JPH07109410B2 - Portable sensor for corrosion exploration - Google Patents

Portable sensor for corrosion exploration

Info

Publication number
JPH07109410B2
JPH07109410B2 JP41500990A JP41500990A JPH07109410B2 JP H07109410 B2 JPH07109410 B2 JP H07109410B2 JP 41500990 A JP41500990 A JP 41500990A JP 41500990 A JP41500990 A JP 41500990A JP H07109410 B2 JPH07109410 B2 JP H07109410B2
Authority
JP
Japan
Prior art keywords
electrode
silver
silver chloride
corrosion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP41500990A
Other languages
Japanese (ja)
Other versions
JPH05164723A (en
Inventor
紀保 望月
博二 中内
Original Assignee
株式会社ナカボーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナカボーテック filed Critical 株式会社ナカボーテック
Priority to JP41500990A priority Critical patent/JPH07109410B2/en
Publication of JPH05164723A publication Critical patent/JPH05164723A/en
Publication of JPH07109410B2 publication Critical patent/JPH07109410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は腐食環境にある金属の電
極電位および腐食速度測定に使用する基準電極および/
または対極を兼ねた腐食探査用可搬式センサーに関す
る。
FIELD OF THE INVENTION The present invention relates to a reference electrode and / or a reference electrode used for measuring an electrode potential and a corrosion rate of a metal in a corrosive environment.
Or, it relates to a portable sensor for corrosion exploration that also serves as a counter electrode.

【0002】[0002]

【従来の技術】海水、淡水あるいは土壌中にある金属構
造物(主として鉄鋼)は、常に腐食環境に晒されてい
る。この腐食環境にある金属の腐食状況を的確に把握す
るため、腐食、防食に携わる技術者にとってより精度が
高く、実施容易な腐食診断技術の開発が重要な課題であ
る。
2. Description of the Related Art Metal structures (mainly steel) in seawater, freshwater or soil are constantly exposed to corrosive environments. In order to accurately grasp the corrosion status of metals in this corrosive environment, it is an important issue to develop a corrosion diagnosis technique that is more accurate and easy to implement for engineers involved in corrosion and corrosion prevention.

【0003】金属の腐食あるいは防食状況の把握手段と
しては、金属がおかれている環境調査(温度、 pH、環
境抵抗および環境成分等)の他に、電位あるいは分極抵
抗で代表される各種の電気化学的な因子の測定が行なわ
れている。近年、中でも分極抵抗測定による環境中にあ
る金属の腐食速度の推定が盛んに行なわれている。今
日、金属の腐食診断は、分極抵抗がその中核となってお
り、自然腐食電位および環境抵抗測定と併せて欠くこと
のできない要素となっている。
As means for ascertaining the corrosion or anticorrosion status of metals, in addition to environmental surveys (temperature, pH, environmental resistance, environmental components, etc.) in which the metal is placed, various kinds of electricity represented by potential or polarization resistance are used. Chemical factors are being measured. In recent years, in particular, the estimation of the corrosion rate of metals in the environment by measuring polarization resistance has been actively carried out. Polarization resistance is at the core of today's metal corrosion diagnostics, and is an essential element in conjunction with spontaneous corrosion potential and environmental resistance measurements.

【0004】これらの電気化学的測定法については、
「防蝕技術」、28,No.3,1979において、“電
気的計測による腐食モニタリング(特集)”を始めとし
て多くの文献で紹介されている。
Regarding these electrochemical measuring methods,
In "Corrosion prevention technology", 28, No. 3, 1979, many articles are introduced including "Corrosion monitoring by electrical measurement (special feature)".

【0005】実験室的な試験では、これらの要素の測定
は、自由度が大きいので別段大きな問題はないが、実用
現場の装置や構造物を対象とする場合には、装置や構造
物の大きさ、構造、場所あるいは時間等の種々の制約条
件が課せられるため、測定は容易でなく、かつ測定装置
の移動に伴なう計測機器の故障や精度に問題が生ずる。
In a laboratory test, the measurement of these elements has a large degree of freedom, so there is no particular problem. However, in the case of a device or a structure at a practical site, the size of the device or the structure is large. Since various constraints such as structure, location, time, etc. are imposed, measurement is not easy, and there is a problem in the accuracy and failure of the measuring instrument accompanying the movement of the measuring device.

【0006】現場において、上述の自然電位、分極抵抗
および環境抵抗をリアルタイムに容易に測定するための
例として、特開昭58−208654号公報、特開昭5
9−190647号公報に土壌中にある金属構造物の腐
食診断を行なう装置が紹介されている。また特公平1−
27384号公報、特開昭63−315941号公報に
は鉄筋コンクリート構造物の鉄筋の腐食状況を測定診断
する方法や装置が紹介されている。
As an example for easily measuring the above-mentioned spontaneous potential, polarization resistance and environmental resistance in real time in the field, JP-A-58-208654 and JP-A-5-58654 are available.
Japanese Patent Publication No. 9-190647 introduces an apparatus for diagnosing corrosion of a metal structure in soil. In addition,
Japanese Patent No. 27384 and Japanese Patent Laid-Open No. 63-315941 introduce a method and an apparatus for measuring and diagnosing the corrosion state of the reinforcing bar of a reinforced concrete structure.

【0007】この中で、前者の2件が土壌を腐食環境と
しているのに対して、後者の2件は鉄筋コンクリートを
対象としているが、本質的に自然電位、分極抵抗および
環境抵抗の3パラメータの測定にあり、測定方法、測定
項目および推定方法は異なるものではない。
Of these, the former two cases deal with soil as a corrosive environment, while the latter two cases deal with reinforced concrete, but essentially consist of three parameters of spontaneous potential, polarization resistance and environmental resistance. The measurement method, measurement items, and estimation method are not different.

【0008】これらの電気化学的測定パラメータは、基
本的に対象試料極、対極(主として白金等の不溶性陽
極)および基準電極(甘汞電極、塩化銀電極、酸化水銀
電極等)の3つの電極を利用し、測定項目に応じてそれ
ぞれの電極を組合わせ、測定場所に電極、測定器および
記録計器を移動させながら測定を行なっている。
These electrochemical measurement parameters basically consist of three electrodes: a target sample electrode, a counter electrode (mainly an insoluble anode such as platinum) and a reference electrode (sweet potato electrode, silver chloride electrode, mercury oxide electrode, etc.). Utilizing this method, the electrodes are combined according to the measurement item, and the measurement is performed while moving the electrode, the measuring instrument, and the recording instrument to the measurement location.

【0009】すなわち、基準電極を用いて試料極(測定
対象金属体)の自然電位が、基準電極と対極を用いてそ
の分極抵抗と試料極周辺の環境抵抗が測定される。測定
機器は市販の3電極方式コロージョンモニタ等が使用で
きる。このほかに測定データ記録装置、解析装置等が付
随している。
That is, the natural potential of the sample electrode (metal body to be measured) is measured using the reference electrode, and the polarization resistance and the environmental resistance around the sample electrode are measured using the reference electrode and the counter electrode. As a measuring instrument, a commercially available three-electrode type corrosion monitor or the like can be used. In addition, a measurement data recording device, an analysis device, etc. are attached.

【0010】自然電位は、センサー内の基準電極と測定
対象金属体との間の電圧を高入力抵抗の電圧計で測定す
るが、基準電極を含むセンサー内のインピーダンスが低
いほどS/N比のよい精度の高い電位計測ができる。
As for the natural potential, the voltage between the reference electrode in the sensor and the metal body to be measured is measured with a voltmeter having a high input resistance. The lower the impedance in the sensor including the reference electrode, the more the S / N ratio is increased. Highly accurate potential measurement is possible.

【0011】 分極抵抗の測定は、センサーを通して計
測器から金属体に微小の電流を流し、金属体の分極を測
定し、電圧と電流の比から求めるが、電流は低周波交流
(通常0.1Hz以下の形波または正弦波)または1
0秒〜数分程度の直流パルス電流が用いられる。測定さ
れた分極電圧には、基準電極と金属体の間の環境抵抗と
測定電流によるIRドロップが含まれている。これを除
いて正しい分極抵抗を求めるため上記低周波交流または
直流の測定電流に高周波(1KHz程度)の交流を重畳
し、この高周波交流による環境抵抗測定を行なって分極
抵抗を補正するのが通例である。
To measure the polarization resistance, a minute current is passed from a measuring instrument to a metal body through a sensor, the polarization of the metal body is measured, and it is determined from the voltage-current ratio. The current is a low frequency alternating current (usually 0.1 Hz). the following square wave or sine wave) or 1
A DC pulse current of 0 second to several minutes is used. The measured polarization voltage includes the environmental resistance between the reference electrode and the metal body and the IR drop due to the measurement current. Except for this, it is customary to correct the polarization resistance by superimposing a high-frequency (about 1 KHz) AC on the low-frequency AC or DC measurement current in order to obtain the correct polarization resistance, and measuring the environmental resistance by this high-frequency AC. is there.

【0012】このように、分極抵抗の測定では、計測器
や測定ケーブルは低周波(直流)から高周波にわたる安
定した周波数特性が要求され、センサーのインピーダン
スもこれに大きく関わってる。
As described above, in the measurement of the polarization resistance, the measuring instrument and the measuring cable are required to have stable frequency characteristics ranging from low frequency (direct current) to high frequency, and the impedance of the sensor is also greatly related to this.

【0013】大型構造物、例えば橋梁、棧橋あるいは建
築物等に使われている鉄筋コンクリート構造物(以下、
RC構造物と称する)の鉄筋腐食探査を行なう場合、こ
れらの測定装置を帯同し、腐食探査を実施することは設
置場所の限定、足場の不安定さもあって容易ではない。
特に測定箇所が多岐、広範囲に亘る場合には、各電極の
移動に伴なう装置の取扱いや運搬が繁雑になり、測定者
の心労が重なり測定データへの信頼性にも影響し兼ねな
い。例えば、測定ケーブルを長くしてもデータの信頼性
が維持されるならば、測定装置類の移動頻度を少なくす
ることができるので、測定者の負担を軽減することがで
きる。
Reinforced concrete structures used in large structures such as bridges, bridges and buildings (hereinafter,
It is not easy to carry out the corrosion survey with these measuring devices when conducting the corrosion survey of the rebar of the RC structure) because of the limitation of the installation site and the instability of the scaffold.
In particular, when the number of measurement points is wide and wide, the handling and transportation of the device associated with the movement of each electrode becomes complicated, and the labor of the measurer increases, which may affect the reliability of the measurement data. For example, if the reliability of the data is maintained even if the measurement cable is lengthened, the frequency of movement of the measuring devices can be reduced, and the burden on the measurer can be reduced.

【0014】腐食診断の3パラメータである自然電位、
分極抵抗および環境抵抗の測定に共通して欠くことので
きないものは基準電極であり、あるいは基準電極と対極
を内蔵したセル構造のセンサーである。
Self-potential, which is the three parameters for corrosion diagnosis,
Indispensable for the measurement of polarization resistance and environmental resistance is a reference electrode or a cell structure sensor having a reference electrode and a counter electrode built therein.

【0015】基準電極と対極を内蔵したセル構造のセン
サーは前述の特公平1−27384号公報および特開昭
63−315941号公報等に開示されている。現場の
RC構造物の非破壊腐食診断用センサーとして優れた手
段であるが、基準電極と対極が内蔵されたセル構造のた
めセンサーが大型になり易く、測定は従来から行なわれ
ている基準電極、対極および試料極からなる3電極方式
測定の域を出ない。
A sensor having a cell structure incorporating a reference electrode and a counter electrode is disclosed in the above-mentioned Japanese Patent Publication No. 1-27384 and Japanese Patent Laid-Open No. 63-315941. It is an excellent means for non-destructive corrosion diagnosis of RC structures in the field, but because the cell structure with the built-in reference electrode and counter electrode makes the sensor large, it is easy to measure. It does not exceed the range of 3-electrode system measurement consisting of a counter electrode and a sample electrode.

【0016】基準電極自体が対極をも兼ねることができ
れば、装置が簡易化され、センサーのインピーダンス低
下をもたらし長尺ケーブルの使用が可能となって測定の
繁雑さが緩和される。
If the reference electrode itself can also serve as the counter electrode, the device can be simplified, the impedance of the sensor can be lowered, and a long cable can be used, so that the measurement complexity can be alleviated.

【0017】この点に着目し、本発明者等は鋭意研究を
行ない基準電極を構成する当該金属の表面積を基準電極
のケース一杯にまで拡げることにより、実用上誤差が無
視できる低分極性を有し、その結果、対極の機能を兼ね
備える基準電極のみの一極式のセンサーを開発し特許出
願した(特願平2−3553号、特願平2−21498
2号)。
Focusing on this point, the present inventors have conducted diligent research and expanded the surface area of the metal forming the reference electrode to the full extent of the case of the reference electrode. As a result, a unipolar sensor having only a reference electrode having a counter electrode function was developed and applied for a patent (Japanese Patent Application Nos. 2-3553 and 2-21498).
No. 2).

【0018】ここに開示されているセンサーは、作動表
面積を少なくとも電極容器の断面の全面に広げることに
よって、従来の対極(主としてPt)と基準電極(甘汞
電極、塩化銀電極等)からなるセル型2極センサーに比
して、(1)通電に伴なうガス発生を防止し、現場向け
完全密閉構造のセンサーが可能になり、(2)従って倒
立使用も可能で、全姿勢型の測定ができ、(3)従来の
基準電極はインピーダンスが高く、高抵抗環境にあって
はノイズの影響を受け測定が困難であったが、低インピ
ーダンス化が図れたので測定は容易になり、(4)さら
に現場測定で必要な長い測定ケーブルの使用に対する制
限が緩和された等の効果を挙げることができた。
The sensor disclosed herein is a cell composed of a conventional counter electrode (mainly Pt) and a reference electrode (sweet potato electrode, silver chloride electrode, etc.) by expanding the operating surface area at least over the entire cross section of the electrode container. Compared to the two-pole type sensor, (1) gas generation due to energization is prevented, a sensor with a completely sealed structure for the field is possible, and (2) therefore, it is possible to use it upside down, all posture type measurement (3) The conventional reference electrode has a high impedance, and it was difficult to measure in a high resistance environment due to the influence of noise, but since the impedance was lowered, the measurement became easier, and (4 ) Furthermore, the effect that the restriction on the use of the long measuring cable necessary for the field measurement was relaxed was obtained.

【0019】このように、これらのセンサーによって、
従来の3電極方式のセンサーが測定系のインピーダンス
が高いため長いケーブルの使用は浮遊容量やノイズの影
響を受け測定が不正確になり、加えて取扱い、運搬等測
定に苦労と事故がつきまとっていたものを大巾に軽減す
ることが可能になった。
Thus, with these sensors,
Since the conventional 3-electrode type sensor has a high impedance in the measurement system, the use of a long cable causes the measurement to be inaccurate due to the influence of stray capacitance and noise, and in addition, it has been difficult and troublesome to handle and transport. It has become possible to greatly reduce things.

【0020】これらの出願においては、基準電極として
現在多用されている甘汞電極(Hg/Hg2Cl2/Cl
-)、塩化銀電極(Ag/AgCl/Cl-)等を用いる
ものであり、甘汞電極についてはケース断面全面が水銀
で覆われるようにし、塩化銀電極については銀の面積を
ケース断面の全面に広げて塩化銀化処理をし、その上に
銀粉と塩化銀を混合したものを塩化カリ溶液でペースト
化して積層するものである。
In these applications, the sweet potato electrode (Hg / Hg 2 Cl 2 / Cl) which is widely used as a reference electrode is used.
-), and silver chloride electrode (Ag / AgCl / Cl -), etc. are those using, as the case section entire surface is covered with mercury for calomel electrode, the silver chloride electrode the area of the silver case section entire And silver chloride treatment, and a mixture of silver powder and silver chloride is made into a paste with a potassium chloride solution and laminated.

【0021】いずれの場合も従来から使用されている基
準電極の寸法や大きさ等の基本構造を大きく変えること
なく、例えばRC構造物の鉄筋の電位を10〜20mV
分極させるのに必要な電流が1mA以下で基準電極の低
分極性、すなわち2mV以下、特に上述の甘汞電極と塩
化銀電極は1mV以下の低分極性を示した。
In any case, the potential of the reinforcing bar of the RC structure is 10 to 20 mV without largely changing the basic structure such as the size and size of the conventionally used reference electrode.
When the current required for polarization was 1 mA or less, the reference electrode exhibited low polarizability, that is, 2 mV or less, and especially the above-mentioned Amano electrode and silver chloride electrode exhibited low polarizability of 1 mV or less.

【0022】これらのセンサーの主体である低分極性の
基準電極の中で、飽和甘汞電極と酸化水銀電極は、環境
汚染の点で嫌われる水銀および水銀化合物を使用するこ
とから塩化銀電極の使用が増加している。
Among the low-polarization reference electrodes, which are the main constituents of these sensors, the saturated sweet syrup electrode and the mercury oxide electrode use mercury and mercury compounds, which are unfavorable in terms of environmental pollution. Usage is increasing.

【0023】塩化銀電極は、表面を塩素化した銀を所定
の塩化物溶液内に浸漬すれば容易に作製できるが、銀表
面を被覆している塩化銀の絶対量が少ないため、長期安
定性に欠けるという欠点がある。また、電極液は濃度が
変化しないように高濃度塩化物溶液(飽和塩化カリウ
ム)を用いてもよいが、このような高濃度溶液中では塩
化銀の溶解度が著しく増大するため、早期に消耗してし
まうという欠点がある。
The silver chloride electrode can be easily prepared by immersing silver whose surface is chlorinated in a predetermined chloride solution. However, since the absolute amount of silver chloride coating the silver surface is small, long-term stability is ensured. Has the drawback of lacking. A high-concentration chloride solution (saturated potassium chloride) may be used as the electrode solution so that the concentration does not change, but the solubility of silver chloride in such a high-concentration solution remarkably increases, leading to early consumption. There is a drawback that it will end up.

【0024】銀の表面を塩素化処理して塩化銀層を形成
させる方法には、電解法が一般に採用されるが、電極の
寿命の延長のため十分な量の塩化銀層を形成させるため
には、電極作成に手間がかかり、また厚膜塩化銀層は電
極抵抗が大きくなり絶縁層として働き電極電位の測定も
不可能になりかねない。さらに、保管、使用時での強い
衝撃や変形は塩化銀層の剥離を起し易いため慎重に取扱
わなくてはならない等の実用的なセンサーとしての使用
には不向きである。
An electrolytic method is generally adopted as a method for forming a silver chloride layer by chlorinating the surface of silver, but in order to form a sufficient amount of silver chloride layer for extending the life of the electrode. However, it takes a lot of time to prepare an electrode, and the thick film silver chloride layer has a large electrode resistance, which may act as an insulating layer and make the measurement of the electrode potential impossible. Furthermore, since strong impact and deformation during storage and use tend to cause peeling of the silver chloride layer, it is not suitable for practical use as it must be handled with care.

【0025】[0025]

【発明が解決しようとする課題】本発明は、センサー容
器の大きさを変えることなく、塩化銀電極の電極面積を
より大きくし、取扱いや製作が容易で対極と兼用で低分
極性と長期性能の安定性を具備した基準電極からなる腐
食探査用センサーを提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION According to the present invention, the electrode area of the silver chloride electrode can be made larger without changing the size of the sensor container, which is easy to handle and manufacture, and also serves as a counter electrode, which has low polarizability and long-term performance. It is an object of the present invention to provide a sensor for corrosion inspection including a reference electrode having the above stability.

【0026】[0026]

【課題を解決するための手段】上述のように、本発明者
等は先の出願(特願平2−3553号、特願平2−21
4989号、特開平3−251756号公報)で、従来
の基準電極において電極表面積をケース全体に広げた電
極は、基準電極と対極を兼ね備えた2電極方式による分
極抵抗測定用センサーになり得ることを示すと共に、さ
らに銀粉を電極構成要素に加えることにより、一段と低
分極性が得られる可能性を示した。本発明者等は、この
銀粉の作用をさらに詳細に検討し、最大の低分極性を得
る手段を明確にすることによって、本発明に至ったもの
である。
As described above, the inventors of the present invention have filed prior applications (Japanese Patent Application No. 2-3553, Japanese Patent Application No. 2-21).
4989, JP-A-3-251756), an electrode in which the electrode surface area of the conventional reference electrode is spread over the entire case may be a two-electrode polarization resistance measurement sensor having both a reference electrode and a counter electrode. In addition to the above, it was shown that by adding silver powder to the electrode components, it is possible to obtain even lower polarization. The present inventors have accomplished the present invention by examining the action of this silver powder in more detail and clarifying the means for obtaining the maximum low polarization.

【0027】すなわち本発明は、塩化銀系基準電極にお
いて、銀板または銀線の表面に、(1) 1mmφ以下
の銀粉粒と塩化銀粉を重量比で0.2超〜5.0の割合
で混合した層を電極ケース断面全体に広げて設けるか、
あるいは(2) 1mmφ以下の銀粉粒層を電極ケース
断面全体に広げて設け、かつその下に塩化銀粉層を配置
し、さらにその下部に吸水性高分子樹脂含有ゲル状塩化
カリ溶液を充填したことを特徴とする腐食探査用可搬式
センサーにある。
That is, according to the present invention, in a silver chloride-based reference electrode, (1) silver powder particles having a diameter of 1 mm or less and silver chloride powder are mixed on a surface of a silver plate or a silver wire in a weight ratio of more than 0.2 to 5.0. Spread the mixed layer over the entire cross section of the electrode case, or
Alternatively, (2) a silver powder layer having a diameter of 1 mm or less is spread over the entire cross section of the electrode case, a silver chloride powder layer is disposed below the layer, and a gel-like potassium chloride solution containing a water-absorbent polymer resin is filled under the silver chloride powder layer. Is a portable sensor for corrosion exploration.

【0028】以下、本発明の腐食探査用可搬式センサー
を図面に基づいて具体的に説明する。
Hereinafter, the portable sensor for corrosion detection of the present invention will be specifically described with reference to the drawings.

【0029】図1は、本発明に係る腐食探査用可搬式セ
ンサーの一例を示す部分切欠き断面図である。同図にお
いて、1は充填材、2は銀板または銀線、3はゴム栓、
4は銀粉粒/塩化銀粉混合層、5は吸水性高分子樹脂含
有飽和塩化カリ溶液、6はスポンジ等の多孔質材をそれ
ぞれ示す。同図においては、銀板または銀線2の表面
に、1mmφ以下の銀粉粒と塩化銀粉を重量比で0.2
超〜5.0の割合で混合した層(銀粉粒/塩化銀粉混合
層)4を電極ケース断面全体に広げて設けられている。
銀粉粒と塩化銀粉の重量比が0.2以下または5.0超
では良好な分極特性が得られない。また、さらに銀粉粒
/塩化銀粉混合層4の下部に吸水性高分子樹脂含有ゲル
状塩化カリ溶液5が充填されている。
FIG. 1 is a partially cutaway sectional view showing an example of a portable sensor for corrosion exploration according to the present invention. In the figure, 1 is a filler, 2 is a silver plate or silver wire, 3 is a rubber stopper,
Reference numeral 4 indicates a silver powder / silver chloride powder mixed layer, 5 indicates a saturated potassium chloride solution containing a water-absorbing polymer resin, and 6 indicates a porous material such as a sponge. In the figure, on the surface of the silver plate or the silver wire 2, silver powder particles of 1 mmφ or less and silver chloride powder are mixed in a weight ratio of 0.2.
A layer (silver powder grain / silver chloride powder mixed layer) 4 mixed at a ratio of super to 5.0 is spread over the entire cross section of the electrode case.
If the weight ratio of silver powder particles to silver chloride powder is 0.2 or less or more than 5.0, good polarization characteristics cannot be obtained. Further, a gel-like potassium chloride solution 5 containing a water-absorbent polymer resin is filled in the lower part of the silver powder grain / silver chloride powder mixed layer 4.

【0030】図2は、本発明に係る腐食探査用可搬式セ
ンサーのその他の例を示す部分切欠き断面図である。同
図において、図1と同一の符号は同様のものを示し、7
は銀粉粒層、8は塩化銀粉層をそれぞれ示す。同図にお
いては、1mmφ以下の銀粉粒層7が電極ケース断面全
体に広げて設けられており、その下に塩化銀粉層8が配
置され、さらにその下部に図1と同様に吸水性高分子樹
脂含有ゲル状塩化カリ溶液5が充填されている。
FIG. 2 is a partially cutaway sectional view showing another example of the portable sensor for corrosion detection according to the present invention. In the figure, the same reference numerals as those in FIG.
Indicates a silver powder layer, and 8 indicates a silver chloride powder layer. In the figure, a silver powder particle layer 7 having a diameter of 1 mm or less is spread over the entire cross section of the electrode case, and a silver chloride powder layer 8 is arranged under the silver powder particle layer 7, and a water-absorbing polymer resin is further provided below the silver chloride powder layer 8. It is filled with the contained gelled potassium chloride solution 5.

【0031】このような構成からなる本発明のセンサー
は、現場測定での運搬、取扱いの容易さを考慮して約5
0mmφ以下、200mmL以下の容器(ケース)であ
る。そして、このセンサーにより、長期に亘って電位が
安定で広範囲の電流範囲で低分極性(1mV以下)を有
する。また、このセンサーは、電流を流すことを必要と
しない通常の電位計測用の基準電極としても、電位の安
定性の改善された基準電極としても有効である。
The sensor of the present invention having such a structure has about 5 in consideration of easy transportation and handling in the field measurement.
It is a container (case) of 0 mmφ or less and 200 mmL or less. With this sensor, the potential is stable over a long period of time and has low polarizability (1 mV or less) in a wide current range. Further, this sensor is effective as a reference electrode for normal potential measurement which does not require a current to flow, and also as a reference electrode with improved potential stability.

【0032】[0032]

【作用】塩化銀電極型センサーの電極の構成要素に銀粉
粒を加えることにより、銀と塩化銀との接触面積が著し
く増大させることができたため、安定性の良い基準電極
の製作が容易になったばかりではなく、通電電流がRC
構造物の分極抵抗測定の際、通常使用される0.1mA
以下では勿論の事、10mAでも1mV以下が確保さ
れ、繰返し使用でも変動が小さいことから河川水中や海
水中のような低抵抗環境中でかなりの腐食速度を示す場
合でも、10mA以下の電流で分極抵抗の測定が済むな
らば充分測定に供することができる。
[Function] By adding silver powder particles to the constituent elements of the electrode of the silver chloride electrode type sensor, the contact area between silver and silver chloride can be remarkably increased, which facilitates the production of a reference electrode having good stability. Not only the current is RC
0.1mA usually used when measuring the polarization resistance of structures
Of course, 1 mV or less is secured even at 10 mA, and the fluctuation is small even after repeated use, so even if it shows a considerable corrosion rate in a low resistance environment such as river water or seawater, polarization will occur at a current of 10 mA or less. If the resistance measurement is completed, it can be sufficiently measured.

【0033】従来から行なわれている対極(主として白
金)と照合電極(基準電極)を組み合せた2極式分極抵
抗測定用センサーが、対極を兼ね備えた照合電極のみを
有する1極式センサーとなり、加えて高性能化されたこ
とになる。
A two-pole type polarization resistance measuring sensor, which has been conventionally used in combination with a counter electrode (mainly platinum) and a reference electrode (reference electrode), becomes a one-pole type sensor having only a reference electrode having a counter electrode. It has been improved in performance.

【0034】銀粉を用いて接触面積を拡大したことによ
り、高抵抗環境においてもノイズの影響が軽減され、精
度のよい測定が可能となるばかりではなく、電位測定系
のインピーダンスを低下させることができたため、長い
測定ケーブルを用いても環境抵抗測定のための高周波交
流の減衰が少ないので、測定に対する制限が緩和され測
定精度が向上する。
By expanding the contact area using silver powder, the influence of noise is reduced even in a high resistance environment, and not only accurate measurement is possible, but also the impedance of the potential measuring system can be lowered. Therefore, even if a long measurement cable is used, the attenuation of high-frequency alternating current for environmental resistance measurement is small, so that the restriction on measurement is relaxed and the measurement accuracy is improved.

【0035】 また、対極と基準電極を一体化したこと
により、電極形状がセンサー面と同一形状をしている
ため、センサー内の電流分布が全体に均質化され、セン
サー形状が小型化できるようになった。
Further, since the counter electrode and the reference electrode are integrated, the electrode shape is the same as the sensor end surface, so that the current distribution in the sensor is homogenized throughout and the sensor shape can be miniaturized. Became.

【0036】さらに、従来の塩化銀電極は銀の表面に電
解処理で塩化銀の薄層を付けていたが、本発明における
銀粉粒と塩化銀粉の混合層または銀粉粒層と塩化銀粉層
を用いることにより、電解塩化銀層の存否は低分極性に
殆ど影響がなく電解塩化銀処理は不要になった。
Further, in the conventional silver chloride electrode, a thin layer of silver chloride was formed on the surface of silver by electrolytic treatment, but a mixed layer of silver powder particles and silver chloride powder or a silver powder particle layer and silver chloride powder layer in the present invention is used. As a result, the presence or absence of the electrolytic silver chloride layer had almost no effect on the low polarizability, and electrolytic silver chloride treatment became unnecessary.

【0037】加えて、本発明のセンサーの電極反応は、
ガスの発生を伴なわない単一レドックス反応であるた
め、通電によって生ずるセンサー内のガス抜き装置が不
要であるばかりでなく、内部を固形状の物質で充填する
ことが可能となり、センサーをどのような体勢で使用し
ても内部に空隙が生じない。
In addition, the electrode reaction of the sensor of the present invention is
Since it is a single redox reaction that does not generate gas, it does not require a degassing device inside the sensor that is caused by energization, and it is possible to fill the inside with a solid substance. There is no void inside even when used in various postures.

【0038】[0038]

【実施例】以下、実施例により本発明を説明するが、本
発明はこれによって限定されるものではない。
The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0039】実施例1 1mm以下の銀粉粒と塩化銀粉の混合割合(重量比)を
下記のように変量し、電極内径28mmφ、電極断面積
6.15cm2の図1の形状のセンサーを作成した。な
お、銀粉の寸法と使用量は一定にし、塩化銀粉のみを変
量し、銀粉の寸法はほぼ球状でタイラー標準篩200メ
ッシュ(約0.07mm)篩下であった。
Example 1 A sensor having the shape of FIG. 1 having an electrode inner diameter of 28 mmφ and an electrode cross-sectional area of 6.15 cm 2 was prepared by varying the mixing ratio (weight ratio) of silver powder particles of 1 mm or less and silver chloride powder as follows. . The size and amount of the silver powder were kept constant, only the silver chloride powder was varied, and the size of the silver powder was substantially spherical and under a Tyler standard sieve 200 mesh (about 0.07 mm) sieve.

【0040】 1mAの形波定電流を与えた場合の電
極電位および分極量(ΔE)を計測し、結果を下記に示
す。 (1) 銀粉粒:塩化銀粉の混合割合1:5、電極電位
(mV,SCE)−46、分極量(ΔE、mV)0.9
3 (2) 銀粉粒:塩化銀粉の混合割合1:2、電極電位
(mV,SCE)−46、分極量(ΔE、mV)0.4
2 (3) 銀粉粒:塩化銀粉の混合割合2:1、電極電位
(mV,SCE)−46、分極量(ΔE、mV)0.0
8 (4) 銀粉粒:塩化銀粉の混合割合5:1、電極電位
(mV,SCE)−46、分極量(ΔE、mV)0.0
The electrode potential and polarization when fed a rectangular square wave constant current of 1mA and (Delta] E) was measured and the results are shown below. (1) Mixing ratio of silver powder particles: silver chloride powder 1: 5, electrode potential (mV, SCE) -46, polarization amount (ΔE, mV) 0.9
3 (2) Mixing ratio of silver powder particles: silver chloride powder 1: 2, electrode potential (mV, SCE) -46, polarization amount (ΔE, mV) 0.4
2 (3) Mixing ratio of silver powder particles: silver chloride powder 2: 1, electrode potential (mV, SCE) -46, polarization amount (ΔE, mV) 0.0
8 (4) Mixing ratio of silver powder particles: silver chloride powder 5: 1, electrode potential (mV, SCE) -46, polarization amount (ΔE, mV) 0.0
5

【0041】 上記に示されるように、銀粉粒/塩化銀
粉の重量比が小さくなるに従って低分極性は悪くなる
が、1/2すなわち塩化銀粉量の半量の銀粉粒であって
も分極量は1mAで0.5mV以下である1/5の比
率は実用的に限界比率であり、これ以上銀粉粒の比率が
下ると著しく分極量が増大した。銀粉粒の割合が高い
程、作動面積増大の効果が大きく、極めて長期間にわた
って低分極性が維持される。
As shown above, as the weight ratio of silver powder particles / silver chloride powder decreases, the low polarizability deteriorates, but even with 1/2 or half the amount of silver chloride powder, the polarization amount is 1 mA. Is 0.5 mV or less . The ratio of ⅕ is practically the limit ratio, and the polarization amount remarkably increased when the ratio of silver powder particles was further decreased. The higher the proportion of silver powder particles, the greater the effect of increasing the operating area, and the low polarizability is maintained for an extremely long period of time.

【0042】一方、電極電位は混合比の影響が認められ
ないので、この種のセンサーの寿命は極めて長いものと
推察される。なお、この種の電極の電極電位は、電極作
製直後を除き理論値−45.6mVと実用上一致した値
を示している。
On the other hand, since the electrode potential is not affected by the mixing ratio, it is assumed that the lifetime of this type of sensor is extremely long. The electrode potential of this type of electrode shows a value which is practically in agreement with the theoretical value of -45.6 mV except immediately after the production of the electrode.

【0043】実施例2 銀粉粒の粒径を下記のように変化させ、電極内径28m
mφ、電極断面積6.15cm2の図1の形状のセンサ
ーを作成した。なお、銀粉粒/塩化銀粉の重量比は5/
1であった。
Example 2 The diameter of the silver powder particles was changed as follows, and the inner diameter of the electrode was 28 m.
A sensor having a shape of FIG. 1 having mφ and an electrode cross-sectional area of 6.15 cm 2 was prepared. The weight ratio of silver powder / silver chloride powder is 5 /
It was 1.

【0044】 1mAの形波定電流を与えた場合の電
極電位および分極量(ΔE)を計測し、結果を下記に示
す。 (1) 銀粉粒の粒径200メッシュアンダー(約0.
07mm)、電極電位(mV,SCE)−46、分極量
(ΔE、mV)0.05 (2) 銀粉粒の粒径32〜18メッシュ(0.1〜1
mm)、電極電位(mV,SCE)−46、分極量(Δ
E、mV)0.61 (3) 銀粉粒の粒径10〜5メッシュ(約2〜4m
m)、電極電位(mV,SCE)−46、分極量(Δ
E、mV)1.25
The electrode potential and polarization when fed a rectangular square wave constant current of 1mA and (Delta] E) was measured and the results are shown below. (1) Silver powder grain size 200 mesh under (about 0.
07 mm), electrode potential (mV, SCE) -46, polarization amount (ΔE, mV) 0.05 (2) Silver powder grain size 32 to 18 mesh (0.1 to 1)
mm), electrode potential (mV, SCE) -46, polarization amount (Δ
E, mV) 0.61 (3) Silver powder grain size 10 to 5 mesh (about 2 to 4 m)
m), electrode potential (mV, SCE) -46, polarization amount (Δ
E, mV) 1.25

【0045】上記に示されるように、銀粉粒末の寸法が
大きくなるに従って、分極特性は低下し、1mAで1m
V以下の分極値を得るためには、銀粉粒寸法は平均径で
18メッシュアンダー(約1mm)を超えないようにす
る必要がある。
As shown above, as the size of the silver powder particles increases, the polarization characteristics decrease, and 1 m at 1 mA.
In order to obtain a polarization value of V or less, it is necessary that the average size of the silver powder particles does not exceed 18 mesh under (about 1 mm).

【0046】実施例3〜4および比較例1〜3 下記の構成で5種類のセンサーを作成した。 (1) 銀板/銀粉粒/塩化銀粉/飽和塩化カリ溶液
(実施例3) (2) 銀板/(銀粉粒+塩化銀粉)/飽和塩化カリ溶
液(実施例4) (3) 銀板/塩化銀処理/(銀粉粒+塩化銀粉)/飽
和塩化カリ溶液(比較例1) (4) 銀板/塩化銀処理/飽和塩化カリ溶液(比較例
2) (5) 飽和甘汞電極(比較例3)
Examples 3 to 4 and Comparative Examples 1 to 3 Five kinds of sensors were prepared with the following constitutions. (1) Silver plate / silver powder particles / silver chloride powder / saturated potassium chloride solution (Example 3) (2) Silver plate / (silver powder particles + silver chloride powder) / saturated potassium chloride solution (Example 4) (3) Silver plate / Silver chloride treatment / (silver powder grain + silver chloride powder) / saturated potassium chloride solution (Comparative example 1) (4) Silver plate / silver chloride treatment / saturated potassium chloride solution (Comparative example 2) (5) Saturated sweet potato electrode (Comparative example) 3)

【0047】これらの各センサーは、いずれも電極内径
28mmφ、電極断面積6.15cm2とした。また、
実施例4においては銀粉粒と塩化銀粉の混合割合を2:
1とし、200メッシュ(約0.07mm)の銀粉粒を
用いた。さらに、比較例1では塩化銀粉の混合割合を
1:5とした。
Each of these sensors had an electrode inner diameter of 28 mmφ and an electrode cross-sectional area of 6.15 cm 2 . Also,
In Example 4, the mixing ratio of the silver powder particles and the silver chloride powder was 2:
1 and 200 mesh (about 0.07 mm) silver powder particles were used. Further, in Comparative Example 1, the mixing ratio of silver chloride powder was set to 1: 5.

【0048】 これらのセンサーについて、0.1Hz
形波定電流(Peak to Peak:ピーク・ピ
ーク値)における分極値を図3に示す共に、電極電位の
経時変化を図4に示す。
For these sensors, 0.1 Hz
Rectangular square wave constant current: a polarization value in (Peak-to Peak peak-peak value) both shown in FIG. 3 shows the time course of the electrode potential in FIG.

【0049】図3に示すように、銀粉粒を積層あるいは
混合した実施例3〜4の電位ΔEは10mAでも1mV
以下で極めて良好な低分極性を示し、しかも繰返し測定
による影響も認められなかった。比較例3の電位ΔE
は、1mAでは1mV以下であるが、2mA以上では分
極の増大が進み、実施例3〜4との間には、分極特性に
おいて大きな差が認められる。しかしながら、例えばR
C構造物の腐蝕診断において通常電流は通常0.1mA
であるため、実用的には何ら問題なくセンサーとして使
用できる。
As shown in FIG. 3, the potential ΔE of Examples 3 to 4 in which silver powder particles are laminated or mixed is 1 mV even if the potential ΔE is 10 mA.
In the following, extremely low polarizability was exhibited, and the effect of repeated measurement was not recognized. Potential ΔE of Comparative Example 3
Is 1 mV or less at 1 mA, but polarization is increased at 2 mA or more, and a large difference in polarization characteristics is observed between Examples 3 and 4. However, for example R
In the corrosion diagnosis of C structure, the current is usually 0.1mA.
Therefore, it can be practically used as a sensor without any problem.

【0050】比較例1は銀粉粒/塩化銀粉=1/5と塩
化銀粉の割合が最も多い例であり、1mAでΔEは1m
V以下であるが、比較例3と同様に2mA以上の電流に
おいては分極の急激な増大が認められる。
Comparative Example 1 is an example in which the ratio of silver powder particles / silver chloride powder = 1/5, which is the largest ratio of silver chloride powder, is ΔE at 1 mA and ΔE is 1 m.
Although it is V or less, a sharp increase in polarization is observed at a current of 2 mA or more as in Comparative Example 3.

【0051】比較例2は従来から使用されている塩化銀
電極であるが、1mAでの分極値が僅かに1mVをオー
バーしており、分極特性が最も劣る結果を示した。な
お、比較例1〜2は銀の表面に電解処理により塩化銀薄
層を設けているのに対し、実施例3〜4のは塩化銀薄層
を設けていないが分極値への影響は殆ど認められず、ま
た電極電位にも差も認められなかった。すなわち本発明
のセンサーにあっては、必ずしも塩化銀処理は必要条件
ではないことが判明した。
Comparative Example 2 is a conventionally used silver chloride electrode, but the polarization value at 1 mA was slightly over 1 mV, showing the result of the poorest polarization characteristics. In Comparative Examples 1 and 2, a silver chloride thin layer is provided on the surface of silver by electrolytic treatment, whereas in Examples 3 and 4, a silver chloride thin layer is not provided, but the polarization value is hardly affected. Neither was observed, nor was there any difference in electrode potential. That is, it was found that the silver chloride treatment is not always a necessary condition for the sensor of the present invention.

【0052】図4は実施例3〜4および比較例1〜2の
センサーの電極電位(対SCE)の安定性をみたもので
ある。いずれも変動が小さく、極めて安定であることが
わかる。
FIG. 4 shows the stability of the electrode potential (vs. SCE) of the sensors of Examples 3-4 and Comparative Examples 1-2. It can be seen that the fluctuations are small and both are extremely stable.

【0053】いずれにしろ、RC構造物のように高抵抗
環境中での腐食探査用センサーとしては、図3に示す如
く比較例3の飽和甘汞電極型のセンサーでも実用的には
充分使用可能である。塩化銀電極型の本発明にかかるセ
ンサーは図3の実施例3〜4に見られる如く、低分極性
および電位の点から問題なく精度の高い分極抵抗の測定
が可能である。さらに、本願発明にかかるセンサーは、
海水等の低抵抗環境中での測定でも10mA以下の電流
で測定可能な分極抵抗であるならば、充分使用可能であ
ることが図3から判断できる。
In any case, as a sensor for corrosion inspection in a high resistance environment such as an RC structure, the saturated sweet-salt electrode type sensor of Comparative Example 3 as shown in FIG. 3 can be sufficiently used in practice. Is. As shown in Examples 3 to 4 of FIG. 3, the silver chloride electrode type sensor according to the present invention can measure polarization resistance with high accuracy without any problems in terms of low polarization and potential. Furthermore, the sensor according to the present invention is
It can be judged from FIG. 3 that the polarization resistance can be sufficiently used even if it is measured in a low resistance environment such as seawater if the polarization resistance can be measured at a current of 10 mA or less.

【0054】[0054]

【発明の効果】以上説明したように、塩化銀電極の構成
材料として銀粉粒を使用することによって、飽和甘汞電
極型センサーと同等以上の精度、性能を有する対極と基
準電極を兼ねた一電極式センサーが可能であり、特に大
いに改善された低分極性と電位の安定性は広い範囲の環
境抵抗中での電位および分極抵抗の測定を容易にさせ
る。
As described above, by using silver powder particles as a constituent material of a silver chloride electrode, one electrode which has accuracy and performance equivalent to or higher than that of a saturated sweet-salt electrode type sensor and which serves as a counter electrode and a reference electrode is obtained. In-situ sensors are possible, and in particular the greatly improved low polarizability and stability of the potential facilitate the measurement of potential and polarization resistance in a wide range of environmental resistances.

【0055】銀粉粒を使用することにより、電極面積は
限られた電極ケースで著しく増大させる事ができ、安定
性のよい基準電極を兼ねたノイズに強く小形軽量の現場
向可搬式センサーの製作が容易になった。
By using the silver powder particles, the electrode area can be remarkably increased in a limited electrode case, and it is possible to manufacture a small and lightweight portable sensor for site, which is also stable and serves as a reference electrode and is resistant to noise. It became easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る腐食探査用可搬式センサーの一例
を示す部分切欠き断面図。
FIG. 1 is a partially cutaway sectional view showing an example of a portable sensor for corrosion exploration according to the present invention.

【図2】本発明に係る腐食探査用可搬式センサーの他の
例を示す部分切欠き断面図。
FIG. 2 is a partially cutaway cross-sectional view showing another example of the portable sensor for corrosion exploration according to the present invention.

【図3】 0.1Hz形波定電流における各種一極セ
ンサーの分極特性を示すグラフ。
3 is a graph illustrating the polarization properties of the various pole sensors in 0.1Hz rectangular square wave constant current.

【図4】各種の銀/塩化銀電極センサーの電極電位の経
時変化を示すグラフ。
FIG. 4 is a graph showing changes with time of electrode potentials of various silver / silver chloride electrode sensors.

【符号の説明】[Explanation of symbols]

2 銀板または銀線 4 銀粉粒/塩化銀粉混合層 5 吸水性高分子樹脂含有飽和塩化カリ溶液 7 銀粉粒層 8 塩化銀粉層 2 Silver plate or silver wire 4 Silver powder grain / silver chloride powder mixed layer 5 Saturated potassium chloride solution containing water-absorbing polymer resin 7 Silver powder layer 8 Silver chloride powder layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 塩化銀系基準電極において、銀板または
銀線の表面に 1mmφ以下の銀粉粒と塩化銀粉を重量比で
0.2超〜5.0の割合で混合した層を電極ケース断面
全体に広げて設け、さらにその下部に吸水性高分子樹脂
含有ゲル状塩化カリ溶液を充填したことを特徴とする腐
食探査用可搬式センサー。
1. In a silver chloride-based reference electrode, a layer obtained by mixing silver powder particles of 1 mmφ or less and silver chloride powder in a weight ratio of more than 0.2 to 5.0 on the surface of a silver plate or a wire is an electrode case cross section. A portable sensor for corrosion exploration, which is spread over the whole and further filled with a gel-like potassium chloride solution containing a water-absorbent polymer resin in the lower part.
【請求項2】 塩化銀系基準電極において、銀板または
銀線の表面に 1mmφ以下の銀粉粒層を電極ケース断面全
体に広げて設け、その下に塩化銀粉層を配置し、さらに
その下部に吸水性高分子樹脂含有ゲル状塩化カリ溶液を
充填したことを特徴とする腐食探査用可搬式センサー。
2. In a silver chloride-based reference electrode, a silver powder grain layer of 1 mmφ or less is spread over the entire surface of the electrode case on the surface of a silver plate or a silver wire, and a silver chloride powder layer is arranged under the silver powder grain layer, and further below it. A portable sensor for corrosion detection, which is filled with a gel potassium chloride solution containing a water-absorbent polymer resin.
JP41500990A 1990-12-27 1990-12-27 Portable sensor for corrosion exploration Expired - Fee Related JPH07109410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41500990A JPH07109410B2 (en) 1990-12-27 1990-12-27 Portable sensor for corrosion exploration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41500990A JPH07109410B2 (en) 1990-12-27 1990-12-27 Portable sensor for corrosion exploration

Publications (2)

Publication Number Publication Date
JPH05164723A JPH05164723A (en) 1993-06-29
JPH07109410B2 true JPH07109410B2 (en) 1995-11-22

Family

ID=18523420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41500990A Expired - Fee Related JPH07109410B2 (en) 1990-12-27 1990-12-27 Portable sensor for corrosion exploration

Country Status (1)

Country Link
JP (1) JPH07109410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022081034A1 (en) * 2020-10-13 2022-04-21 Qatar University Sensors for detection of under deposit corrosion and methods of preparing same
WO2023163818A1 (en) * 2022-02-22 2023-08-31 Abusneineh Abdeljawad Cathodic protection polypropylene graphite reference electrode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268148B2 (en) * 2007-01-22 2012-09-18 Commissariat A L'energie Atomique Reference electrode, manufacturing method and battery comprising same
KR200474756Y1 (en) * 2012-08-23 2014-10-13 주식회사 한국가스기술공사 water supply for base electrode structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
米国特許3354069(USA)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022081034A1 (en) * 2020-10-13 2022-04-21 Qatar University Sensors for detection of under deposit corrosion and methods of preparing same
WO2023163818A1 (en) * 2022-02-22 2023-08-31 Abusneineh Abdeljawad Cathodic protection polypropylene graphite reference electrode

Also Published As

Publication number Publication date
JPH05164723A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
Baur et al. Diffusion coefficients determined with microelectrodes
EP1743165B1 (en) Method and device for testing gas sensors and for correcting gas sensor output
US3380905A (en) Electrolytic sensor with anodic depolarization
US6894502B2 (en) pH sensor with internal solution ground
US20080179198A1 (en) System and method of use for electrochemical measurement of corrosion
CN108351317A (en) chlorine sensor based on graphite
Tran et al. Potassium ion selective electrode using polyaniline and matrix-supported ion-selective PVC membrane
JPH03175350A (en) Reference electrode and electrode pair for detecting acidity and basicity of oil
Zine et al. Hydrogen-selective microelectrodes based on silicon needles
US6436259B1 (en) Mercury selective electrode
Šebková et al. Silver composite electrode for voltammetric determination of halogenides
JPH07109410B2 (en) Portable sensor for corrosion exploration
Muralidharan et al. Electrochemical studies on the performance characteristics of alkaline solid embeddable sensor for concrete environments
US8277618B2 (en) Electrochemical cell
US7083709B2 (en) Potentiometric, ion-selective electrode
US4440603A (en) Apparatus and method for measuring dissolved halogens
EP0833149A1 (en) Method for measuring ion concentration
Bjegovic et al. Non-destructive corrosion rate monitoring for reinforced concrete structures
Barradas et al. The anodic behaviour of lead amalgam electrodes in HCl solution
Sebar et al. An op amp-less electrochemical impedance spectroscopy system
JP2519144B2 (en) Reference electrode for measuring electric potential and portable sensor for corrosion detection using it-
JP4101000B2 (en) Free chlorine concentration measurement method
CA1114018A (en) Method for detecting the fouling of a membrane covered electrochemical cell
US3528778A (en) Method for the determination of acid concentrations
Karimi Shervedani et al. Electrochemical characterization and application of Ni-RuO 2 as a pH sensor for determination of petroleum oil acid number

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20081122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees