JPH07109281B2 - Cover structure of heat transfer tube in fluidized bed - Google Patents

Cover structure of heat transfer tube in fluidized bed

Info

Publication number
JPH07109281B2
JPH07109281B2 JP30383786A JP30383786A JPH07109281B2 JP H07109281 B2 JPH07109281 B2 JP H07109281B2 JP 30383786 A JP30383786 A JP 30383786A JP 30383786 A JP30383786 A JP 30383786A JP H07109281 B2 JPH07109281 B2 JP H07109281B2
Authority
JP
Japan
Prior art keywords
heat transfer
fluidized bed
transfer tube
layer heat
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30383786A
Other languages
Japanese (ja)
Other versions
JPS63156901A (en
Inventor
明雄 西山
公大 野中
宜明 高見
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP30383786A priority Critical patent/JPH07109281B2/en
Publication of JPS63156901A publication Critical patent/JPS63156901A/en
Publication of JPH07109281B2 publication Critical patent/JPH07109281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流動層内伝熱管のカバー構造に係り、特に、流
動層内伝熱管の摩耗を防止するのに好適な流動層内伝熱
管のカバー構造に関するものである。
Description: TECHNICAL FIELD The present invention relates to a cover structure for a heat transfer tube in a fluidized bed, and more particularly to a heat transfer tube in a fluidized bed suitable for preventing wear of the heat transfer tube in a fluidized bed. It relates to a cover structure.

〔従来の技術〕[Conventional technology]

流動層ボイラの流動層内伝熱管(以下、単に層内伝熱管
という)の摩耗量は、第7図に示すように、流動層ボイ
ラが運転を停止しているときの静止流動層の表面の上方
では急激に加熱する。これは、第8図に示すように、静
止流動層の表面の上方では、燃焼ガスおよび流動用空気
の気泡14が流動層15の内部を上昇しながら成長して流動
層15の表面で破裂するに伴って、流動層15の流動媒体粒
子4が常時激しく上下運動を繰り返しているためであ
る。しがたって、従来は、静止流動層の表面の下方に層
内伝熱管を埋設して、層内伝熱管の摩耗減肉を抑制する
ようにしている。
As shown in FIG. 7, the wear amount of the fluidized bed heat transfer tube (hereinafter referred to simply as the in-bed heat transfer tube) of the fluidized bed boiler is as shown in FIG. It heats up rapidly. This is because, as shown in FIG. 8, above the surface of the stationary fluidized bed, the bubbles 14 of combustion gas and flowing air grow while rising inside the fluidized bed 15 and burst at the surface of the fluidized bed 15. This is because the fluidized medium particles 4 in the fluidized bed 15 constantly violently move up and down. Therefore, conventionally, an in-layer heat transfer tube is buried below the surface of the stationary fluidized bed to suppress wear thinning of the in-layer heat transfer tube.

また、流動層ボイラでは、流動層の流動媒体粒子に石灰
石の粉末を混合して、燃焼ガスが流動層の内部を上昇す
るときに、燃焼ガスに含まれているSOxを除去するいわ
ゆる炉内脱硫を行っている。この石灰石の粉末による炉
内脱硫は、第9図に示すように、流動層の温度が800℃
であるときに最も効果的に脱硫反応が行われる。それ
故、流動層ボイラを運転するときの流動層の温度の範囲
は、NOxも含めて、大気環境規制値を遵守できる温度の
範囲に制約される。
Further, in a fluidized bed boiler, so-called in-furnace that removes SO x contained in combustion gas when combustion gas rises inside the fluidized bed by mixing limestone powder with fluidized medium particles in the fluidized bed. Desulfurization is in progress. As shown in FIG. 9, the temperature of the fluidized bed was 800 ° C.
The most effective desulfurization reaction occurs. Therefore, the scope of the temperature of the fluidized layer when operating the fluidized bed boiler, including NO x, are constrained to a range of temperatures that can comply with air quality regulations value.

したがって、流動層ボイラにおいて、ベロシティ・ター
ンダウン法によって負荷制御を行なう場合には、負荷の
減少に伴って燃料すなわち入熱量が減少しても、流動層
の温度が低下しないようにする必要がある。そのため
に、負荷が減少して高さが低くなった流動層の表面から
層内伝熱管の一部を露出させて、層内伝熱管の内部の給
水による流動層からの出熱量を減少させなければならな
い。
Therefore, in the fluidized bed boiler, when the load is controlled by the velocity turndown method, it is necessary to prevent the temperature of the fluidized bed from decreasing even if the fuel, that is, the heat input amount decreases as the load decreases. . For this reason, a part of the in-bed heat transfer tube must be exposed from the surface of the fluidized bed whose load has decreased and the height has decreased, so that the heat output from the fluidized bed due to the water supply inside the in-bed heat transfer tube must be reduced. I have to.

第10図(イ)、(ロ)、(ハ)は層内伝熱管の種々の配
置を示す図、第10図(ニ)は流動層ボイラの負荷と流動
層の温度との関係を上記の層内伝熱管の種々の配置毎に
示す図である。
Figures 10 (a), (b) and (c) show various arrangements of in-bed heat transfer tubes, and Figure 10 (d) shows the relationship between the load of the fluidized bed boiler and the temperature of the fluidized bed. It is a figure shown for every various arrangement of a heat transfer tube in a layer.

第10図(イ)、(ロ)、(ハ)に示すように、12本の層
内伝熱管1が、第10図(イ)においては3本づつイ−1
段とイ−2段とイ−3段とイ−4段との上下4段に、ま
た、第10図(ロ)においては4本づつロ−1段とロ−2
段とロ−3段との上下3段に、さらに、第10図(ハ)に
おいては6本づつハ−1段とハ−2段との上下2段に、
夫々配置してある。そして、イ−1段とロ−1段とハ−
1段との層内伝熱管1が、また、イ−2段とロ−2段と
ハ−2段との層内伝熱管1が、さらに、イ−3段とロ−
3段との層内伝熱管1が、夫々空気分散板5から同じ高
さに配置してある。また、イ−4段の層内伝熱管1は上
記の他の段の層内伝熱管1よりも空気分散板5からの高
さが低く、空気分散板5に最も近く配置してある。
As shown in FIGS. 10 (a), (b), and (c), twelve in-layer heat transfer tubes 1 are three in each of FIG. 10 (a).
Steps 1 to 2 and 4 to 4 above and 3 steps below, and in Figure 10 (b), 4 rows each, row 1 and row 2
In the upper and lower three stages of the stage and the third stage, and in FIG.
They are arranged respectively. And a-1 stage, b-stage and ha
The in-layer heat transfer tube 1 with the first stage, the in-layer heat transfer tube 1 with the second stage, the second stage, the second stage, and the second stage, and the third stage and the low stage.
In-layer heat transfer tubes 1 of three stages are arranged at the same height from the air dispersion plate 5, respectively. Further, the in-layer heat transfer tube 1 in the 4th stage is lower in height from the air dispersion plate 5 than the in-layer heat transfer tubes 1 in the other stages, and is arranged closest to the air dispersion plate 5.

第10図(イ)、(ロ)、(ハ)において、流動層ボイラ
16の負荷が定格負荷から部分負荷に減少すると、流動層
15の表面は定格負荷時の表面11の位置から部分負荷時の
表面12の位置に低下する。この場合、イ−1段とロ−1
段とハ−1段との層内伝熱管1が表面12の上方に露出す
るが、これ以外の段の層内伝熱管1は流動層15の内部に
埋没している。すなわち、流動層15の内部に埋没してい
る層内伝熱管1が、第10図(イ)の場合は9本、(ロ)
の場合は8本、(ハ)の場合は6本であるので、層内伝
熱管1の内部の給水によって流動層15から持ち出される
出熱量は(イ)>(ロ)>(ハ)の順に少なくなってい
る。
In Fig. 10 (a), (b) and (c), fluidized bed boiler
When 16 loads decrease from rated load to partial load, fluidized bed
The surface of 15 is lowered from the position of surface 11 under rated load to the position of surface 12 under partial load. In this case, a-1 stage and b-1
The in-layer heat transfer tubes 1 of the step and the step c-1 are exposed above the surface 12, but the in-layer heat transfer tubes 1 of the other steps are buried inside the fluidized bed 15. That is, in the case of FIG. 10 (a), there are nine in-layer heat transfer tubes 1 buried in the fluidized bed 15, (b)
Since the number is 8 in the case of and the number is 6 in the case of (c), the heat output taken out from the fluidized bed 15 by the water supply inside the in-layer heat transfer tube 1 is in the order of (a)>(b)> (c). It's getting less.

一方、流動層ボイラ16の負荷減少に伴って、給炭管9か
ら流動層15に投入される燃料の量すなわち入熱量も減少
するので、流動層15の温度の低下は(イ)>(ロ)>
(ハ)の順に少なくなっている。この流動層15の温度と
ボイラ負荷との関係が第10図(ニ)に示してある。すな
わち、ボイラ負荷が定格負荷から部分負荷にわたって変
化しても、層内伝熱管1の配置が第10図(ハ)に示すよ
うな配置である場合が、流動層15の温度の低下が最も少
ない。
On the other hand, as the load on the fluidized bed boiler 16 decreases, the amount of fuel injected from the coal feeding pipe 9 into the fluidized bed 15, that is, the amount of heat input also decreases, so the temperature of the fluidized bed 15 decreases by (a)> ( )>
It decreases in the order of (c). The relationship between the temperature of the fluidized bed 15 and the boiler load is shown in FIG. That is, even if the boiler load changes from the rated load to the partial load, the temperature drop of the fluidized bed 15 is the smallest when the arrangement of the in-bed heat transfer tubes 1 is as shown in FIG. .

このように、負荷が減少しても流動層の温度が低下しな
いようにするためには、多数の層内伝熱管を一つの段の
中に水平方向に狭い間隔で隣接して配置することによっ
て、ボイラ負荷が減少して流動層の高さが低くなった場
合に、高さが低くなった流動層の表面から露出する層内
伝熱管の数を多くすればよい。しかし、多数の層内伝熱
管を水平方向に狭い間隔で隣接して配置すると、層内伝
熱管の間を通過する燃焼ガスおよび流動用空気(以下、
単にガスと云う)の速度が増加するので、流動層の流動
媒体粒子の流動が激しくなり、層内伝熱管の摩耗量が増
える。さらに、最低負荷時の流動層の流動を良好に維持
するために、定格負荷時のガスの空塔速度を速くしてい
るので、層内伝熱管の摩耗が促進される。
As described above, in order to prevent the temperature of the fluidized bed from decreasing even if the load is reduced, a large number of in-bed heat transfer tubes are arranged horizontally adjacent to each other at a narrow interval. When the boiler load decreases and the height of the fluidized bed decreases, the number of in-layer heat transfer tubes exposed from the surface of the fluidized bed whose height has decreased may be increased. However, when a large number of in-layer heat transfer tubes are arranged adjacent to each other in a horizontal direction at a narrow interval, combustion gas and flowing air (hereinafter,
The velocity of the gas (which is simply referred to as gas) increases, so that the fluidized medium particles in the fluidized bed flow vigorously, and the amount of wear of the heat transfer tubes in the bed increases. Further, since the superficial velocity of the gas at the rated load is increased in order to maintain the good flow of the fluidized bed at the minimum load, the wear of the in-layer heat transfer tube is promoted.

したがって、層内伝熱管の摩耗を防止するために、従来
は、(1)スランピング制御と組み合わせて、第10図
(イ)に示すように、層内伝熱管どうしの間隔を充分確
保していた。しかし、これは、既に説明したように、ボ
イラ負荷が減少した場合に流動層の温度が低下する。
(2)層内伝熱管の外表面の全部に摩耗防止用のカバー
を取り付けていた。これは、第11図に伝熱面のカバー率
(カバーの取付面積/層内伝熱管の伝熱面積)と総括伝
熱係数および必要伝熱面積との関係を示すように、伝達
係数すなわち伝熱々量が減少するので伝熱面積すなわち
層内伝熱管の本数を増加しなければならず、層内伝熱管
の配置の間隔がさらに狭くなり、層内伝熱管の間を通過
するガスの速度が非常に速くなる。場合によっては、第
10図(ハ)に示すような配置が出来なくなり、第10図
(イ)または(ロ)に示すように配置して、層内伝熱管
どうしの間隔を確保していた。
Therefore, in order to prevent wear of the in-layer heat transfer tubes, in the past, in combination with (1) slumping control, a sufficient space was secured between the in-layer heat transfer tubes as shown in Fig. 10 (a). . However, this causes the temperature of the fluidized bed to decrease when the boiler load decreases, as already explained.
(2) A wear preventing cover was attached to the entire outer surface of the in-layer heat transfer tube. As shown in Fig. 11 which shows the relationship between the heat transfer surface coverage ratio (cover mounting area / heat transfer area of in-layer heat transfer tubes) and the overall heat transfer coefficient and required heat transfer area, Since the heat quantity decreases, the heat transfer area, that is, the number of in-layer heat transfer tubes must be increased, the interval between the arrangement of the in-layer heat transfer tubes becomes narrower, and the velocity of the gas passing between the in-layer heat transfer tubes becomes smaller. It will be very fast. In some cases,
The arrangement shown in Fig. 10 (c) is no longer possible, and the arrangement is made as shown in Fig. 10 (a) or (b) to secure the space between the in-layer heat transfer tubes.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術、すなわち、流動層ボイラが運転を停止し
ているときの静止流動層の表面の上方に配置してある層
内伝熱管の外表面の全部にカバーを取り付ける構造で
は、層内伝熱管の外表面は全周にわたって一様に摩耗す
るのではなくて、外表面の特定の場所の摩耗が激しいと
いう点について配慮されていないとともに、伝熱効率が
低下するので層内伝熱管の本数を増加しなければならな
いという問題があった。
In the above conventional technology, that is, in the structure in which the cover is attached to the entire outer surface of the in-layer heat transfer tube arranged above the surface of the stationary fluidized bed when the operation of the fluidized bed boiler is stopped, the in-layer heat transfer tube The outer surface of is not worn uniformly over the entire circumference, and no consideration has been given to the fact that specific locations on the outer surface are heavily worn, and the heat transfer efficiency decreases, so the number of in-layer heat transfer tubes is increased. There was a problem that I had to do.

本発明の目的は、層内伝熱管の摩耗を効果的に防止する
と共に、ボイラ負荷が減少しても流動層の温度が低下し
ない層内伝熱管のカバー構造を提供することにある。
An object of the present invention is to provide a cover structure for an in-layer heat transfer tube, which effectively prevents wear of the in-layer heat transfer tube and prevents the temperature of the fluidized bed from decreasing even when the boiler load is reduced.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は次に記載する手段によって達成される。す
なわち、複数本づつ複数段に配置した層内伝熱管のう
ち、最上段の層内伝熱管にはその外表面の全部にカバー
を取り付ける。また、最上段以外の層内伝熱管には、流
動層内を上昇するガスの流れの上流側に位置する外表面
のみに、すなわち、下側の外表面のみにカバーを取り付
けることにより、達成される。
The above object is achieved by the means described below. That is, of the in-layer heat transfer tubes arranged in a plurality of stages, a cover is attached to the entire outer surface of the uppermost in-layer heat transfer tube. Further, in the in-layer heat transfer tubes other than the uppermost stage, it is achieved by attaching a cover only to the outer surface located on the upstream side of the gas flow rising in the fluidized bed, that is, only the lower outer surface. It

〔作用〕[Action]

第12図は粒子の衝突角度と衝突面の摩耗量との関係を示
す図である。第12図に示すように、粒子の衝突角度が30
°であるときに、衝突面の摩耗量が最大であり、0°お
よび90°であるときに最小である。
FIG. 12 is a diagram showing the relationship between the collision angle of particles and the amount of wear on the collision surface. As shown in Fig. 12, the collision angle of particles is 30
At 0 °, the amount of wear on the impact surface is maximum, and at 0 ° and 90 °, it is minimum.

第13図は流動層内における上下方向の位置が異なる層内
伝熱管について、摩耗量および摩耗する場所を示す図で
ある。第13図において、流動層15の表面の直上に位置す
る層内伝熱管1であっても、また、流動層15の内部に埋
没している層内伝熱管1であっても、層内伝熱管1の外
表面のうち、流動層15の内部を矢印Gで示す方向に上昇
するガスに伴われた流動媒体粒子4との衝突角度が約30
°である外表面の摩耗量Δtが、既に説明した第12図に
おける場合と同様に、最大になっている。しかし、層内
伝熱管1の外表面のうち、上側の半分すなわち流動層15
の内部を矢印Gで示す方向に上昇するガスの流れの下流
側に位置する外表面と、衝突角度がほぼ0°である外表
面と、ほぼ90°である外表面とについては、摩耗量Δt
の差が殆ど無く、摩耗量Δtが最小である。
FIG. 13 is a diagram showing the amount of wear and the place of wear for the in-layer heat transfer tubes having different vertical positions in the fluidized bed. In FIG. 13, whether the intra-layer heat transfer tube 1 is located directly above the surface of the fluidized bed 15 or the intra-layer heat transfer tube 1 buried inside the fluidized bed 15, Of the outer surface of the heat pipe 1, the collision angle with the fluidized medium particles 4 accompanied by the gas rising inside the fluidized bed 15 in the direction indicated by the arrow G is about 30.
The wear amount Δt of the outer surface, which is 0 °, is maximum, as in the case of FIG. 12 already described. However, of the outer surface of the in-layer heat transfer tube 1, the upper half, that is, the fluidized bed 15
For the outer surface located downstream of the gas flow rising in the direction indicated by arrow G, the outer surface having a collision angle of approximately 0 °, and the outer surface having a collision angle of approximately 90 °, the wear amount Δt
The wear amount Δt is minimal.

したがって、第2図に示すように、層内伝熱管1の外表
面のうち、下側の半分すなわち矢印Gで示す方向に上昇
するガスの流れの上流側に位置する外表面の全部にカバ
ー2を取り付けるか、または、第3図に示すように、矢
印Gで示す方向に上昇するガスに対して衝突角度が約30
°である外表面、すなわち、衝突角度がほぼ0°である
外表面およびほぼ90°である外表面以外の外表面にカバ
ー2を取り付けるかすれば、層内伝熱管1の摩耗を効果
的に防止することができる。
Therefore, as shown in FIG. 2, of the outer surface of the in-layer heat transfer tube 1, the cover 2 covers the lower half of the outer surface, that is, the entire outer surface located on the upstream side of the gas flow rising in the direction indicated by the arrow G. Or, as shown in FIG. 3, the collision angle is about 30 with respect to the gas rising in the direction indicated by the arrow G.
If the cover 2 is attached to an outer surface having an angle of 0 °, that is, an outer surface having a collision angle of approximately 0 ° and an outer surface having an impact angle of approximately 90 °, the wear of the in-layer heat transfer tube 1 is effectively prevented. can do.

また、最上段の層内伝熱管の外表面の全部にカバーを取
り付けることにより、既に第8図において説明したよう
に、ガスの気泡14が流動層15のに内部を上昇しながら成
長して流動層15の表面で破裂する際に、飛び散った流動
媒体粒子4が層内伝熱管上に落下してその上半分の外表
面を摩耗することを防止することができる。
Further, by attaching a cover to the entire outer surface of the uppermost in-layer heat transfer tube, gas bubbles 14 grow and flow inside the fluidized bed 15 while rising inside the fluidized bed 15, as already described in FIG. When bursting on the surface of the layer 15, it is possible to prevent the scattered fluid medium particles 4 from dropping onto the in-layer heat transfer tube and abrading the outer surface of the upper half thereof.

〔実施例〕〔Example〕

本発明に係る実施例を図に基づいて説明する。第1図は
本発明の層内伝熱管のカバー構造を示す図である。
An embodiment according to the present invention will be described with reference to the drawings. FIG. 1 is a view showing a cover structure of an in-layer heat transfer tube of the present invention.

第1図において、流動層ボイラ16が運転を停止している
ときの流動層15の表面13の位置と、定格負荷で運転して
いるときの流動層15の表面11の位置との間に、複数本の
層内伝熱管1が1−1段と1−2段と1−3段と1−4
段との上下4段に配置してある。そして、最上段の1−
1段の層内伝熱管1は外表面の全部に、また、2段目以
下の1−2段と1−3段と1−4段との層内伝熱管1は
外表面の下半分すなわち矢印Gで示す方向に上昇するガ
スの流れの上流側に位置する外表面に、夫々カバー1が
取り付けてある。
In FIG. 1, between the position of the surface 13 of the fluidized bed 15 when the operation of the fluidized bed boiler 16 is stopped and the position of the surface 11 of the fluidized bed 15 when operating at the rated load, A plurality of in-layer heat transfer tubes 1 are 1-1 stage, 1-2 stage, 1-3 stage and 1-4 stage.
They are arranged in four rows above and below the row. And the 1-of the top
The first-stage intra-layer heat transfer tube 1 covers the entire outer surface, and the second-stage or lower 1-2-stage, 1-3-stage, and 1-4-stage intra-layer heat transfer tubes 1 are the lower half of the outer surface. Covers 1 are attached to the outer surfaces located on the upstream side of the flow of gas rising in the direction indicated by arrow G, respectively.

これにより、流動層15の流動媒体粒子4の流動による層
内伝熱管1の摩耗を効果的に防止することができる。ま
た、流動層ボイラ16の負荷が減少して燃料が減少した場
合に、高さが低くなった流動層15の表面上に層内伝熱管
1が露出するので、流動層15の温度が殆ど低下しないと
共に、炉内脱硫および脱硝最適温度で運転することがで
きる。
As a result, it is possible to effectively prevent the wear of the in-bed heat transfer tube 1 due to the flow of the fluidized medium particles 4 in the fluidized bed 15. Further, when the load on the fluidized bed boiler 16 is reduced and the fuel is reduced, the in-bed heat transfer tube 1 is exposed on the surface of the fluidized bed 15 whose height is lowered, so that the temperature of the fluidized bed 15 is almost reduced. In addition, it is possible to operate at the optimum temperature for desulfurization and denitration in the furnace.

第4図、第5図、第6図は本発明の他の実施例を示す図
である。
FIGS. 4, 5, and 6 are views showing another embodiment of the present invention.

第4図においては、層内伝熱管1の外表面の下半分に箱
形のカバー2が取り付けてあり、第5図においては、層
内伝熱管1の下部に平板状のカバー2が取り付けてあ
る。
In FIG. 4, a box-shaped cover 2 is attached to the lower half of the outer surface of the intra-layer heat transfer tube 1, and in FIG. 5, a flat plate-shaped cover 2 is attached to the lower part of the intra-layer heat transfer tube 1. is there.

これにより、第4図に示す場合は、層内伝熱管1の摩耗
が防止されることは勿論であるが、矢印Gで示す方向に
上昇するガスに伴なわれる流動媒体粒子とカバー2との
衝突角度が0°および90°であるので、カバー2の摩耗
が抑制される。また、第5図においては、層内伝熱管1
の外表面と流動媒体粒子との衝突角度は0°および90°
であり、カバー2と流動媒体粒子との衝突角度は90°で
あるので、層内伝熱管1およびカバー2の摩耗が共に抑
制される。
As a result, in the case shown in FIG. 4, the wear of the in-layer heat transfer tube 1 is, of course, prevented, but the fluid medium particles accompanying the gas rising in the direction indicated by the arrow G and the cover 2 are not separated from each other. Since the collision angles are 0 ° and 90 °, wear of the cover 2 is suppressed. Further, in FIG. 5, the intra-layer heat transfer tube 1
The collision angle between the outer surface and the fluidized medium particles is 0 ° and 90 °
Since the collision angle between the cover 2 and the fluidized medium particles is 90 °, wear of both the in-layer heat transfer tube 1 and the cover 2 is suppressed.

第6図においては、既に説明した第3図に示す場合と同
様に、層内伝熱管1の外表面のうち、矢印Gで示す方向
に上昇するガスに対して衝突角度がほぼ0°である外表
面およびほぼ90°である外表面以外の外表面にカバー2
が取り付けてあるが、外表面とカバー2との間に間隙が
設けてある。
In FIG. 6, as in the case shown in FIG. 3 already described, the collision angle is almost 0 ° with respect to the gas rising in the direction indicated by the arrow G on the outer surface of the in-layer heat transfer tube 1. Cover 2 on the outer surface and the outer surface except the outer surface which is almost 90 °
Is attached, but a gap is provided between the outer surface and the cover 2.

これにより、矢印Gで示す方向に流動層の内部を上昇す
るガスが、実線の矢印のように層内伝熱管1とカバー2
との間隙を通流すると共に、ガスの通流に伴って流動媒
体粒子4も間隙をゆるやかに移動するので、層内伝熱管
1の内部の給水が吸収する熱量が増加し、しかも、層内
伝熱管1が摩耗しない。したがって、流動層から吸収す
る熱量が大幅に減少することが抑制されると共に、間隙
を設けない場合に比べて伝熱面積が少なくて済むことに
なる。
As a result, the gas that rises in the fluidized bed in the direction indicated by the arrow G is transferred to the in-layer heat transfer tube 1 and the cover 2 as indicated by the solid arrow.
While flowing through the gap between the fluid medium particles 4 and the fluidized medium particles 4 also gently move through the gap as the gas flows, the amount of heat absorbed by the feed water inside the in-layer heat transfer tube 1 increases and The heat transfer tube 1 does not wear. Therefore, the amount of heat absorbed from the fluidized bed is suppressed from being significantly reduced, and the heat transfer area is smaller than that in the case where no gap is provided.

〔発明の効果〕〔The invention's effect〕

本発明によれば、層内伝熱管の摩耗を防止することがで
きると共に、ボイラ負荷が減少しても流動層の温度が低
下しないので、伝熱面積を増加する必要がなくなる効果
があると共に、炉内脱硫および脱硝の効果を維持するこ
とができる効果がある。また、負荷追従性が向上する効
果があると共に、負荷変化時のスランピング操作が不要
であるので、セルの分割、ウィンドボックスの仕切り、
空気ダクトの分岐、セルごとの燃料および空気量の制御
装置等が不要になる効果がある。
According to the present invention, it is possible to prevent wear of the in-layer heat transfer tube, and since the temperature of the fluidized bed does not decrease even when the boiler load decreases, there is an effect that there is no need to increase the heat transfer area, It has the effect of maintaining the effects of in-furnace desulfurization and denitration. In addition, it has the effect of improving load following performance, and since there is no need for slumping operation when the load changes, cell division, window box partitioning,
This has the effect of eliminating the need for a branch of the air duct, a control device for the amount of fuel and air for each cell, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の層内伝熱管のカバー構造を示す図、第
2図および第3図はその詳細図、第4図〜第6図は本発
明の他の実施例を示す図、第7図は層内伝熱管の摩耗量
と層内伝熱管の配置高さとの関係を示す図、第8図は気
泡が流動層内を上昇しながら成長して破裂する過程を示
す図、第9図は流動層の温度と排ガス中のSOx濃度およ
びNOx濃度との関係を示す図、第10図は層内伝熱管の種
々の配置とボイラ負荷が変化した場合の流動層の温度と
を示す図、第11図は伝熱面のカバー率と総括伝熱係数お
よび必要伝熱面積との関係を示す図、第12図は粒子の衝
突角度と衝突面の摩耗量との関係を示す図、第13図は流
動層内の上下方向の位置が異なる層内伝熱管について摩
耗量および摩耗する場所を示す図である。 1……層内伝熱管、2……カバー 4……流動媒体粒子、5……空気分散板 6……ウィンドボックス、7……空気ダクト 8……空気ダンパ、9……給炭管 10……給炭ノズル、11〜13……流動層の表面 14……気泡、15……流動層 16……流動層ボイラ
FIG. 1 is a view showing a cover structure of an in-layer heat transfer tube of the present invention, FIGS. 2 and 3 are detailed views thereof, and FIGS. 4 to 6 are views showing other embodiments of the present invention. FIG. 7 is a diagram showing the relationship between the wear amount of the intra-layer heat transfer tube and the arrangement height of the intra-layer heat transfer tube, and FIG. 8 is a diagram showing the process in which bubbles grow and burst while rising in the fluidized bed, and FIG. The figure shows the relationship between the temperature of the fluidized bed and the SO x concentration and NO x concentration in the exhaust gas, and Fig. 10 shows the various arrangements of the in-bed heat transfer tubes and the temperature of the fluidized bed when the boiler load changes. Fig. 11, Fig. 11 is a diagram showing the relationship between the coverage ratio of the heat transfer surface, the overall heat transfer coefficient and the required heat transfer area, and Fig. 12 is a view showing the relationship between the collision angle of particles and the wear amount of the collision surface. FIG. 13 is a diagram showing the amount of wear and the places of wear for the in-layer heat transfer tubes having different vertical positions in the fluidized bed. 1 ... Intra-layer heat transfer tube, 2 ... Cover 4 ... Fluid medium particles, 5 ... Air dispersion plate 6 ... Wind box, 7 ... Air duct, 8 ... Air damper, 9 ... Coal feeding tube ... … Coaling nozzle, 11 to 13… Fluidized bed surface 14… Bubbles, 15… Fluidized bed 16… Fluidized bed boiler

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流動層ボイラの負荷が減少した場合に、複
数段に配置した流動層内伝熱管のうちの一部の段の前記
流動層内伝熱管が流動層の表面上に露出するように、一
部の段の前記流動層内伝熱管あるいは全部の段の前記流
動層内伝熱管を前記流動層の表面の近傍に配置した流動
層ボイラにおいて、 前記複数段に配置した流動層内伝熱管のうち、最上段の
前記流動層内伝熱管にはその外表面の全部に、また、前
記最上段以外の段の前記流動層内伝熱管には前記流動層
の内部を上昇するガスの流れの上流側に位置する外表面
のみに、夫々カバーを取り付けてあることを特徴とする
流動層内伝熱管のカバー構造。
1. When the load of the fluidized bed boiler is reduced, a part of the heat transfer tubes in the fluidized bed arranged in a plurality of stages is exposed on the surface of the fluidized bed. In a fluidized bed boiler in which some stages of the fluidized bed heat transfer tubes or all the stages of the fluidized bed heat transfer tubes are arranged in the vicinity of the surface of the fluidized bed, Of the heat pipes, the heat transfer pipe in the uppermost stage has the entire outer surface thereof, and the heat transfer pipes in the fluidized beds other than the uppermost stage have a flow of gas rising inside the fluidized bed. A cover structure for a heat transfer tube in a fluidized bed, wherein a cover is attached only to the outer surface located on the upstream side of the.
JP30383786A 1986-12-22 1986-12-22 Cover structure of heat transfer tube in fluidized bed Expired - Fee Related JPH07109281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30383786A JPH07109281B2 (en) 1986-12-22 1986-12-22 Cover structure of heat transfer tube in fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30383786A JPH07109281B2 (en) 1986-12-22 1986-12-22 Cover structure of heat transfer tube in fluidized bed

Publications (2)

Publication Number Publication Date
JPS63156901A JPS63156901A (en) 1988-06-30
JPH07109281B2 true JPH07109281B2 (en) 1995-11-22

Family

ID=17925905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30383786A Expired - Fee Related JPH07109281B2 (en) 1986-12-22 1986-12-22 Cover structure of heat transfer tube in fluidized bed

Country Status (1)

Country Link
JP (1) JPH07109281B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790223B2 (en) * 1991-09-27 1998-08-27 宇部興産株式会社 Fluidized bed heat transfer device

Also Published As

Publication number Publication date
JPS63156901A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
US4940007A (en) Fast fluidized bed reactor
US5820838A (en) Method and an apparatus for injection of NOx reducing agent
US20070283902A1 (en) Integrated fluidized bed ash cooler
US10018353B2 (en) Sealpot and method for controlling a solids flow rate therethrough
CN102512953A (en) CFB boiler SCR denitration technology and denitration device
EP2908936B1 (en) In-bed solids control valve with improved reliability
EP0995065B1 (en) Fluidized bed reactor
KR100338695B1 (en) How to Drive a Circulating Fluidized Bed Reactor System and a Circulating Fluidized Bed Reactor System
US4387667A (en) Fluidized bed distributor plate assembly
CN102032558A (en) Circulating fluidized bed (CFB) with in-furnace secondary air nozzles
JPH07109281B2 (en) Cover structure of heat transfer tube in fluidized bed
US5286188A (en) Uni-directional anti-backsifting fluidization nozzle and a fluidized bed system utilizing same
JP3095499B2 (en) Fluidized bed combustion boiler
US5105559A (en) Flow-seal fluidization nozzle and a fluidized bed system utilizing same
EP2633254B1 (en) Moving bed heat exchanger comprising an orifice plate for controlling solids flow
JPH06504360A (en) Fluidized bed combustion equipment with equipment for improved fuel and gas distribution
FI119974B (en) A fluidized bed reactor system and process for its preparation
JP4117961B2 (en) Fluidized bed boiler equipment
JP2767546B2 (en) Method and apparatus for reinforcing a heat transfer tube in a fluidized bed
FI92955C (en) Floor Swirl Enterprise
JPS62217008A (en) Fluidized bed boiler reinforced in bed and conducting recirculation
JPH09229312A (en) Fluidized bed boiler
JP2672571B2 (en) Fluidized bed boiler equipment
JP2554097B2 (en) Fluidized bed boiler
JPS60211208A (en) Fluidized-bed boiler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees