetallic compounds, so excessive addition causes embrittlement of steel,
Furthermore, since the δ ferrite phase is crystallized in an unnecessarily large amount to impair the hot workability of the steel and cause an increase in cost,
The upper limit of the content rate is 8.00%.

【0013】N:0.15〜0.40% Nは耐食性の向上に有効で、強度の向上にも効果があ
り、オーステナイト形成元素として強い働きを持つので
0.15%以上を含有させる。しかし、過剰に添加する
と、鋼の造塊時にブローホールを生じて製造性を損うの
で含有率の上限を0.40%とする。
N: 0.15 to 0.40% N is effective for improving the corrosion resistance and also for improving the strength, and has a strong function as an austenite forming element, so N is contained in an amount of 0.15% or more. However, if added excessively, blowholes are formed during the ingoting of steel and the manufacturability is impaired, so the upper limit of the content is made 0.40%.

【0014】Mg:0.001〜0.10% Mgは本発明鋼における熱間加工性の向上のために不可
欠の元素である。この効果はMgを0.001%以上含
有させることによって生じるが、多量に添加してもその
効果は飽和するので、含有量の上限は0.10%とす
る。 Sn:0.02〜0.10% Snはステンレス鋼の耐酸性を向上させるので、含有率
0.10%以下の範囲で添加してもよい。
Mg: 0.001 to 0.10% Mg is an essential element for improving hot workability in the steel of the present invention. This effect is caused by containing 0.001% or more of Mg, but even if added in a large amount, the effect is saturated, so the upper limit of the content is made 0.10%. Sn: 0.02 to 0.10% Sn improves the acid resistance of stainless steel, so the content may be added in the range of 0.10% or less.

【0015】Ti、NbおよびTa:0.10〜2.0
0%、 Ti、NbおよびTaはいずれも鋼中のCを炭化物とし
て固定し、鋼の耐食性を向上させる。特に、溶接部の耐
隙間腐食性の向上効果が大きいので、含有率0.10〜
2.00%の範囲で添加してもよい。 CoおよびW:0.10〜3.00% CoおよびWはステンレス鋼の耐食性を向上させるの
で、含有率0.10〜3.00%の範囲で添加してもよ
い。
Ti, Nb and Ta: 0.10 to 2.0
0%, Ti, Nb and Ta all fix C in the steel as a carbide and improve the corrosion resistance of the steel. In particular, since the effect of improving the crevice corrosion resistance of the welded portion is great, the content rate is 0.10
You may add in the range of 2.00%. Co and W: 0.10 to 3.00% Since Co and W improve the corrosion resistance of stainless steel, the content may be added in the range of 0.10 to 3.00%.

【0016】Ca:0.001〜0.020% Caは鋼の脱酸、脱硫剤として働き、また熱間加工性を
向上させるので、含有率0.001〜0.020%の範
囲で添加してもよい。 Al:0.01〜0.07% Alは鋼の強力な脱酸剤として働くが、過剰に添加する
と鋼の耐食性、熱間加工性を劣化させるので、含有率
0.01〜0.07%の範囲で添加してもよい。
Ca: 0.001 to 0.020% Since Ca acts as a deoxidizing and desulfurizing agent for steel and improves hot workability, it is added in a content range of 0.001 to 0.020%. May be. Al: 0.01 to 0.07% Al acts as a strong deoxidizing agent for steel, but if added in excess, it deteriorates the corrosion resistance and hot workability of steel, so the content rate is 0.01 to 0.07%. You may add in the range of.

【0017】B:0.001〜0.10% Bは鋼の熱間加工性を改善するので含有率0.001〜
0.10%の範囲で添加してもよい。 本発明鋼においては、δフェライト相は鋼の熱間加工性
を向上するために重要な役割を果す。その量は、おもに
Ni、C、N、Mn、Cuなどのオーステナイト形成元
素とCr、Si、Mo、Alなどのフェライト形成元素
の配分によってきまるが、化学組成を上記の成分含有率
の範囲としたうえで、δフェライト相を10%以内とな
るように調整する。
B: 0.001 to 0.10% Since B improves the hot workability of steel, its content is 0.001 to 0.001%.
You may add in 0.10% of range. In the steel of the present invention, the δ ferrite phase plays an important role in improving the hot workability of the steel. The amount is mainly determined by the distribution of austenite-forming elements such as Ni, C, N, Mn, and Cu and ferrite-forming elements such as Cr, Si, Mo, and Al, but the chemical composition is within the above-mentioned component content range. Then, the δ ferrite phase is adjusted to be within 10%.

【0018】δフェライト相はオーステナイト結晶粒界
にあって鋼の熱間加工性を阻害するP、Sを固溶し、そ
の弊害を除く。その効果は少量のδフェライト量でも発
揮されるが、十分な効果をもたらすには2%以上とする
のが望ましい。しかし、過剰のδフェライト相の存在は
かえって鋼の熱間加工性を害するので、上限を10%と
する。
The δ-ferrite phase is present at the austenite grain boundaries and forms a solid solution with P and S which impede the hot workability of steel, and eliminates the adverse effect. The effect is exhibited even with a small amount of δ-ferrite, but it is preferable to be 2% or more to bring out a sufficient effect. However, the presence of an excessive amount of δ ferrite phase rather impairs the hot workability of steel, so the upper limit is made 10%.

【0019】[0019]

【実施例】表1に示す化学組成の鋼を真空誘導炉で溶製
し、50kg鋼塊とした。
EXAMPLE Steels having the chemical composition shown in Table 1 were melted in a vacuum induction furnace to obtain a 50 kg steel ingot.

【0020】[0020]

【表1】 [Table 1]

【0021】上記鋼塊の高さ中央部の表面近傍から約1
0mm角の供試材を切出し、δフェライト量の測定に供
した。δフェライト量の測定は、鋼塊横断面を被檢面と
し、これをバフ研磨後、5%ピクリン酸+塩酸アルコー
ル溶液で腐食し、200倍で檢鏡して面積率を求める方
法で行った。その結果を表1に示す。また、上記鋼塊の
表面近傍から直径6mm×長さ110mmの試験片を削
出しグリーブル試験に供した。グリーブル試験結果の例
を図1に示す。Mgの適量添加およびδフェライト相に
より絞り値が向上していることが判る。
Approximately 1 from the vicinity of the surface of the height center of the steel ingot
A 0 mm square sample material was cut out and used for measurement of the amount of δ ferrite. The amount of δ ferrite was measured by a method in which a cross section of a steel ingot was used as a surface to be processed, which was buffed, corroded with a 5% picric acid + hydrochloric acid alcohol solution, and mirrored at 200 times to obtain an area ratio. . The results are shown in Table 1. Further, a test piece having a diameter of 6 mm and a length of 110 mm was cut out from the vicinity of the surface of the steel ingot and subjected to a greeble test. An example of the greeble test results is shown in FIG. It can be seen that the aperture value is improved by adding an appropriate amount of Mg and the δ ferrite phase.

【0022】別に、上記の鋼塊(平均直径100mm)
を1200℃に加熱し、1000℃までの間に1ヒート
で50mm角に鍛延し、割れ発生の有無を調べて鍛造性
を評価した。さらに、上記鋼塊を熱間鍛造により直径2
0mmの棒鋼に加工し、固溶化処理を施し、これより直
径18mm×長さ25mmの試験片を削出し、端面を1
000番エメリーで研磨して耐食性試験に供した。
Separately, the above steel ingot (average diameter 100 mm)
Was heated to 1200 ° C., and forged into 50 mm square with 1 heat up to 1000 ° C., and the presence or absence of cracking was examined to evaluate the forgeability. Further, the steel ingot is hot-forged to have a diameter of 2
It is processed into 0 mm steel bar and subjected to solution treatment, and a test piece with a diameter of 18 mm and a length of 25 mm is cut out from this, and the end surface is 1
It was ground with a No. 000 emery and subjected to a corrosion resistance test.

【0023】耐食性試験はpH1に調整した6%FeC
3 溶液中に試験片を24hr浸漬して表面状況を肉眼
で観察し、腐食の発生がない場合には液温を2.5℃づ
つ上昇して同様の操作を行い、腐食の発生しない限界の
温度、すなわち臨界孔食発生温度を調べる方法(CP
T)で行った。鍛造性および耐食性試験結果を表2に示
す。
The corrosion resistance test is 6% FeC adjusted to pH 1.
The test piece was immersed in the l 3 solution for 24 hours, and the surface condition was visually observed. If corrosion did not occur, raise the liquid temperature in increments of 2.5 ° C and perform the same operation. Temperature (ie, the temperature at which critical pitting occurs) (CP
T). Table 2 shows the results of the forgeability and corrosion resistance test.

【0024】[0024]

【表2】 [Table 2]

【0025】表2において、 鍛造性○:鍛造割れなし、 鍛造性×:鍛造割れあり、 また、 耐食性○:臨界孔食発生温度50℃以上、 耐食性×:臨界孔食発生温度47.5℃以下、を表す。In Table 2, forgeability ○: no forge cracking, forgeability ×: forge cracking, and corrosion resistance ○: critical pitting corrosion temperature 50 ° C or higher, corrosion resistance ×: critical pitting corrosion temperature 47.5 ° C or less Represents.

【0026】[0026]

【発明の効果】本発明によれば、固有の合金組成の選択
によって、熱間加工性が良好で、肉厚あるいは太丸製品
を製造する場合にも耐食性、機械的性質を損うことがな
く、塩素イオンを含む環境でも十分な耐食性を有し、海
水用のポンプ、シャフト、ボルト等の部品、海水用ワイ
ヤ等に適するオーステナイト系ステンレス鋼を提供する
ことができる。
EFFECTS OF THE INVENTION According to the present invention, by selecting a unique alloy composition, hot workability is good, and corrosion resistance and mechanical properties are not impaired even when manufacturing thick products or thick round products. It is possible to provide austenitic stainless steel which has sufficient corrosion resistance even in an environment containing chlorine ions and is suitable for components such as pumps, shafts and bolts for seawater, and wires for seawater.

【図面の簡単な説明】[Brief description of drawings]

【図1】グリーブル試験における試験温度と絞り値との
関係を示す図である。
FIG. 1 is a diagram showing a relationship between a test temperature and an aperture value in a greeble test.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 合金元素の含有率が重量%で、 C :0.040%以下、 Si:0.80%以下、 Mn:1.00〜5.00%、 P :0.040%以下、 S :0.030%以下、 Cu:1.00%以下、 Ni:18.00〜22.00%、 Cr:20.00〜28.00%、 Mo:4.00〜8.00%、 N :0.15〜0.40%、および Mg:0.001〜0.10%であって、残部Feおよ
び不可避的不純物からなり、10%以下のδフェライト
相を含むことを特徴とする熱間加工性に優れた耐海水用
オーステナイト系ステンレス鋼。
1. The content of alloying elements is% by weight, C: 0.040% or less, Si: 0.80% or less, Mn: 1.00 to 5.00%, P: 0.040% or less, S: 0.030% or less, Cu: 1.00% or less, Ni: 18.0 to 22.00%, Cr: 20.00 to 28.00%, Mo: 4.00 to 8.00%, N : 0.15 to 0.40%, and Mg: 0.001 to 0.10%, consisting of the balance Fe and unavoidable impurities, and containing 10% or less of a δ ferrite phase. Austenitic stainless steel for seawater with excellent workability.
【請求項2】 請求項1記載の合金元素に加えて、重量
%で、 Sn:0.02〜0.10%、 Ti:0.10〜2.00%、 Nb:0.10〜2.00%、 Ta:0.10〜2.00%、 Co:0.10〜3.00%、および W :0.10〜3.00%のうち、いずれか1種また
は2種以上を含有し、残部Feおよび不可避的不純物か
らなり、10%以下のδフェライト相を含むことを特徴
とする熱間加工性に優れた耐海水用オーステナイト系ス
テンレス鋼。
2. In addition to the alloy element according to claim 1, in weight%, Sn: 0.02 to 0.10%, Ti: 0.10 to 2.00%, Nb: 0.10 to 2. 00%, Ta: 0.10 to 2.00%, Co: 0.10 to 3.00%, and W: 0.10 to 3.00%, and any one kind or two or more kinds is contained. , A balance of Fe and inevitable impurities, and containing 10% or less of a δ ferrite phase, an austenitic stainless steel for seawater having excellent hot workability.
【請求項3】 請求項1記載の合金元素に加えて、重量
%で、 Ca:0.001〜0.020%、 Al:0.01〜0.07%、および B :0.001〜0.10%のうち、いずれか1種ま
たは2種以上を含有し、残部Feおよび不可避的不純物
からなり、10%以下のδフェライト相を含むことを特
徴とする熱間加工性に優れた耐海水用オーステナイト系
ステンレス鋼。
3. In addition to the alloy elements according to claim 1, in weight%, Ca: 0.001 to 0.020%, Al: 0.01 to 0.07%, and B: 0.001 to 0. Out of 10%, the seawater-resistant excellent in hot workability is characterized by containing any one or more of 10% and the balance Fe and unavoidable impurities and containing 10% or less of a δ ferrite phase. For austenitic stainless steel.
【請求項4】 請求項1記載の合金元素に加えて、重量
%で、 Sn:0.02〜0.10%、 Ti:0.10〜2.00%、 Nb:0.10〜2.00%、 Ta:0.10〜2.00%、 Co:0.10〜3.00%、および W :0.10〜3.00%のうちいずれか1種または
2種以上、ならびに、 Ca:0.001〜0.020%、 Al:0.01〜0.07%、および B :0.001〜0.10%のうち、いずれか1種ま
たは2種以上を含有し、残部Feおよび不可避的不純物
からなり、10%以下のδフェライト相を含むことを特
徴とする熱間加工性に優れた耐海水用オーステナイト系
ステンレス鋼。
4. In addition to the alloy element according to claim 1, in weight%, Sn: 0.02 to 0.10%, Ti: 0.10 to 2.00%, Nb: 0.10 to 2. 00%, Ta: 0.10 to 2.00%, Co: 0.10 to 3.00%, and W: 0.10 to 3.00%, and any one or more of them, and Ca. : 0.001 to 0.020%, Al: 0.01 to 0.07%, and B: 0.001 to 0.10%, and any one or more of them is contained, and the balance Fe and An austenitic stainless steel for seawater, which is excellent in hot workability and is characterized by containing unavoidable impurities and 10% or less of a δ ferrite phase.
JP25128693A 1993-10-07 1993-10-07 Alustenitic stainless steel excellent in hot workability Pending JPH07109548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25128693A JPH07109548A (en) 1993-10-07 1993-10-07 Alustenitic stainless steel excellent in hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25128693A JPH07109548A (en) 1993-10-07 1993-10-07 Alustenitic stainless steel excellent in hot workability

Publications (1)

Publication Number Publication Date
JPH07109548A true JPH07109548A (en) 1995-04-25

Family

ID=17220550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25128693A Pending JPH07109548A (en) 1993-10-07 1993-10-07 Alustenitic stainless steel excellent in hot workability

Country Status (1)

Country Link
JP (1) JPH07109548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072377A (en) * 2016-04-07 2018-12-21 新日铁住金株式会社 Austenite stainless steel material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072377A (en) * 2016-04-07 2018-12-21 新日铁住金株式会社 Austenite stainless steel material

Similar Documents

Publication Publication Date Title
JP4705648B2 (en) Austenitic steel and steel
US5582656A (en) Ferritic-austenitic stainless steel
KR900006870B1 (en) Ferrite-austenitic stainless steel
KR101256268B1 (en) Austenitic stainless steel
KR100658253B1 (en) Corrosion resistant austenitic stainless steel
EP0220141A2 (en) High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
US4295769A (en) Copper and nitrogen containing austenitic stainless steel and fastener
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
JP3022746B2 (en) Welding material for high corrosion resistance and high toughness duplex stainless steel welding
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
US5254184A (en) Corrosion resistant duplex stainless steel with improved galling resistance
KR20010083939A (en) Cr-mn-ni-cu austenitic stainless steel
JP3270498B2 (en) Duplex stainless steel with excellent crack and corrosion resistance
EP1705260B1 (en) Steel
JP2541822B2 (en) Precipitation hardening type stainless steel with excellent welding strength and toughness
US4808371A (en) Exterior protective member made of austenitic stainless steel for a sheathing heater element
JPS61113749A (en) High corrosion resistance alloy for oil well
CA2355109C (en) Corrosion resistant austenitic stainless steel
JPH07109548A (en) Alustenitic stainless steel excellent in hot workability
JPH07109549A (en) Austenitic stainless steel for seawater resistance
US4022586A (en) Austenitic chromium-nickel-copper stainless steel and articles
US3373015A (en) Stainless steel and product
EP0835946A1 (en) Weldable low-chromium ferritic cast steel, having excellent high-temperature strength
JPH09195005A (en) Austenitic heat resistant steel excellent in high temperature strength