JPH07108294A - Method for culturing denitrification bacteria, immobilized denitrification bacteria and denitrification method using the bacteria - Google Patents

Method for culturing denitrification bacteria, immobilized denitrification bacteria and denitrification method using the bacteria

Info

Publication number
JPH07108294A
JPH07108294A JP5278950A JP27895093A JPH07108294A JP H07108294 A JPH07108294 A JP H07108294A JP 5278950 A JP5278950 A JP 5278950A JP 27895093 A JP27895093 A JP 27895093A JP H07108294 A JPH07108294 A JP H07108294A
Authority
JP
Japan
Prior art keywords
denitrification
culture
bacteria
strain
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5278950A
Other languages
Japanese (ja)
Other versions
JP3396786B2 (en
Inventor
Yoshitomo Watabe
良朋 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP27895093A priority Critical patent/JP3396786B2/en
Publication of JPH07108294A publication Critical patent/JPH07108294A/en
Application granted granted Critical
Publication of JP3396786B2 publication Critical patent/JP3396786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To enable culture of high density in large quantity by a method wherein marine denitrification bacteria of specific genus Alkaligenes, wherein pH, temperature, and culture medium salt is in a specified optimum growth condition, are maintained in a predetermined condition and cultured until light absorbance becomes a predetermined value in a predetermined culture medium. CONSTITUTION:Marine denitrification bacteria of the genus Alkaligenes which has an optimum growth condition, wherein pH is 6-8, temperature 35 deg.C, and culture medium salt concentration is 0.85-3.4%, and has apparent metabolic pathway, wherein nitric acid is reduced directly to gaseous nitrogen, are selected. The bacteria are maintained in a condition similar to the optimum growth condition, such that salt concentration is 0.85-3.4%, pH 6-8, and temperature is 32-38 deg.C. And culture is continued until light absorbance of culture liquid becomes 2 or more at 610nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱窒細菌の培養方法、固
定化脱窒細菌およびこれを用いる脱窒方法に関し、より
詳しくは人工的な魚飼育などにおける水質浄化システム
への浄化微生物として適用できる脱窒細菌に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for culturing denitrifying bacteria, an immobilized denitrifying bacterium and a denitrifying method using the same. More specifically, it is applied as a purification microorganism to a water purification system in artificial fish breeding and the like. It is about denitrifying bacteria that can be made.

【0002】[0002]

【従来の技術】電気を有効に利用し、高度な飼育環境調
節を行う循環濾過養魚システムの開発が現在ヒラメなど
を対象として進められている。飼育適水温調節等のため
に飼育水を循環再利用するこのシステムでは、魚の排泄
物が飼育水中に蓄積し、水質悪化を引き起こすため、そ
の浄化は非常に重要となる。魚の主な排泄物であるアン
モニアが生物酸化されることによって生成される硝酸
は、高濃度では魚の生育を阻害し、また飼育水を酸性化
させる等の悪影響を及ぼすことから、飼育水を長期に利
用するためには、この硝酸を還元し、ガス状窒素として
除去する脱窒を行う必要がある。
2. Description of the Related Art Currently, the development of a circulating filtration fish-cultivating system that makes effective use of electricity and highly adjusts the breeding environment is currently underway for flounder and the like. In this system, which circulates and reuses the breeding water to control the temperature of the breeding water, fish excrement accumulates in the breeding water and causes water quality deterioration. Therefore, its purification is very important. Nitric acid, which is produced by the biological oxidation of ammonia, which is the main excrement of fish, inhibits the growth of fish at high concentrations and adversely affects the acidification of breeding water. In order to utilize it, it is necessary to reduce the nitric acid and perform denitrification to remove it as gaseous nitrogen.

【0003】脱窒のためには脱窒細菌と呼ばれる浄化微
生物を用いる方法が物理化学的方法に比べ実際的である
ことが知られている。脱窒細菌は土壌や海洋など自然界
に広く生息し、硝酸や亜硝酸を還元してガス状窒素にし
て放出する細菌であり、その見かけ上の代謝経路に応じ
て以下の3つの型: A型 NO2 - → N2 B型 NO3 - → NO2 - →N2 C型 NO3 - → N2 に類別されることが知られている。本発明者はC型が魚
毒性のある亜硝酸を放出せず、魚の飼育における脱窒に
最も有用であると考え、そのような代謝経路をもち、か
つ高い脱窒活性を示す海洋性脱窒細菌を分離し、そして
濾材の表面に該細菌を付着させて浄化を行う生物膜法に
よる飼育水中からの硝酸の除去に関して検討を行い、有
効な濾材を選択し、ある程度の脱窒効果を確認した。
For denitrification, it is known that a method using a purifying microorganism called a denitrifying bacterium is more practical than a physicochemical method. Denitrifying bacteria are bacteria that live widely in the natural world such as soil and ocean, and reduce nitrates and nitrites into gaseous nitrogen, which are released according to their apparent metabolic pathways. NO 2 - → N 2 B-type NO 3 - → NO 2 - → N 2 C -type NO 3 - → are known to be classified into N 2. The present inventor believes that C-type does not release toxic nitrous acid and is most useful for denitrification in fish rearing, and the marine denitrification having such a metabolic pathway and showing high denitrification activity. Bacteria were separated, and the removal of nitric acid from the breeding water by a biofilm method in which the bacteria were attached to the surface of the filter medium for purification was examined, and an effective filter medium was selected to confirm the denitrification effect to some extent. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記生
物膜法による脱窒では、効率のよい脱窒作用を得るため
に、培養した細菌を、事前に脱窒槽内の濾材に高密度で
接種する必要のあることが明らかとなった。このため、
実験室レベルでの脱窒への前記脱窒細菌の適用の場合に
問題となることはないが、この生物膜法を工業レベルで
適用しようとする際に、上記の人工的に接種する脱窒細
菌を確保し、安定に供給する必要があるが、この脱窒細
菌を大量かつ高密度に培養する方法は今まで見出されて
いない。また、生物膜法による脱窒効果は高いものがあ
るが、しかしその能力には限界があり、しかもより長期
にわたる使用の場合、脱窒作用が不安定になるおそれが
ある等の問題がある。本発明は上記問題点を解決するた
めになされたものであり、海洋性脱窒細菌を大量かつ高
密度に培養し得る方法ならびに該脱窒細菌の固定化およ
びその固定化細菌を流動床方式で利用する脱窒方法を提
供することを課題とする。
However, in the denitrification by the biofilm method, in order to obtain an efficient denitrification effect, it is necessary to inoculate the cultivated bacteria in advance at a high density on the filter medium in the denitrification tank. It became clear that there is. For this reason,
This is not a problem in the case of application of the above-mentioned denitrifying bacteria to denitrification at the laboratory level, but when attempting to apply this biofilm method at the industrial level, the above-mentioned artificial inoculation of denitrification is performed. It is necessary to secure and stably supply bacteria, but a method for culturing the denitrifying bacteria in a large amount and at high density has not been found so far. Although the biofilm method has a high denitrification effect, its ability is limited, and there is a problem that the denitrification effect may become unstable in the case of long-term use. The present invention has been made to solve the above problems, a method for culturing marine denitrifying bacteria in a large amount and at high density, and immobilization of the denitrifying bacteria and the immobilized bacteria in a fluidized bed system. It is an object to provide a denitrification method to be used.

【0005】[0005]

【課題を解決するための手段】本発明者は、見かけ上の
代謝経路がNO3 - → N2 である有用海洋性脱窒細菌
について最適生育条件等の種々の研究を行い、このよう
な海洋性脱窒細菌についてこれまで報告されたことのな
かった高密度および大量培養方法を見出し、さらに前記
脱窒細菌を固定化して脱窒を行うことにより、生物膜法
に比べ、より効率よく脱窒が行われ得ることを見出し、
さらに鋭意検討を重ね、本発明を完成させた。
The present inventors SUMMARY OF THE INVENTION The metabolic pathway NO apparent 3 - → N perform various studies of the optimal growth conditions for utility marine denitrifying bacteria is two, such a marine We found a high-density and large-scale culture method that had never been reported for sexually denitrifying bacteria, and by immobilizing the denitrifying bacteria and performing denitrification, the denitrification was performed more efficiently than the biofilm method. Find out that can be done,
Further intensive studies were conducted to complete the present invention.

【0006】すなわち、本発明は、pH6〜8、温度3
5℃、培養培地塩分濃度0.85〜3.4%の最適生育
条件を有し、硝酸から直接ガス状窒素へ還元する見かけ
上の代謝経路をもつアルカリゲネス属(Alcaligenes) の
海洋性脱窒細菌を塩分濃度0.85〜3.4%の培養培
地中、該培地のpHを6〜8、温度を32〜38℃に維
持して培養液の610nmでの吸光度が2以上となるま
で培養することからなる脱窒細菌の培養方法に関する。
That is, the present invention has a pH of 6 to 8 and a temperature of 3
Marine denitrifying bacterium of the genus Alcaligenes, which has an optimal growth condition of 5 ℃, culture medium salinity of 0.85-3.4%, and has an apparent metabolic pathway of reducing nitrate directly to gaseous nitrogen. Is cultivated in a culture medium having a salt concentration of 0.85 to 3.4% while maintaining the pH of the medium at 6 to 8 and the temperature at 32 to 38 ° C. until the absorbance of the culture solution at 610 nm becomes 2 or more. The present invention relates to a method for culturing denitrifying bacteria.

【0007】本発明のアルカリゲネス属の海洋性脱窒細
菌は、硝酸の還元で生成する亜硝酸を菌体外へ放出せず
に速やかにガス状窒素へ還元する次式:NO3 - → N
2 の見かけ上の代謝経路をもつものである。このような
脱窒細菌は各地海浜の海砂や底泥、魚類飼育装置の濾過
槽の濾過砂等を試料とし、硝酸集積培養分離法により分
離・純化され、脱窒活性が確認され、さらに脱窒型の判
別および属レベルでの分類がなされたものである。な
お、脱窒細菌は通性嫌気性であり、好気的にも生育し得
るので、上記分離培養は好気的条件下で行い、脱窒活性
はガス発生および培地pHの上昇により確認した。ま
た、脱窒型の判別は培養後の培地中の無機窒素三態(N
3 - ,NO2 - ,NH4 + )の量的変化により、属レ
ベルでの分類はグラム染色、鞭毛観察、糖発酵性試験等
により行った。
[0007] Alcaligenes marine denitrifying bacteria of the present invention, the following equation to reduce nitrous acid generated in the reduction of nitrate to rapidly gaseous nitrogen without release to the extracellular: NO 3 - → N
It has two apparent metabolic pathways. Such denitrifying bacteria are separated and purified by the nitric acid enrichment culture separation method using sea sand and bottom mud of various beaches and the filter sand of the filter tank of fish breeding equipment as samples, and their denitrification activity is confirmed. It has been classified and classified at the genus level. Since denitrifying bacteria are facultatively anaerobic and can grow aerobically, the above separation culture was performed under aerobic conditions, and denitrifying activity was confirmed by gas generation and increase in medium pH. In addition, the denitrification type is determined by the three states of inorganic nitrogen (N
O 3 , NO 2 , NH 4 + ) was quantitatively changed, and classification at the genus level was performed by Gram staining, flagella observation, sugar fermentation test and the like.

【0008】本発明において、脱窒能力の高さや脱窒活
性の制御のしやすさ、さらに形質が安定である等の点か
ら好ましい海洋性脱窒細菌は、宮城県蒲生干潟の砂泥か
ら分離・純化されたアルカリゲネス属G−A−2−1株
と命名される1株と、千葉県我孫子市に所在する財団法
人電力中央研究所・我孫子研究所の魚飼育水濾過槽の濾
過砂から分離・純化されたアルカリゲネス属Ab−A−
1株およびアルカリゲネス属Ab−A−2株と命名され
る2株である。これら3株の中で、脱窒活性の高さや培
養条件の広さ等の点からアルカリゲネス属Ab−A−1
株が特に好ましい。また、これらの脱窒細菌は平成5年
9月13日に工業技術院生物工学工業技術研究所に寄託
され、それぞれ以下の受託番号を有する。 アルカリゲネス属菌株 受託番号 G−A−2−1 FERM P−13861 Ab−A−1 FERM P−13862 Ab−A−2 FERM P−13860 これら菌株の分離等については渡部ら:電力中央研究所
・研究報告U89035(1989)にさらに詳細に記
載されている。
In the present invention, a preferred marine denitrifying bacterium in terms of high denitrification ability, easy control of denitrification activity, and stable trait, is isolated from sand mud of Kamo Tidal Flat in Miyagi Prefecture.・ Separated from one strain named as purified Alcaligenes GA-2-1 strain and the filter sand of the fish breeding water filtration tank of the Central Research Institute of Electric Power Industry / Abiko Research Institute located in Abiko City, Chiba Prefecture. -Purified Alcaligenes Ab-A-
One strain and two strains named Alcaligenes genus Ab-A-2 strain. Among these three strains, from the viewpoint of high denitrification activity and wide range of culture conditions, the gene of Alcaligenes genus Ab-A-1
Strains are particularly preferred. In addition, these denitrifying bacteria were deposited at the Institute of Biotechnology, Institute of Industrial Technology, September 13, 1993, and have the following deposit numbers. Alcaligenes strain accession number G-A-2-1 FERM P-13861 Ab-A-1 FERM P-13862 Ab-A-2 FERM P-13860 Watanabe et al .: Central Research Institute of Electric Power Industry / Research Further details can be found in report U89035 (1989).

【0009】本発明のアルカリゲネス属に属する海洋性
脱窒細菌の最適生育条件は、培地pH、温度および塩分
濃度の各条件下における比増殖速度を比較することによ
り、pH6〜8、温度35℃、塩分濃度0.85〜3.
4%であることが見出された。また、上記最適生育条件
に維持して脱窒細菌を培養することにより、培養液の吸
光度(波長=610nm,濁度)が2〜6程度まで該細
菌を高密度に培養することができ、しかも前記培養方法
は大量培養にも適用し得るものだった。なお、温度は3
2〜38℃の範囲で高い増殖速度が得られることも確認
した。そこで、上記の海洋性脱窒細菌を塩分濃度0.8
5〜3.4%の培養培地中、該培地のpHを6〜8、温
度を32〜38℃に維持して培養することにより、本発
明の脱窒細菌を高密度で大量に培養することが可能とな
った。本発明の脱窒細菌の高密度および大量培養によ
り、生物膜法、すなわち濾材の表面に細菌を高密度で付
着させて水質浄化を行う方法に対して工業レベルで本発
明の脱窒細菌を適用することができる。ここで、濾材に
は例えば砂濾材(直径3〜6mm前後のもの等)、繊維
状濾材(極細の化学繊維を輪状に編んで紐としたもの
等)または板状濾材(ハニカム状プラスチックチューブ
等)等が用いられるが、菌体付着後の脱窒活性の高さの
点で砂濾材および繊維状濾材が好ましく、扱いやすさで
は繊維状濾材が特に好ましい。
The optimum growth conditions of the marine denitrifying bacterium belonging to the genus Alcaligenes of the present invention are pH 6-8, temperature 35 ° C., by comparing specific growth rates under various conditions of medium pH, temperature and salinity. Salt concentration 0.85-3.
It was found to be 4%. Further, by culturing the denitrifying bacteria while maintaining the above optimal growth conditions, it is possible to cultivate the bacteria at a high density until the absorbance (wavelength = 610 nm, turbidity) of the culture solution is about 2 to 6, and The culturing method was applicable to mass culture. The temperature is 3
It was also confirmed that a high growth rate was obtained in the range of 2 to 38 ° C. Therefore, the above-mentioned marine denitrifying bacteria should have a salinity of 0.8
To cultivate the denitrifying bacterium of the present invention in a high density in a large amount by culturing in a culture medium of 5 to 3.4% while maintaining the pH of the medium at 6 to 8 and the temperature at 32 to 38 ° C. Became possible. Application of the denitrifying bacterium of the present invention at an industrial level to a biofilm method, that is, a method of adhering bacteria at a high density on the surface of a filter medium to purify water by high-density and large-scale culture of the denitrifying bacterium of the present invention can do. Here, the filter medium is, for example, a sand filter medium (having a diameter of about 3 to 6 mm, etc.), a fibrous filter medium (such as ultra-fine chemical fibers woven into a ring into a string), or a plate-like filter medium (honeycomb-shaped plastic tube, etc.). Etc. are used, but sand filter media and fibrous filter media are preferred in terms of high denitrification activity after attachment of bacterial cells, and fibrous filter media are particularly preferred in terms of ease of handling.

【0010】また、本発明は、pH6〜8、温度35
℃、培養培地塩分濃度0.85〜3.4%の最適生育条
件を有し、硝酸から直接ガス状窒素へ還元する見かけ上
の代謝経路をもつアルカリゲネス属の海洋性脱窒細菌を
固定化してなる固定化脱窒細菌に関する。本発明におい
て菌体の固定化は、慣用の方法に従って、天然もしくは
合成高分子ゲルの微細な粒子中に菌体を包み込むか、ま
たは半透膜性の膜により菌体を被覆することによる、い
わゆる包括固定化により行われのが好ましい。高分子ゲ
ルとしては、例えばポリビニルアルコール(PVA)ゲ
ル、ポリエチレングリコール(PEG)ゲル、ポリアク
リルアミドゲル、2−ヒドロキシメチルアクリルアミド
ゲル、シリカゲル、アルギン酸、ウレタン樹脂等を挙げ
ることができ、半透膜性の膜としてはセルロースまたは
その誘導体等を挙げることができる。また、本発明にお
ける菌体の固定化は、酵素の固定化の際に行われる担体
結合法や架橋法により行われてもよい。なお、海洋性魚
類の水質浄化への適用の場合、海水の塩濃度に対する耐
性等の点からPVAゲルまたはPEGゲルでの固定化が
好ましい。
The present invention also has a pH of 6 to 8 and a temperature of 35.
Immobilizing marine denitrifying bacteria of the genus Alcaligenes, which has the optimum growth conditions of 0.8 to 3.4% of the culture medium salt concentration and has an apparent metabolic pathway of reducing nitrate directly to gaseous nitrogen. Of immobilized denitrifying bacteria. In the present invention, the immobilization of the bacterial cells is carried out by encapsulating the bacterial cells in fine particles of a natural or synthetic polymer gel according to a conventional method, or by coating the bacterial cells with a semipermeable membrane, so-called It is preferably carried out by entrapping immobilization. Examples of the polymer gel include polyvinyl alcohol (PVA) gel, polyethylene glycol (PEG) gel, polyacrylamide gel, 2-hydroxymethylacrylamide gel, silica gel, alginic acid, urethane resin, and the like, which have a semipermeable property. Examples of the membrane include cellulose and its derivatives. Further, the immobilization of the bacterial cells in the present invention may be carried out by a carrier binding method or a cross-linking method which is carried out at the time of immobilizing the enzyme. In the case of application to water purification of marine fish, immobilization with PVA gel or PEG gel is preferable from the viewpoint of resistance to salt concentration of seawater.

【0011】さらに、本発明は、上記固定化脱窒細菌を
嫌気的流動床にて流入水と接触させることからなる脱窒
方法を提供する。この脱窒方法において、前記流入水の
糖濃度を炭素換算濃度120〜360mg−C/l、滞
留時間を12〜36時間として処理を行うことが好まし
い。本発明の脱窒方法の特に好ましい態様において、前
記流入水の糖濃度は炭素換算濃度で240mg−C/l
であり、滞留時間は24時間である。なお、本明細書に
おいて「滞留時間」とは水理学的滞留時間を意味し、あ
る系に含まれる流入水が1回置き換わる時間である。ま
た、本発明の脱窒方法は、前記流入水が循環濾過養魚シ
ステムにおける飼育水である、循環濾過養魚システムに
適用するのが効果的である。
Further, the present invention provides a denitrification method comprising contacting the immobilized denitrifying bacteria with inflow water in an anaerobic fluidized bed. In this denitrification method, it is preferable to carry out the treatment by setting the sugar concentration of the inflowing water to a carbon equivalent concentration of 120 to 360 mg-C / l and a residence time of 12 to 36 hours. In a particularly preferred embodiment of the denitrification method of the present invention, the sugar concentration of the inflow water is 240 mg-C / l in terms of carbon concentration.
And the residence time is 24 hours. In addition, in this specification, "residence time" means hydraulic retention time, and is the time when the inflow water contained in a certain system is replaced once. Further, the denitrification method of the present invention is effectively applied to a circulation filtration fish culture system in which the inflow water is breeding water in the circulation filtration fish culture system.

【0012】[0012]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はこれのみに限定されるものではな
い。 I.有用海洋性脱窒細菌の選抜 A.海洋底泥中の一般細菌数と脱窒細菌数の測定 試料として愛知県渥美湾、神奈川県横須賀小和田湾、宮
城県仙台湾南蒲生および仙台湾蒲生の海砂や底泥および
千葉県我孫子市に所在する財団法人電力中央研究所・我
孫子研究所の魚飼育水濾過槽の濾過砂の5検体を用い
た。一般海洋性細菌数については1/10濃度ZoBe
ll 2216E寒天培地および1/10濃度ORI寒
天培地を用いた希釈平板法で、また脱窒細菌数について
は海水を添加した硝酸添加肉エキス寒天培地(以下、肉
エキス培地と略す)および3%NaClを添加したGi
ltay培地(以下、Giltay培地と略す)を用い
た最確値法(Most Probable Number法,以下MPN法と
略す)で算出した。いずれも培養は25℃で14日間と
した。用いた培地の種類と組成は表1に示した。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto. I. Selection of useful marine denitrifying bacteria A. Measurement of the number of general bacteria and denitrifying bacteria in marine sediments Atsumi Bay, Aichi Prefecture, Yokosuka Owada Bay, Kanagawa Prefecture, sea sand and sediment of Sendai Minami Gamo and Sendai Gamo, Miyagi Prefecture and Abiko City, Chiba Prefecture Five samples of the filtered sand from the fish breeding water filtration tanks of the Central Research Institute of Electric Power Industry and the Abiko Institute were used. About the number of general marine bacteria, 1/10 concentration ZoBe
ll 2216E agar medium and 1/10 concentration ORI agar medium were used in the dilution plate method. Regarding the number of denitrifying bacteria, a nitrate-added meat extract agar medium (hereinafter, abbreviated as meat extract medium) and 3% NaCl were added to seawater. Gi with added
It was calculated by the most probable value method (Most Probable Number method, hereinafter abbreviated as MPN method) using an ltay medium (hereinafter abbreviated as Giltay medium). In both cases, the culture was carried out at 25 ° C. for 14 days. The type and composition of the medium used are shown in Table 1.

【表1】 [Table 1]

【0013】脱窒菌数の測定では、Giltay培地に
おける脱窒菌数の測定については、ガス発生(培地中に
入れたダラム管へのガス蓄積)かつ培地pHの上昇(培
地の青色化)をもって脱窒陽性とし、肉エキス培地にお
いてはガス発生をもって脱窒陽性とした。なお、最確値
数をもって菌数に換算した。供試試料中の海洋性一般細
菌数を表2に、そして脱窒菌数を表3にまとめて示し
た。
In the measurement of the number of denitrifying bacteria, the number of denitrifying bacteria in the Giltay medium was determined by gas generation (gas accumulation in the Durham tube put in the medium) and increase in the pH of the medium (blue coloration of the medium). It was determined to be positive, and denitrification was determined to be positive due to gas generation in the meat extract medium. The most probable number was converted to the number of bacteria. The number of general marine bacteria in the test sample is shown in Table 2 and the number of denitrifying bacteria is shown in Table 3.

【表2】 [Table 2]

【表3】 このように、試料中の海洋性一般細菌の密度は、通常の
海浜における密度とほぼ同様な104 〜107 /g生試
料のレベルであった(表2)。一方、脱窒細菌の密度は
101 〜102 /g生試料のレベルであり、一般細菌数
に比較するとごく低い割合のため(表3)、分離には集
積培養が必要と判断された。
[Table 3] Thus, the density of general marine bacteria in the sample was at a level of 10 4 to 10 7 / g raw sample, which was almost the same as the density on a normal beach (Table 2). On the other hand, the density of the denitrifying bacteria was at a level of 10 1 to 10 2 / g raw sample, which was a very low ratio as compared with the number of general bacteria (Table 3), so it was determined that enrichment culture was necessary for separation.

【0014】B.海洋性脱窒細菌の分離とその脱窒型 海洋性脱窒細菌の分離は以下の2つの方法を用いて行っ
た。まず、MPN法に用いた培養後の液体培地の一定量
を、Giltay寒天培地および肉エキス寒天培地に塗
布し脱窒細菌を分離した〔Watahiki等, Agric. Biol. B
iochem. 47, 1991-1996 (1983)参照〕。なお、脱窒細菌
は通性嫌気性であり、好気的にも生育し得るので、上記
分離培養は好気的条件下で行った。生育してきたコロニ
ーは任意に分離・純化した後、各分離株はGiltay
培地で嫌気培養し、脱窒活性はガス発生および培地pH
の上昇により確認した。この一連の分離操作を分離方法
Iとした。この分離方法は酸素に代わる酸化剤(最終電
子受容体)として硝酸を添加して脱窒細菌を集積する硝
酸集積培養分離法である。一方、最終電子受容体として
亜硝酸を添加して集積培養を行い、その集積培養液から
脱窒細菌を分離する、以下に示す一連の分離操作を分離
方法IIとした。分離方法Iで用いた分離試料を採取し
た地点から、同様に採取した生試料1gをネジ口試験管
中の20ml容の亜硝酸添加1/10濃度ZoBell
2216E液体培地に加え、嫌気グローブボックス
〔内部気相N2 :H2 :CO2 =17:2:1,酸素濃
度0.1%(v/v)以下〕中で嫌気培養した。なお、
亜硝酸の濃度は100ppm−Nとし、KNO2 の形で
添加した。2週間毎に同組成の培地に植え継ぎ、8週間
後に嫌気的好条件下で一定量の培養液を寒天平板培地に
塗布し細菌を分離した。分離菌株は100ppm−N相
当量の硝酸もしくは亜硝酸を添加した1/10濃度Zo
Bell 2216E液体培地(各20ml/試験管)
を用いて22±2℃で1週間嫌気培養し、培養後の培地
中の無機窒素三態(NO3 - ,NO2 - ,NH4 + )の
量的変化から、脱窒活性の有無の確認と、硝酸および亜
硝酸からの脱窒の様式(以下、脱窒型とする)を判断し
た。分離方法Iで分離した脱窒菌も同様に脱窒型の判断
を行った。なお、培地中無機窒素三態の測定は菊地ら:
電力中央研究所・研究報告U87025(1987)に
記載の方法に従った。
B. Separation of marine denitrifying bacteria and its denitrification type The separation of marine denitrifying bacteria was performed using the following two methods. First, a fixed amount of the liquid medium after culturing used in the MPN method was applied to Giltay agar medium and meat extract agar medium to separate denitrifying bacteria [Watahiki et al., Agric. Biol. B.
iochem. 47, 1991-1996 (1983)]. Since the denitrifying bacteria are facultatively anaerobic and can grow aerobically, the above separation culture was carried out under aerobic conditions. After the colonies that have grown are arbitrarily separated and purified, each of the isolated strains is Giltay.
Anaerobically cultivated in medium, denitrification activity is gas generation and medium pH
It was confirmed by the rise of. This series of separation operations was named separation method I. This separation method is a nitric acid accumulation culture separation method in which nitric acid is added as an oxidant (final electron acceptor) instead of oxygen to accumulate denitrifying bacteria. On the other hand, a series of separation operations shown below for separating denitrifying bacteria from the enriched culture solution by adding nitrite as a final electron acceptor and performing the enrichment culture was referred to as Separation Method II. From the point where the separation sample used in Separation Method I was taken, 1 g of the raw sample obtained in the same manner was added to a screw cap test tube in an amount of 20 ml of nitrous acid 1/10 concentration ZoBell.
In addition to the 2216E liquid medium, anaerobic culture was performed in an anaerobic glove box [internal gas phase N 2 : H 2 : CO 2 = 17: 2: 1, oxygen concentration 0.1% (v / v) or less]. In addition,
The concentration of nitrous acid was 100 ppm-N, and it was added in the form of KNO 2 . After subculturing in a medium of the same composition every 2 weeks, after 8 weeks, a certain amount of the culture solution was applied to an agar plate medium under anaerobic favorable conditions to isolate bacteria. The isolated strain was 1/10 concentration Zo containing 100 ppm-N equivalent of nitric acid or nitrous acid.
Bell 2216E liquid medium (20ml / tube)
1 week anaerobic culture at 22 ± 2 ° C. using, in the medium after culturing inorganic nitrogen three states (NO 3 -, NO 2 - , NH 4 +) from the quantitative changes in the confirmation of the presence or absence of denitrification activity of Then, the mode of denitrification from nitric acid and nitrous acid (hereinafter referred to as denitrification type) was determined. The denitrifying bacteria separated by the separation method I were similarly judged as denitrifying type. In addition, Kikuchi et al .:
The method described in Research Report U87025 (1987) of the Central Research Institute of Electric Power Industry was followed.

【0015】分離方法Iで分離できた菌株は235菌株
であり、そのうち脱窒活性を示したのは81菌株で、分
離菌株数に占める脱窒菌株数の割合は34%であった。
一方、分離方法IIでは145菌株を分離し、その脱窒
活性を調べた結果、121菌株が脱窒活性を示し、分離
菌株数に占める脱窒菌株数の割合は83%であり、分離
方法Iより高い割合であった。
The strains that could be isolated by the isolation method I were 235 strains, of which 81 strains showed denitrifying activity, and the ratio of the denitrifying strains to the total number of the isolated strains was 34%.
On the other hand, in the separation method II, 145 strains were separated and the denitrification activity was examined. As a result, 121 strains showed denitrification activity, and the ratio of the denitrification strain number to the number of the isolated strains was 83%. It was a high rate.

【0016】次に脱窒型の判断結果について説明する。
嫌気培養後の培地中の無機窒素三態の量的変化の測定に
より得られた結果のうち典型的なものを図1に示した。
なお、以下に示す菌株の名称は表5の脚注にも示したと
おり、Atの表示のあるものは渥美湾の試料由来のもの
であり、以下同様に、Yは横須賀小和田湾の試料由来、
Gは仙台湾の試料由来、そしてAbは我孫子の電力中央
研究所の試料由来であることを意味する。菌株At−8
−R−2は硝酸添加培地中で亜硝酸を生成しているが、
無機窒素の総量は変わらず、また、亜硝酸添加培地中の
亜硝酸の量も変化していない。このことから、この菌株
は、硝酸は還元するが脱窒はしない硝酸呼吸型(NO3
- → NO2 - )であると判断された。菌株At−8−
R−1は硝酸添加および亜硝酸添加培地で無機窒素量が
減少しているので脱窒細菌であるが、硝酸添加培地では
亜硝酸が検出されており、見かけ上、硝酸は亜硝酸を経
てガス状窒素へ還元されている。菌株At−B−4は硝
酸添加および亜硝酸添加培地で無機窒素量が減少してい
るので脱窒細菌であるが、硝酸添加培地ではAt−8−
R−1菌株と異なり亜硝酸が検出されない。このことは
硝酸の還元で生成した亜硝酸は速やかにガス状窒素へ還
元されていることを示す。G−2−R−1菌株は亜硝酸
添加培地でのみ無機窒素量が減少しており、亜硝酸のみ
から脱窒できる菌株であると判断される。従って、脱窒
細菌は上記したようにその見かけ上の代謝経路に応じ、 A型 NO2 - → N2 B型 NO3 - → NO2 - →N2 C型 NO3 - → N2 の脱窒型に分類できる。亜硝酸は魚類に有害であり、ま
た飼育水に蓄積してくるのは硝酸が多いことから、循環
濾過方式の水質浄化システムへの適用を考慮するとC型
の脱窒細菌が有用であると考えられる。上の実験で脱窒
陽性と判断された菌株の脱窒型の判別結果を表4にまと
めて示す。
Next, the denitrification type judgment result will be described.
A typical result obtained by measuring the quantitative change of the three states of inorganic nitrogen in the medium after anaerobic culture is shown in FIG.
In addition, as shown in the footnotes of Table 5, the names of the strains shown below are derived from the sample of Atsumi Bay, where Y is represented by At, and similarly, Y is derived from the sample of Yokosuka Owada Bay,
G means that the sample is from Sendai Taiwan, and Ab is that from the Central Research Institute of Electric Power Industry, Abiko. Strain At-8
-R-2 produces nitrite in a nitric acid-containing medium,
The total amount of inorganic nitrogen did not change, and the amount of nitrite in the medium containing nitrite did not change. From this fact, this strain is a nitrate respiration type (NO 3
- → NO 2 -) is determined to be. Strain At-8-
R-1 is a denitrifying bacterium because the amount of inorganic nitrogen is decreased in the nitric acid-added and nitrite-added media, but nitrite is detected in the nitric acid-added medium. Apparently, nitric acid is converted to gas through nitrite. Has been reduced to nitrogen. The strain At-B-4 is a denitrifying bacterium because the amount of inorganic nitrogen is decreased in the nitric acid-added medium and the nitrite-added medium, but in the nitric acid-added medium, At-8-
Unlike the R-1 strain, nitrite is not detected. This indicates that the nitrous acid produced by the reduction of nitric acid is rapidly reduced to gaseous nitrogen. The G-2-R-1 strain has a reduced amount of inorganic nitrogen only in the nitrite-added medium, and it is judged that the strain can denitrify only from nitrite. Therefore, denitrifying bacteria according to the metabolic pathway of its apparent as described above, A-type NO 2 - → N 2 B-type NO 3 - → NO 2 - → N 2 C -type NO 3 - → denitrification N 2 It can be classified into types. Nitrous acid is harmful to fish, and since a large amount of nitric acid accumulates in breeding water, it is considered that C-type denitrifying bacteria are useful when considering application to a water purification system using a circulation filtration method. To be Table 4 shows the results of discrimination of the denitrification type of the strains judged to be positive for denitrification in the above experiment.

【表4】 C型脱窒細菌は、分離方法Iでは分離脱窒菌株の20%
(8菌株)であり、分離方法IIでは分離菌株の23%
(28菌株)であった。このことは、C型脱窒細菌は自
然界の脱窒菌の中では、少ないことを示唆するものであ
る。
[Table 4] C-type denitrifying bacteria are 20% of the isolated denitrifying strains in the isolation method I.
(8 strains), and 23% of the strains isolated by isolation method II
(28 strains). This suggests that C-type denitrifying bacteria are rare among natural denitrifying bacteria.

【0017】C.分離脱窒菌の分類 脱窒型から有用と考えられる分離菌株について、継代培
養しても活性が安定か否かを追試して菌株の安定性を確
認し、安定であった分離菌株について清水の方法〔「海
洋微生物実験法」門田・多賀編,学会出版センター,2
28−233頁(1985年)〕に従い、グラム染色、
鞭毛観察、糖発酵性試験(OFテスト)等を行い、属レ
ベルでの分類を行った。
C. Classification of isolated denitrifying bacteria For isolated bacterial strains that are considered to be useful from the denitrifying type, the stability of the strains was confirmed by further testing whether the activity was stable even after subculture, and the isolated strains that were stable were treated with fresh water. Method ["Marine Microbial Experiments" edited by Kadota and Taga, Academic Publishing Center, 2
28-233 (1985)].
Flagella observation, sugar fermentability test (OF test), etc. were performed to classify at the genus level.

【0018】結果を表5にまとめて示す。The results are summarized in Table 5.

【表5】 分離方法Iで分離されたC型脱窒細菌(菌株名にAの表
示あり)は8菌株中7菌株がアルカリゲネス属であり、
分離方法IIで分離されたC型脱窒細菌(菌株名にBの
表示あり)は8菌株ともにシュードモナス属(Pseudomon
as) であった。
[Table 5] C-type denitrifying bacteria isolated by the isolation method I (A in the strain name is labeled), 7 strains out of 8 strains belong to the genus Alcaligenes,
All of the 8 strains of C-type denitrifying bacteria (B in the strain name) separated by Separation Method II were Pseudomonas spp.
was as).

【0019】D.アセチレン阻害法を用いた脱窒活性の
測定 上記有用脱窒細菌の脱窒細菌をO'hara等, J. Gen. Micr
obiol., 129, 2405-2412 (1983) に記載の方法に準じ
て、アセチレン阻害法を用いて測定した。アセチレン阻
害法はアセチレンが脱窒過程(NO3 - → NO
2 - (NO)→N2 O→N2 )の中で、N2 OのN2
の還元を阻害するという性質を利用したもので、本来N
2 およびN2 Oとして発生すべき量をN2 Oとして測定
し、脱窒活性を算出する方法である。
D. Measurement of denitrification activity using acetylene inhibition method The denitrification bacteria of the above-mentioned useful denitrification bacteria were analyzed by O'hara et al., J. Gen. Micr.
obiol., 129, 2405-2412 (1983), and the acetylene inhibition method was used for the measurement. Acetylene inhibition method is acetylene denitrification process (NO 3 - → NO
2 - (NO) → N in 2 O → N 2), it utilizes the property of inhibiting the reduction of the N 2 O of N 2, the original N
This is a method of calculating the denitrification activity by measuring the amount of 2 and N 2 O that should be generated as N 2 O.

【0020】脱窒活性の測定は以下のように行った。供
試菌株を、硝酸添加ZoBell2216E寒天培地の
入った広口フラスコを用いて24±1℃の嫌気グローブ
ボックス中で5日間嫌気培養した。培地に添加した硝酸
量は100ppm−N相当量であり、KNO3 の形で添
加した。寒天培地表面に生育した菌体をフラスコ中に注
いだ滅菌濾過海水に懸濁した後、遠心分離し上澄み液を
捨て、ペレット状の菌体をもう一度滅菌濾過海水に懸濁
し遠心分離をすることで菌体を洗浄した。菌体は最終的
に濾過海水に懸濁し、測定の試料とした。菌体懸濁液1
mlを12.8ml容の試験管に入れ、180mM濃度
のグルコース溶液1mlおよび18mM濃度のKNO3
溶液1mlを加えてゴム栓をし、直ちにガスタイトシリ
ンジを用いて内部気相(9.8ml)の10%量のアセ
チレンを添加した。以上の操作は全て嫌気的条件下で行
った。アセチレン添加時を、脱窒活性測定開始時とし、
25℃で一定時間培養後、生成したN2 OをPID型ガ
スクロマトグラフ装置(日立製作所製GC3000PI
D)を用いて測定した。なお、反応液中のグルコース濃
度は60mM、KNO3 濃度は6mM(84ppm−
N)である。菌体懸濁液は、超音波処理で菌体を破砕し
た後、タンパク質含量の測定に供した。タンパク質含量
は、バイオラッド社のプロテインアッセイキットを用
い、アルブミンを標準として測定した。そして脱窒活性
はタンパク質単位重量の生成N2 Oで表示した。
The denitrification activity was measured as follows. The test strain was anaerobically cultured in a anaerobic glove box at 24 ± 1 ° C. for 5 days using a wide-mouth flask containing a ZoBell2216E agar medium containing nitric acid. The amount of nitric acid added to the medium was equivalent to 100 ppm-N, and was added in the form of KNO 3 . After suspending the bacterial cells grown on the agar medium surface in sterile filtered seawater poured into a flask, centrifuge and discard the supernatant, suspend the pelleted bacterial cells in sterile filtered seawater again and centrifuge. The cells were washed. The cells were finally suspended in filtered seawater and used as a measurement sample. Cell suspension 1
1 ml of a glucose solution having a concentration of 180 mM and KNO 3 having a concentration of 18 mM are placed in a test tube having a volume of 12.8 ml.
1 ml of the solution was added, the rubber stopper was applied, and immediately, 10% of acetylene in the internal gas phase (9.8 ml) was added using a gas tight syringe. All of the above operations were performed under anaerobic conditions. When acetylene is added, the denitrification activity measurement starts,
After culturing at 25 ° C for a certain period of time, the produced N 2 O was charged with a PID type gas chromatograph (GC3000PI manufactured by Hitachi, Ltd.).
It was measured using D). The glucose concentration in the reaction solution was 60 mM, and the KNO 3 concentration was 6 mM (84 ppm-
N). The bacterial cell suspension was subjected to ultrasonic treatment to disrupt the bacterial cells, and then subjected to measurement of protein content. The protein content was measured using a protein assay kit manufactured by Bio-Rad with albumin as a standard. The denitrification activity was expressed by the amount of N 2 O produced per unit weight of protein.

【0021】まずアルカリゲネスAb−A−1株につい
てN2 Oの生成を測定したところ、図2に示したように
測定開始後3時間まで直線的に増加した。この結果を踏
まえ、他の供試菌株は測定開始後1時間で生成したN2
Oを測定し脱窒活性とした。結果を表6に示した。
First, when the N 2 O production was measured for the Alcaligenes Ab-A-1 strain, it increased linearly up to 3 hours after the start of the measurement, as shown in FIG. Based on this result, the other test strains produced N 2 produced 1 hour after the start of measurement.
O was measured and used as denitrification activity. The results are shown in Table 6.

【表6】 このように、各菌株の脱窒活性は131〜4330nm
olN2 O/時間/mgタンパク質であり、菌株により
異なった。しかし、平均的な脱窒活性はSmith等, Soil
Sci. Soc. Am. J. 50,349-353 (1986)に報告されてい
る土壌から分離した代表的な脱窒細菌シュードモナス・
フルオレッセンス(Pseudomonas fluorescence)の脱窒活
性(1350nmolN2 O/時間/mgタンパク質)
に比肩し得るものだった。
[Table 6] Thus, the denitrification activity of each strain is 131-4330 nm
olN 2 O / hour / mg protein, which varied depending on the strain. However, the average denitrifying activity is Smith et al., Soil.
Sci. Soc. Am. J. 50, 349-353 (1986), a representative denitrifying bacterium Pseudomonas isolated from soil.
Denitrification activity of Pseudomonas fluorescence (1350 nmol N 2 O / hour / mg protein)
It was comparable to.

【0022】E.脱窒活性と有機物の種類との関係 上記有用海洋性脱窒細菌16菌株について、さらに脱窒
活性と有機物の種類との関係を調べた。有機物としてグ
ルコース、サッカロース、ペプトン、グルタミン酸およ
びメタノールを用いた。ペプトンはDifco製のもの
を用い、その他は和光純薬株式会社製のものを用いた。
脱窒に必要な有機物量の理論値はグルコースを用いた場
合は1mg−N NO3 を脱窒するのに1.07mg−
Cが必要であることから、ここでは有機物濃度を120
mg−C、硝酸イオン濃度を100mg−N/lとし
た。なお、脱窒活性は前項と同様にアセチレン阻害法に
よって測定した。
E. Relationship between Denitrification Activity and Kind of Organic Matter With respect to the 16 useful marine denitrifying bacteria strains, the relationship between denitrification activity and kind of organic matter was further investigated. Glucose, saccharose, peptone, glutamic acid and methanol were used as organic substances. Peptone manufactured by Difco was used, and other peptone manufactured by Wako Pure Chemical Industries, Ltd. was used.
The theoretical value of the amount of organic substances required for denitrification is 1 mg when glucose is used-1.07 mg-for denitrifying N NO 3.
Since C is required, the organic matter concentration is set to 120 here.
mg-C and nitrate ion concentration were 100 mg-N / l. The denitrification activity was measured by the acetylene inhibition method as in the previous section.

【0023】結果を図3に示したが、有機物と脱窒活性
の関係は菌株により異なることがわかる。なお、供試し
た16菌株の脱窒活性の平均値をとると、グルコースの
場合680±429nmolN2 O/時間/mgタンパ
ク質であった。また、グルコースにおける脱窒速度を1
00とした場合、サッカロース107、ペプトン14
5、グルタミン酸114、メタノール87.8であっ
た。このように、添加有機物としてはペプトンやグルタ
ミン酸が高い活性を示す傾向にあったが、これら有機物
は20%強の有機窒素を含んでいるので、該有機窒素が
無機化してアンモニアとして放出されることを考える
と、純脱窒活性は総脱窒活性の8割相当量になる。これ
を考慮すると、グルコースおよびサッカロースにおける
脱窒活性はペプトンに匹敵するレベルになる。また、グ
ルコースおよびサッカロースはペプトンやグルタミン酸
より安価であり、高濃度の水溶液での室温保存が可能で
ある等取扱いが容易である。以上のことから、脱窒のエ
ネルギー源として添加する有機物の種類としてはグルコ
ースおよびサッカロースが適当であると判断される。さ
らに、供試菌株を有機物に対する利用性の範囲の広さと
活性の高さの点から比較すると、アルカリゲネス属に属
するG−A−2−1株、G−A−2−2株、Ab−A−
1株およびAb−A−2株が特に有効な菌株であると判
断される。ただし、G−A−2−2株は培養が他の3株
と比べ困難であるので、実際の適用は難しいと予想され
る。
The results are shown in FIG. 3, and it can be seen that the relationship between organic matter and denitrification activity differs depending on the strain. The average denitrification activity of the 16 tested strains was 680 ± 429 nmol N 2 O / hour / mg protein in the case of glucose. In addition, the denitrification rate in glucose is 1
When set to 00, sucrose 107 and peptone 14
5, glutamic acid 114, and methanol 87.8. Thus, peptone and glutamic acid tended to show high activity as added organic substances, but since these organic substances contain a little over 20% of organic nitrogen, the organic nitrogen is mineralized and released as ammonia. Considering the above, the pure denitrification activity is equivalent to 80% of the total denitrification activity. Taking this into account, the denitrification activity on glucose and saccharose is at a level comparable to peptone. Glucose and saccharose are cheaper than peptone and glutamic acid, and can be stored at room temperature in a high-concentration aqueous solution, and are easy to handle. From the above, it is judged that glucose and saccharose are suitable as the types of organic substances added as an energy source for denitrification. Furthermore, when comparing the test strains from the viewpoints of wide range of utilization to organic substances and high activity, strains G-A-2-1, G-A-2-2 and Ab-A belonging to the genus Alcaligenes −
The 1 strain and the Ab-A-2 strain are judged to be particularly effective strains. However, since the G-A-2-2 strain is more difficult to culture than the other three strains, it is expected that the actual application is difficult.

【0024】F.脱窒活性と溶存酸素濃度(DO)関係 前項で特に有効と判断されたアルカリゲネス属に属する
3株G−A−2−1株、Ab−A−1株およびAb−A
−2株について脱窒活性とDOとの関係を調べた。この
場合、アセチレン阻害法による脱窒活性の測定ができな
いので、培養実験によって行った。実験には、25℃に
保温した恒温培養槽5つを用い、DOは0,7,15,
30ならびに60%酸素飽和度とした。培養溶液DOの
調節はエアレーションと窒素ガスによって行い、培養期
間のDOの変動範囲は設定値の±10%程度であった。
例えば設定値が30%酸素飽和度の場合、実際のDOの
変動範囲は27〜33%酸素飽和度であった。培養液の
攪拌はスクリュー型攪拌羽を用い70rpmで行った。
脱窒活性は各培養槽中の培養液(硝酸イオン濃度100
ppm−Nならびにグルコース300ppmを添加した
滅菌濾過海水2l)に嫌気的に生育させた菌体を接種し
た後、24時間培養後の培養液中の無機態窒素の減少量
を測定することから算出した。また、同時に、培養液中
の有機態炭素濃度(TOC)を全有機炭素分析計(島津
製作所製TOC−500型)により測定し、有機物分解
速度を算出した。なお、本実験による接種菌体量はG−
A−2−1株で11.1μg菌体タンパク質/ml培養
液、Ab−A−1株で5.2μg菌体タンパク質/ml
培養液、そしてAb−A−2株で19.6μg菌体タン
パク質/ml培養液であった。
F. Relationship between Denitrification Activity and Dissolved Oxygen Concentration (DO) 3 strains belonging to the genus Alcaligenes, G-A-2-1 strain, Ab-A-1 strain and Ab-A
The relationship between the denitrification activity and DO was investigated for the -2 strain. In this case, the denitrification activity cannot be measured by the acetylene inhibition method, so that the experiment was carried out by a culture experiment. In the experiment, 5 constant temperature culture tanks kept at 25 ° C. were used, and DO was 0, 7, 15,
It was set to 30 and 60% oxygen saturation. The DO of the culture solution was adjusted by aeration and nitrogen gas, and the fluctuation range of the DO during the culture was about ± 10% of the set value.
For example, when the set value was 30% oxygen saturation, the actual DO fluctuation range was 27 to 33% oxygen saturation. The culture solution was stirred at 70 rpm using a screw-type stirring blade.
The denitrification activity depends on the culture solution in each culture tank (nitrate ion concentration 100
Calculated by measuring the decrease in inorganic nitrogen in the culture broth after 24 hours of culturing after inoculation of anaerobically grown cells into sterile filtered seawater (2 l) added with ppm-N and 300 ppm of glucose. . At the same time, the organic carbon concentration (TOC) in the culture solution was measured with a total organic carbon analyzer (TOC-500 manufactured by Shimadzu Corporation) to calculate the organic substance decomposition rate. The amount of inoculated cells in this experiment was G-
11.2-μg bacterial protein / ml culture solution for A-2-1 strain, 5.2 μg bacterial protein / ml for Ab-A-1 strain
The culture solution and Ab-A-2 strain contained 19.6 μg bacterial protein / ml culture solution.

【0025】結果を図4を示すが、ここでの脱窒活性は
0%酸素飽和度における脱窒速度に対する比活性を意味
し、有機物分解速度についても併記した。いずれの菌株
ともに脱窒活性はDOの増加とともに減少したが、菌株
によってその度合いは異なっていた。また、有機物分解
の比活性(TOC減少量)はどのDOでも100%以上
であり、有機物分解は迅速に行われていることがわかっ
た。本実験で得られた24時間後の窒素減少量から算出
した比活性から0%DOにおける脱窒活性の50%脱窒
活性を示すDO値を推定すると、G−A−2−1株で7
%DO、Ab−A−1株で30〜60%DO、そしてA
b−A−2株で15%DOであった。この結果から、ア
ルカリゲネス属Ab−A−1株を用いた場合、DOが比
較的高い条件でも脱窒可能であるといえる。このよう
に、高い脱窒活性を得るためにはDOを低める方が良
い。しかし、DOが比較的高い条件でも脱窒できれば、
魚類等の飼育水の循環利用の観点から利点は多い。従っ
て、上記アルカリゲネス属Ab−A−1株は特に好まし
い菌種であるといえる。
The results are shown in FIG. 4. The denitrification activity here means the specific activity with respect to the denitrification rate at 0% oxygen saturation, and the organic matter decomposition rate is also shown. The denitrification activity of all strains decreased with the increase of DO, but the degree varied depending on the strain. Further, the specific activity of organic substance decomposition (TOC reduction amount) was 100% or more in any DO, and it was found that the organic substance decomposition was carried out rapidly. When the DO value showing 50% denitrification activity of 0% DO was estimated from the specific activity calculated from the amount of nitrogen reduction after 24 hours obtained in this experiment, it was 7 in G-A-2-1 strain.
% DO, 30-60% DO with Ab-A-1 strain, and A
It was 15% DO for the b-A-2 strain. From this result, it can be said that denitrification can be performed even when the DO is relatively high when the strain Alcaligenes genus Ab-A-1 is used. Thus, in order to obtain high denitrification activity, it is better to lower DO. However, if denitrification can be performed even under the condition that DO is relatively high,
There are many advantages from the perspective of recycling water for breeding fish. Therefore, it can be said that the above-mentioned strain Alcaligenes genus Ab-A-1 is a particularly preferable bacterial species.

【0026】II.海洋性脱窒細菌の大量・高密度培養 次に上で脱窒活性の高さ等の点で特に好ましいとされた
アルカリゲネス属に属する3株G−A−2−1株、Ab
−A−1株およびAb−A−2株を用いてそれらの大量
培養を可能にする条件の探索のために、それらの生育最
適条件、有機物条件およびそれらの結果をふまえて大量
培養方法を検討した。 A.最適生育条件の検討 まず、上記のアルカリゲネス属の3株について、基本培
地としてZoBell2216E液体培地を用い、培地
のpH、海水濃度、温度条件のいずれか1つのみを変化
させ、その際の各条件下における比増殖速度(μ)を測
定することにより、それぞれの最適条件を明らかにし
た。最適培地pHの探索の場合、培地pHは5、6、
7、8、9および10の6段階に変化させ、その他の条
件は海水濃度を100%、そして温度を30℃に一定と
した。また最適海水濃度は、海水濃度は100、75、
50、25および0%の5段階に変化させ、それ以外の
条件は一定とした(pH:7.8,温度30℃)。そし
て最適温度の探索の場合、20、25、30、35およ
び40℃の5段階に温度を変化させ、pHは7.8、海
水濃度は100%に一定とした。比増殖速度は以下のよ
うに算出した。試験管(18mmφ×18cm)に10
mlの培地を入れ、各条件に設定した後、オートクレー
ブ滅菌した。pHの調整は1規定の塩酸もしくは水酸化
ナトリウム溶液を培地に添加することで、また、海水濃
度の調整は蒸留水を添加することでオートクレーブ滅菌
前に調整した。調整した培養液の入った試験管に、予め
各菌株を接種したのち3日間30℃で震盪培養したZo
Bell 2216E培養液0.3mlを接種し、往復
震盪培養機によって各設定条件下において震盪培養し
た。培養のための試験管は多数準備し、測定試料は経時
的に採取した。脱窒細菌の生育は培養液の濁度(O.
D.610nm)を測定することによって求め、濁度の
経時的な変化から増殖曲線を描き、その増殖曲線から、
細菌が1時間当り何倍になるかを示す比増殖速度を算出
した。
II. Large-scale, high-density culture of marine denitrifying bacteria Next, 3 strains G-A-2-1 and Ab belonging to the genus Alcaligenes, which were particularly preferred in view of their high denitrification activity, etc.
-In order to search for conditions that enable large-scale cultivation of the A-1 and Ab-A-2 strains, a large-scale cultivation method is examined based on their optimal growth conditions, organic matter conditions and their results. did. A. Examination of Optimal Growth Conditions First, for the three strains of the genus Alcaligenes, using ZoBell2216E liquid medium as a basic medium, only one of the pH, seawater concentration, and temperature conditions of the medium was changed, and the respective conditions at that time were changed. The optimum conditions for each were clarified by measuring the specific growth rate (μ). When searching for the optimum medium pH, the medium pH is 5, 6,
The conditions were changed to 6 steps of 7, 8, 9 and 10, and the other conditions were that the seawater concentration was 100% and the temperature was constant at 30 ° C. The optimum seawater concentration is 100, 75,
It was changed to 5 steps of 50, 25 and 0%, and the other conditions were constant (pH: 7.8, temperature 30 ° C.). Then, in the case of searching for the optimum temperature, the temperature was changed in five stages of 20, 25, 30, 35 and 40 ° C., the pH was 7.8 and the seawater concentration was constant at 100%. The specific growth rate was calculated as follows. 10 for test tube (18mmφ × 18cm)
After adding ml of the medium and setting each condition, autoclave sterilization was performed. The pH was adjusted by adding 1N hydrochloric acid or sodium hydroxide solution to the medium, and the concentration of seawater was adjusted by adding distilled water before autoclave sterilization. A test tube containing the adjusted culture solution was inoculated with each strain in advance and then shake-cultured at 30 ° C for 3 days.
Bell 2216E culture solution (0.3 ml) was inoculated and shake-cultured by a reciprocal shaker under each set condition. A large number of test tubes for culture were prepared, and measurement samples were collected over time. The growth of the denitrifying bacteria depends on the turbidity (O.
D. 610 nm) to obtain a growth curve from the change in turbidity with time, and from the growth curve,
A specific growth rate was calculated, which indicates how many times the bacteria multiply per hour.

【0027】海洋性脱窒細菌3株の増殖におよぼすp
H、海水濃度および温度の影響を、それぞれ図5、6お
よび7に示した。 (1)pH(図5参照) 供試したアルカリゲネス属の3株について、その至適p
Hは3株ともに7であった。pHが6から8では、いず
れの株もその比増殖速度はpH7の場合と比較して大き
くは変わらなかった。pH5、9および10では、比増
殖速度は低下する傾向がみられたがその程度は菌株によ
って異なっていた。すなわち、G−A−2−1株とAb
−A−2株では、最も低い比増殖速度を示したpH10
の場合では、pH7に比較して比増殖速度は20%前後
低下したが、Ab−A−1株では、pH10の場合、約
40%低下と顕著であった。pH5では、G−A−2−
1株が他の2株に比較して低下の割合が高かったが、p
H7の場合と比較して10%の低下であった。
P on the growth of 3 strains of marine denitrifying bacteria
The effects of H, seawater concentration and temperature are shown in Figures 5, 6 and 7, respectively. (1) pH (see FIG. 5) The optimum p of the three strains of the genera Alcaligenes tested
H was 7 for all 3 strains. At pHs of 6 to 8, the specific growth rates of all strains were not significantly different from those at pH 7. At pH 5, 9 and 10, the specific growth rate tended to decrease, but the degree thereof varied depending on the strain. That is, G-A-2-1 strain and Ab
-The A-2 strain showed the lowest specific growth rate at pH 10
In the case of pH 7, the specific growth rate was reduced by about 20% compared to pH 7, but in the case of Ab-A-1 strain, at pH 10, it was markedly decreased by about 40%. At pH 5, GA-2-
One strain had a higher rate of decrease than the other two strains, but p
It was a 10% decrease compared to the case of H7.

【0028】(2)海水濃度(図6参照) 脱窒細菌の増殖に与える海水濃度の影響については、以
下の結果が得られた。いずれの株においても、0%濃度
(実際の海水濃度は接種源からの塩が入るので約3%海
水濃度)では、他の濃度に比較して著しく比増殖速度が
低下した。その他の濃度、すなわち25%から100%
の間では、株によって若干の違いはあるものの、ほぼ同
レベルの比増殖速度を示した。海水濃度が25%から1
00%間の比増殖速度の違いは以下のようであった。G
−A−2−1株では、25%から100%の間でほぼ等
しい比増殖速度を示した。Ab−A−2株では、25な
らびに50%が比増殖速度が最も高く、それ以上の濃度
では比増殖速度がわずかに低下した。Ab−A−1株の
場合は、50%で最も比増殖速度が高く、25%ならび
に75%および100%ではわずかに低下した。これ
ら、25から100%の海水濃度範囲では、比増殖速度
の違いは、最も大きいAb−A−1株でも最大16%
(濃度が50%と100%の場合)であった。一般に海
洋性細菌は、その至適塩濃度が0.3〜0.5M(海水
の塩濃度は約0.5M)にある低度好塩性細菌であると
されるが、以上の結果から、本供試3菌株も、その特徴
を有していることが明かとなった。
(2) Seawater Concentration (See FIG. 6) Regarding the effect of seawater concentration on the growth of denitrifying bacteria, the following results were obtained. In all the strains, the specific growth rate was significantly reduced at 0% concentration (actual seawater concentration is about 3% seawater concentration due to the inclusion of salt from the inoculum) compared to other concentrations. Other concentrations, ie 25% to 100%
The strains showed almost the same level of specific growth rate among strains, although there were some differences depending on the strains. Seawater concentration is 25% to 1
The difference in specific growth rate between 00% was as follows. G
The -A-2-1 strain showed almost the same specific growth rate between 25% and 100%. In the Ab-A-2 strain, 25 and 50% had the highest specific growth rate, and at higher concentrations, the specific growth rate slightly decreased. In the case of the Ab-A-1 strain, the highest specific growth rate was observed at 50%, and the specific growth rates were slightly decreased at 25% and 75% and 100%. In the seawater concentration range of 25 to 100%, the difference in the specific growth rate is 16% at the maximum even with the largest Ab-A-1 strain.
(When the concentration is 50% and 100%). Generally, marine bacteria are low halophilic bacteria having an optimum salt concentration of 0.3 to 0.5 M (salt concentration of seawater is about 0.5 M), but from the above results, It was revealed that the three test strains also have the characteristics.

【0029】(3)温度(図7参照) 脱窒細菌の増殖に与える温度の影響については、以下の
結果が得られた。Ab−A−1株とAb−A−2株で
は、培養温度が20℃から35℃までは、温度の上昇に
伴って比増殖速度も直線的に高まり、40℃では若干低
下した。一方、G−A−2−1株では、35℃で最も比
増殖速度が高かったが、それは30℃における値とほぼ
同等であり、20℃および40℃では著しく低かった。
これら3株は、至適温度が35℃にあり、中温性細菌で
あることが示された。以上の検討結果から、供試した3
株の生育に最適な条件は、pH;6から8、海水濃度;
25%〜100%(すなわち、塩分濃度0.85〜3.
4%)、温度;35℃であることが明かとなった。
(3) Temperature (see FIG. 7) Regarding the effect of temperature on the growth of denitrifying bacteria, the following results were obtained. In the Ab-A-1 and Ab-A-2 strains, the specific growth rate increased linearly with the increase in temperature from 20 ° C to 35 ° C, and slightly decreased at 40 ° C. On the other hand, the strain G-A-2-1 had the highest specific growth rate at 35 ° C, which was almost the same as the value at 30 ° C and was remarkably low at 20 ° C and 40 ° C.
These three strains had an optimum temperature of 35 ° C. and were shown to be mesophilic bacteria. From the above examination results, 3
The optimum conditions for growing the strain are pH: 6 to 8, seawater concentration;
25% to 100% (that is, a salt concentration of 0.85 to 3.
4%), temperature; 35 ° C.

【0030】B.有機物の種類および濃度が海洋性脱窒
細菌の増殖に与える影響 前項における検討結果から、各菌株について明らかとな
った生育最適条件下において、基本培地への有機物添加
の効果について検討した。基本培地として、ZoBel
l 2216E培地およびAnderson培地(培地
1リットルあたりペプトン2.5g、酵母エキス2.5
g、FePO4 0.1g)のpHを7、海水濃度を50
%としたものを用い(これを、それぞれZoBell改
変培地およびAnderson改変培地と呼ぶ)、それ
にグルコース、マンニトール、サッカロース、水溶性デ
ンプンまたはアスパラギン酸を2段階の濃度(1.0%
および0.5%)で添加した場合の比増殖速度を比較し
た。また、無機窒素源の添加の影響を調べるためKNO
3 を加えた区を、培地有機物濃度が低い場合の影響を調
べるためにZoBell改変培地を1/2濃度にした区
を設定した。また、培養温度は全て35℃とした。
B. Effects of Organic Substances and Concentrations on the Growth of Marine Denitrifying Bacteria From the results of the examination in the previous section, the effects of adding organic substances to the basal medium were examined under the optimal growth conditions revealed for each strain. As a basic medium, ZoBel
2216E medium and Anderson medium (2.5 g peptone / liter medium, 2.5 yeast extract / liter)
g, FePO 4 0.1 g) pH of 7, seawater concentration of 50
% (Referred to as ZoBell modified medium and Anderson modified medium, respectively), and glucose, mannitol, saccharose, water-soluble starch or aspartic acid at two levels (1.0%).
And 0.5%) were added to compare specific growth rates. In addition, in order to investigate the effect of adding an inorganic nitrogen source, KNO
The group to which 3 was added was set to a group in which the concentration of the ZoBell modified medium was halved in order to investigate the influence when the organic matter concentration in the medium was low. The culture temperature was 35 ° C. in all cases.

【0031】結果を図8に示した。ZoBell改変培
地を基本培地として用いた場合、以下の結果が得られ
た。G−A−2−1株の場合、ZoBell改変培地区
に比較して、1/2ZoBell改変培地で明かに比増
殖速度が低下し、1.0%マンニトールを添加した場合
で17%高くなったが、他の実験区では大きな差はなか
った。Ab−A−1株の場合、ZoBell改変培地区
に比較して、他の実験区では大きな差はなかったが、マ
ンニトールならびにサッカロース添加区以外では、比増
殖速度が低くなる傾向が見られた。Ab−A−2の場合
も、ZoBell改変培地区に比較して、他の実験区で
は大きな差はなかったが、1.0%デンプン添加区、
1.0%サッカロース添加区、1.0%グルコース添加
区で低下する傾向を示した。いずれの株の場合も、最大
の比増殖速度を示したのは、ZoBell改変培地に、
1.0%のマンニト−ルを添加した場合であり、マンニ
トールの添加による脱窒細菌の増殖促進効果があること
が示唆された。また、Anderson改変培地を基本
培地として行った同様の検討では、ZoBell改変培
地と同等か、それより劣る比増殖速度が得られた。従っ
て、供試株を大量に培養することを想定した場合、Zo
Bell 2216E培地を用い、かつマンニト−ルを
添加することが有効であると考えられた。各菌株におい
て最も高い比増殖速度が得られた、ZoBell改変培
地にマンニトール1.0%を加えた培地をZoBell
改変培地(II)として、次の大量培養に用いた。
The results are shown in FIG. The following results were obtained when using ZoBell modified medium as the basal medium. In the case of the GA-2-1 strain, the specific growth rate clearly decreased in the 1 / 2ZoBell modified medium as compared with the ZoBell modified medium group, and increased by 17% when 1.0% mannitol was added. However, there was no big difference in the other experimental plots. In the case of the Ab-A-1 strain, compared to the ZoBell modified medium group, there was no significant difference in the other experimental groups, but there was a tendency that the specific growth rate decreased except for the mannitol and sucrose addition groups. In the case of Ab-A-2 as well, compared to the ZoBell modified medium group, there was no big difference in the other experimental groups, but 1.0% starch added group,
It showed a tendency to decrease in the 1.0% sucrose addition group and the 1.0% glucose addition group. In each case, the maximum specific growth rate was observed in the ZoBell modified medium,
This was the case where 1.0% mannitol was added, and it was suggested that the addition of mannitol has a growth promoting effect on denitrifying bacteria. Further, in a similar study conducted using the Anderson modified medium as a basic medium, a specific growth rate equal to or inferior to that of the ZoBell modified medium was obtained. Therefore, when culturing a large amount of the test strain, Zo
It was considered effective to use Bell 2216E medium and to add mannitol. ZoBell modified medium, which had the highest specific growth rate for each strain, was added to ZoBell modified medium containing 1.0% mannitol.
The modified medium (II) was used for the next mass culture.

【0032】C.海洋性脱窒細菌の大量培養 海洋性脱窒細菌の培養には、2リットル容三角フラスコ
および20リットル容のジャーファーメンター(三菱油
化エンジニアリング株式会社製)を用いた。まず、三角
フラスコを用いて、脱窒細菌3株の培養を行った。2リ
ットル容三角フラスコに1リットルのZoBell改変
培地(II)を入れオートクレーブにより滅菌した。培
地は脱窒細菌を接種後、30℃、100rpmで震盪培
養した。培養液を経時的に採取し、培養液の濁度(O.
D.610nm)を測定した。この際、培養液の菌密度
が高い場合には、濁度が0.4以下になるように培養液
を希釈して測定し換算した。次に、ジャーファーメンタ
ーを用いて培養を行った。該ジャーファーメンターの内
容量は20リットルであり、内部の攪拌はタービン型羽
根で行い、無菌空気の供給は培養槽の下部から行った。
なお、ジャーファーメンターの滅菌は、熱水ならびに7
0%アルコール溶液によって行った。培養槽容器の中に
滅菌した18リットルのZoBell改変培地(II)
を入れ、予め前培養した培養液300mlを接種した
後、35℃、攪拌速度100rpm、空気流速0.5リ
ットル空気/リットル培養液/分の条件下で培養を行っ
た。本実験条件においては、培養期間中のDOは飽和度
の70%以上を維持した。培養の経過に伴う培地pHの
変化は、適宜、1規定の塩酸もしくは水酸化ナトリウム
溶液により調節した。培養中に培養液の一部を採取し、
培養液の濁度(O.D.610nm)を測定することに
より増殖速度を評価した。
C. Large-scale culture of marine denitrifying bacteria For culturing marine denitrifying bacteria, a 2 liter Erlenmeyer flask and a 20 liter jar fermenter (manufactured by Mitsubishi Petrochemical Engineering Co., Ltd.) were used. First, 3 strains of denitrifying bacteria were cultured using an Erlenmeyer flask. 1 liter of ZoBell modified medium (II) was placed in a 2-liter Erlenmeyer flask and sterilized by an autoclave. After inoculating the medium with denitrifying bacteria, the medium was shake-cultured at 30 ° C. and 100 rpm. The culture solution was collected over time, and the turbidity (O.
D. 610 nm) was measured. At this time, when the bacterial density of the culture broth was high, the culture broth was diluted and measured so that the turbidity was 0.4 or less, and then converted. Next, culture was performed using a jar fermenter. The internal volume of the jar fermenter was 20 liters, the internal stirring was carried out with turbine type blades, and the supply of sterile air was carried out from the lower part of the culture tank.
The jar fermenter should be sterilized with hot water and 7
Performed with 0% alcohol solution. 18 liters of ZoBell modified medium (II) sterilized in a culture vessel container
After inoculation, 300 ml of the precultured culture solution was inoculated, and then the culture was performed under the conditions of 35 ° C., stirring speed of 100 rpm, and air flow rate of 0.5 liter air / liter culture solution / min. Under the experimental conditions, DO maintained 70% or more of the saturation during the culture period. The change in medium pH with the progress of culture was appropriately adjusted with 1N hydrochloric acid or sodium hydroxide solution. During the culture, a part of the culture solution was collected,
The growth rate was evaluated by measuring the turbidity (OD 610 nm) of the culture solution.

【0033】2リットル容三角フラスコを用いて行った
脱窒細菌3株の培養の結果を図9に示した。各菌株とも
に、接種後直ちに対数増殖に入ったが、培養時間約12
時間でO.D.が0.6程度の対数増殖終期に入り、7
2時間まで培養を継続しても、最終密度はO.D.(6
10nm)=1程度までしか上がらなかった。図10
に、20リットルのジャーファーメンターによる大量培
養の結果を示した。本実験においては、フラスコ条件と
同様に、培養開始後直ちに対数増殖に入り、フラスコ条
件における最終到達濃度である濁度1(O.D.,61
0nm)に12時間以内に達した。その後、Ab−A−
2株は増殖がゆっくりとなり定常期に入り48時間後に
最大濁度2を示したのちに死滅期に入った。G−A−2
−1株とAb−A−1株は12時間以降も増殖を続け、
G−A−2−1株では、36時間目に最大濁度が5に、
Ab−A−1株では48時間目に最大濁度が6に達し
た。各グラフの下側には培地pHの推移を示したが、そ
のグラフ上の矢印はその時点でpHを調整したことを表
す。これらの最大濁度における細菌数を希釈平板法で計
数したところ、G−A−2−1株で5.4×1015細胞
/ml、Ab−A−1株で3.4×1015細胞/ml、
Ab−A−2株で7.1×1015細胞/mlに達した。
また、最大濁度条件の培養液を遠心分離して得られた菌
体の乾物重を測定したところ、G−A−2−1株で1.
88g乾物/リットル培養液、Ab−A−1株で2.6
g乾物/リットル培養液、Ab−A−2株で1.36g
乾物/リットル培養液であった。最大濁度に達するまで
の期間の菌体生産効率は、G−A−2−1株で52mg
乾物/リットル培養液/時間、Ab−A−1株で54m
g乾物/リットル培養液/時間、Ab−A−2株で28
mg乾物/リットル培養液であった。以上の検討結果か
ら、3株の内ではAb−A−1株が、最も増殖が早く高
密度培養が可能であることが示された。また、培養の経
過とともに、培養液のpHが変動した。3株ともに培養
初期には培地が酸性側に傾いたが、培養の後期は培地が
アルカリ側に傾く現象が見られた。3株の中では、Ab
−A−1株がpH変動の割合が少なかった。今まで、海
洋性脱窒細菌を大量かつ高密度に培養して利用する試み
はほとんどなされておらず、参考にすべき報告値は見あ
たらない。従って、本発明は脱窒細菌の高密度の大量培
養条件を初めて明かにしたものといえる。なお、本項で
の培養は全て好気的な条件で行ったが、脱窒細菌は好気
条件で培養しても嫌気条件に誘導すれば脱窒活性を誘導
するので、好気培養よりも難しい嫌気条件での大量培養
法は必要性が少ないと判断したためである。
The results of culturing the 3 strains of denitrifying bacteria using a 2-liter Erlenmeyer flask are shown in FIG. Each strain entered logarithmic growth immediately after inoculation, but the culture time was about 12
O. in time. D. Entered the final logarithmic growth phase of about 0.6,
Even when the culture was continued for 2 hours, the final density was 0. D. (6
(10 nm) = 1 only. Figure 10
The results of mass culture with a 20 liter jar fermenter are shown in FIG. In the present experiment, as in the flask condition, logarithmic growth was started immediately after the start of the culture, and the final reached concentration in the flask condition was turbidity 1 (OD, 61).
0 nm) within 12 hours. After that, Ab-A-
The two strains started to grow slowly, entered the stationary phase, showed a maximum turbidity of 2 48 hours later, and then entered the death phase. G-A-2
-1 strain and Ab-A-1 strain continue to grow after 12 hours,
In the G-A-2-1 strain, the maximum turbidity was 5 at 36 hours,
In the Ab-A-1 strain, the maximum turbidity reached 6 at 48 hours. The transition of the medium pH is shown below each graph, and the arrow on the graph indicates that the pH was adjusted at that time. The number of bacteria at the maximum turbidity was counted by the dilution plate method. As a result, the GA-2-1 strain had 5.4 × 10 15 cells / ml and the Ab-A-1 strain had 3.4 × 10 15 cells. / Ml,
The Ab-A-2 strain reached 7.1 × 10 15 cells / ml.
In addition, the dry matter weight of the bacterial cells obtained by centrifuging the culture solution under the maximum turbidity condition was measured to find that the strain G-A-2-1 had 1.
88 g dry matter / liter culture solution, 2.6 with Ab-A-1 strain
g dry matter / liter culture medium, 1.36 g with Ab-A-2 strain
It was a dry matter / liter culture solution. The bacterial cell production efficiency until reaching the maximum turbidity was 52 mg for the GA-2-1 strain.
Dry matter / liter culture solution / hour, 54 m with Ab-A-1 strain
g dry matter / liter culture solution / hour, 28 with Ab-A-2 strain
It was mg dry matter / liter culture solution. From the above examination results, it was shown that the Ab-A-1 strain among the three strains has the fastest growth and enables high-density culture. In addition, the pH of the culture solution changed with the progress of culture. In all three strains, the culture medium leaned toward the acid side at the early stage of the culture, but in the latter half of the culture, the medium leaned toward the alkali side. Ab out of 3 stocks
-A-1 strain had a low rate of pH fluctuation. Until now, few attempts have been made to cultivate and utilize marine denitrifying bacteria in a large amount and at high density, and there is no reported value to be referred to. Therefore, it can be said that the present invention reveals for the first time the high-density mass-culture conditions of denitrifying bacteria. Although all the cultures in this section were carried out under aerobic conditions, denitrifying bacteria induce denitrifying activity if induced under anaerobic conditions even when cultured under aerobic conditions. This is because it was judged that there is little need for the mass culture method under difficult anaerobic conditions.

【0034】III. 固定化脱窒細菌を適用した脱窒シ
ステムの効率化に関する検討 次に、脱窒細菌を包括固定化し、固定化脱窒細菌を適用
した流動床型脱窒槽を適用した脱窒法に関する検討を行
った。 A.固定化脱窒細菌の脱窒活性に与える基質濃度ならび
に溶存酸素の影響に関する検討 脱窒細菌の固定化担体の作成は、植本ら:電力中央研究
所・研究報告U90056(1991)に記載の方法に
従った。供試菌株にはアルカリゲネス属Ab−A−1株
を用い、ZoBell 2216E液体培地で培養した
後、培養液から遠心分離により菌体を回収した。包括固
定用の高分子ゲルとしてポリビニルアルコール(PV
A,クラレ製クラレポバールPVA−HC)を10%
(w/v)の濃度で用い、固定化した菌数濃度は8×1
18細胞/リットルPVAであった。作成した固定化脱
窒細菌は、ZoBell 2216E液体培地に500
mg−N/lのKNO3 を添加した培養液で馴養した。
この馴養を十分に行い、脱窒活性の発現が認められた固
定化脱窒細菌を用い以下の検討を行った。
III. Study on Efficiency Improvement of Denitrification System Applying Immobilized Denitrifying Bacteria Next, denitrification method applying entrapment and immobilization of denitrifying bacteria and applying fluidized bed denitrifying tank to which immobilized denitrifying bacteria are applied Was examined. A. Study on influence of substrate concentration and dissolved oxygen on denitrifying activity of immobilized denitrifying bacteria Preparation of immobilized carrier for denitrifying bacteria was performed by the method described in Uemoto et al .: Central Research Institute of Electric Power Industry, Research Report U90056 (1991). Obeyed. As the test strain, Alcaligenes sp. Ab-A-1 strain was used, and after culturing in ZoBell 2216E liquid medium, cells were recovered from the culture solution by centrifugation. As a polymer gel for entrapping fixation, polyvinyl alcohol (PV
A, Kuraray made Kuraray Poval PVA-HC) 10%
Used at a concentration of (w / v), the concentration of immobilized bacteria is 8 x 1
It was 0 18 cells / liter PVA. The immobilized denitrifying bacteria thus prepared were added to ZoBell 2216E liquid medium in an amount of 500
The culture was conditioned with a culture medium supplemented with mg-N / l of KNO 3 .
This acclimation was thoroughly performed, and the following studies were carried out using immobilized denitrifying bacteria in which expression of denitrification activity was observed.

【0035】固定化脱窒細菌の脱窒速度の測定には、図
11に示す装置を用いた。容量2リットルの培養槽1は
所定量の固定化脱窒細菌2が予め充填され、そして反応
液3をその中に導入する(矢印a)反応液導入管4、処
理後の反応液3を排出する(矢印b)反応液排出管5を
備えている。なお、培養槽1内部の攪拌は矢印cの芳香
に回転する回転羽根(スクリュー型羽根7とタービン型
羽根8)を備えた攪拌機9を用いて行われる(回転速度
は70rpm)。反応液3のpHはpHメーター13に
より検知され、必要に応じ適当な酸または塩基が反応槽
1内に供給される。同様に、反応液3の温度は温度計1
4により検知され、設定温度(25℃)より高温となっ
た場合、培養槽1周囲を覆うウォータージャケット10
の給水管11から冷却水を注入し、該ジャケット内に満
たされた後、排水管12から排水することにより設定温
度まで冷却し、逆に設定温度より低温となった場合、温
水または水蒸気を前記ジャケット10に通し加温する。
さらに、反応液3中のDOの制御は、培養槽1に備えた
DOセンサー15により検知され、必要に応じ、該セン
サー15に連結したDOコントローラー16がガス流量
計17を作動させ、ライン18を介して攪拌機9下部に
取りつけた散気管6から反応液3中に所定量の窒素と空
気を供給することにより行われる。なお、DOは酸素飽
和度1%以下に保った。
The apparatus shown in FIG. 11 was used to measure the denitrification rate of the immobilized denitrifying bacteria. A culture tank 1 having a capacity of 2 liters is pre-filled with a fixed amount of immobilized denitrifying bacteria 2, and a reaction solution 3 is introduced therein (arrow a), a reaction solution introducing pipe 4, and a reaction solution 3 after treatment is discharged. (Arrow b) is provided with the reaction liquid discharge pipe 5. The stirring inside the culture tank 1 is performed using a stirrer 9 equipped with rotary blades (screw type blade 7 and turbine type blade 8) that rotate to the aroma of arrow c (rotation speed is 70 rpm). The pH of the reaction solution 3 is detected by the pH meter 13, and an appropriate acid or base is supplied into the reaction tank 1 if necessary. Similarly, the temperature of the reaction solution 3 is 1
4 and the temperature is higher than the set temperature (25 ° C.), the water jacket 10 that covers the periphery of the culture tank 1
Cooling water is injected from the water supply pipe 11 to fill the inside of the jacket, and then the water is drained from the drain pipe 12 to cool it to a set temperature. Conversely, when the temperature is lower than the set temperature, hot water or steam is Heat through jacket 10.
Further, the control of DO in the reaction solution 3 is detected by the DO sensor 15 provided in the culture tank 1, and the DO controller 16 connected to the sensor 15 operates the gas flow meter 17 and connects the line 18 as necessary. It is carried out by supplying a predetermined amount of nitrogen and air into the reaction liquid 3 from the air diffusing pipe 6 attached to the lower part of the stirrer 9 through. The DO was kept at an oxygen saturation of 1% or less.

【0036】固定化脱窒細菌の反応特性の検討では、海
水(汲み置きしたもの)で洗浄した360ml容の固定
化脱窒細菌を培養槽に入れ1440mlの海水を添加
し、総容量1.8リットル、充填率20%とした。これ
に200mg−N/lKNO3と1000mg/lグル
コースを添加し、次に窒素ガスを供給しながら嫌気条件
を保ち、脱窒活性を誘導した。その後、内部の反応液を
入れ換えて、各条件下での脱窒活性を測定した。反応条
件は以下のように設定した。基質硝酸量と脱窒活性の関
係を検討するために、炭素源としてのグルコース濃度は
1000mg/l反応液に設定し、硝酸濃度を100、
200、500、1000mg/lと変化させて脱窒活
性を測定した。脱窒活性の測定は、反応液中の無機窒素
三態量を上記方法に従って測定し、無機窒素の減少量か
ら脱窒量を算出して行った。基質グルコース量と脱窒活
性の関係を検討するためには、硝酸濃度は200mg−
N/l反応液に設定し、グルコース濃度を300、60
0、1000、10000mg/lと変化させて脱窒活
性を測定した。
In the examination of the reaction characteristics of the immobilized denitrifying bacteria, 360 ml of the immobilized denitrifying bacteria washed with seawater (which had been pumped up) was placed in a culture tank, 1440 ml of seawater was added, and the total volume was 1.8. The liter was 20% and the filling rate was 20%. To this, 200 mg-N / l KNO 3 and 1000 mg / l glucose were added, and then anaerobic conditions were maintained while supplying nitrogen gas to induce denitrification activity. Then, the reaction liquid inside was replaced, and the denitrification activity under each condition was measured. The reaction conditions were set as follows. In order to examine the relationship between the amount of substrate nitric acid and the denitrification activity, the glucose concentration as a carbon source was set to 1000 mg / l reaction solution, and the nitric acid concentration was set to 100,
The denitrification activity was measured while changing it to 200, 500, 1000 mg / l. The denitrification activity was measured by measuring the three states of inorganic nitrogen in the reaction solution according to the above method and calculating the denitrification amount from the amount of decrease in inorganic nitrogen. To examine the relationship between the amount of substrate glucose and the denitrification activity, the nitric acid concentration was 200 mg-
Set the N / l reaction solution to a glucose concentration of 300, 60
The denitrification activity was measured by changing it to 0, 1000, 10000 mg / l.

【0037】固定化脱窒細菌の脱窒について、基質硝酸
量との関係について検討した結果を図12に示した。初
期硝酸濃度を100mg−N/lから1000mg−N
/lの範囲で変化させたが、24時間目までの脱窒量に
大きな差はなく、実験区間の脱窒活性には大きな違いが
なかったことが示された。24時間以降では、初期硝酸
濃度が100mg−N/lの場合においては硝酸がなく
なったため脱窒量は増えなかったが、それ以外の区では
実験区間に大きな差はなかった。このことは、固定化脱
窒細菌による脱窒速度は本実験で設定した初期基質硝酸
濃度の範囲では大きな影響を受けないことを示す。
Regarding the denitrification of the immobilized denitrifying bacterium, the result of studying the relationship with the amount of substrate nitric acid is shown in FIG. Initial nitric acid concentration from 100 mg-N / l to 1000 mg-N
Although it was changed within the range of 1 / l, there was no big difference in the denitrification amount up to the 24th hour, indicating that there was no big difference in the denitrification activity in the experimental section. After 24 hours, when the initial nitric acid concentration was 100 mg-N / l, the denitrification amount did not increase because nitric acid disappeared, but in the other sections, there was no significant difference in the experimental section. This indicates that the denitrification rate by the immobilized denitrifying bacteria is not significantly affected by the initial substrate nitric acid concentration range set in this experiment.

【0038】基質グルコースと脱窒活性の関係について
検討した結果を図13に示した。初期グルコース濃度を
300mg/lから10000mg/lの範囲で変化さ
せたが、実験区間の脱窒活性に違いが見られた。すなわ
ち、グルコース濃度が300〜1000mg/lの範囲
では脱窒量において各実験区で大きな差はなかったが、
10000mg/lの場合は顕著に活性が低下した。ま
た、この最後の実験区では、反応液の中に糸状菌と思わ
れる水垢状のものが繁茂した。グルコース基質が十分に
存在したことがこのような現象を招いたと考えられる
が、この糸状菌と思われるものによって固定化微生物が
なんらかの影響を受けて脱窒活性が低下したことが予想
される。本発明者はAb−A−1株は菌体懸濁液の条件
ではグルコース濃度が増加してもその脱窒活性は大きく
は向上しないことをこれまでの研究で確認しているが
(渡部ら:電力中央研究所・研究報告U91002(1
991)、以上の結果から、グルコース濃度が300〜
1000mg/lの範囲では、固定化してもその性質は
変わらないと考えられる。
FIG. 13 shows the result of examination on the relationship between the substrate glucose and the denitrification activity. Although the initial glucose concentration was changed in the range of 300 mg / l to 10000 mg / l, there was a difference in the denitrification activity in the experimental section. That is, in the glucose concentration range of 300 to 1000 mg / l, there was no great difference in the denitrification amount between the experimental groups,
In the case of 10000 mg / l, the activity was remarkably reduced. Also, in this last experimental section, a scale-like substance, which is considered to be a filamentous fungus, proliferated in the reaction solution. It is considered that the sufficient presence of glucose substrate caused such a phenomenon, but it is expected that the immobilizing microorganism was affected by the filamentous fungus and the denitrification activity was lowered. The present inventor has confirmed that the Ab-A-1 strain does not significantly improve its denitrification activity even if the glucose concentration is increased under the condition of the bacterial cell suspension in the previous studies (Watanabe et al. : Central Research Institute of Electric Power Industry, Research Report U91002 (1
991), from the above results, the glucose concentration is 300 ~
In the range of 1000 mg / l, it is considered that the property does not change even when immobilized.

【0039】B.固定化脱窒細菌を適用した嫌気的流動
床による脱窒法の検討 ここでは、連続 (Chemostat)条件における固定化脱窒細
菌の脱窒活性の検討を行った。図11に示した装置を用
い、ペリスタポンプを用いて反応液を流入させ、連続反
応実験を行った。実験条件は表7に示した。反応槽の容
量は1.8リットルであり、温度は25℃、攪拌速度は
70rpmとした。実験期間中、DOの制御は行わなか
った。装置への流入水と流出水に含まれる無機窒素三態
と全有機炭素(TOC)を上記方法に従って測定した。
B. Examination of denitrification method by anaerobic fluidized bed to which immobilized denitrifying bacteria were applied Here, denitrification activity of immobilized denitrifying bacteria under continuous (Chemostat) conditions was examined. Using the apparatus shown in FIG. 11, a reaction solution was flowed in using a peristaltic pump to carry out a continuous reaction experiment. The experimental conditions are shown in Table 7. The capacity of the reaction tank was 1.8 liters, the temperature was 25 ° C., and the stirring speed was 70 rpm. DO was not controlled during the experiment. The three states of inorganic nitrogen and total organic carbon (TOC) contained in the inflow water and outflow water to the apparatus were measured according to the above-mentioned method.

【表7】 [Table 7]

【0040】連続反応条件下における固定化脱窒細菌の
脱窒活性ならびにTOC消費量の経時的推移を図14に
示した。実験は2連でおこなったが、同様の推移を示し
たので、1連のみの結果を示した。反応槽流入水と流入
水の窒素三態ならびにTOCについても示した。なお、
DOは実験期間中を通じて酸素飽和度の5%以下に保た
れた。水理学的滞留時間(HRT)が48時間の最初の
7日間は、脱窒量はほぼ一定であり、約60mg−N/
lが除去され、また添加されたTOCの大部分が消費さ
れていた。また、4日目までは亜硝酸の生成が見られた
が、それ以降は検出されなかった。Ab−A−1株を適
用した生物膜法による脱窒では、脱窒槽の運用開始直後
の数日間に亜硝酸の蓄積が見られたが、その後は亜硝酸
の蓄積はなかった。このように、固定化脱窒細菌を適用
した場合でも生物膜法と同様の現象が見られた。HRT
が24時間の次の7日間では、脱窒量は増加したが、T
OC量についても増加した。脱窒量が増えた理由とし
て、滞留時間が短くなったことで、HRTが48時間の
場合に比較して基質の供給が活発になり、脱窒活性も上
昇したことが考えられる。また、炭素基質の供給が2倍
に増えたことが、未消費のTOCを増やした理由であろ
う。HRTが12時間の7日間は、脱窒量はHRT24
時間に比較して減少し、流出水のTOC量についてはさ
らに増加した。流入水の基質濃度を半分にしてHRTを
24時間にした7日間は、HRT12時間と比べて、脱
窒量はほぼ同じで、流出水のTOC量が減少した。
The time course of denitrification activity and TOC consumption of immobilized denitrifying bacteria under continuous reaction conditions is shown in FIG. The experiment was performed in duplicate, but the same transition was observed, so only the results in one series are shown. The three types of nitrogen and TOC of the inflow water of the reaction tank and the inflow water are also shown. In addition,
DO was kept below 5% of oxygen saturation throughout the experiment. During the first 7 days with a hydraulic retention time (HRT) of 48 hours, the denitrification rate was almost constant, about 60 mg-N /
1 was removed and most of the added TOC was consumed. Further, nitrite production was observed up to the 4th day, but it was not detected thereafter. In the denitrification by the biofilm method applying the Ab-A-1 strain, nitrite was accumulated for several days immediately after the start of operation of the denitrification tank, but no nitrite was accumulated thereafter. As described above, even when the immobilized denitrifying bacteria were applied, the same phenomenon as the biofilm method was observed. HRT
However, the denitrification amount increased during the next 7 days of 24 hours.
The amount of OC also increased. It is conceivable that the reason why the denitrification amount increased is that the residence time became shorter, the supply of the substrate became more active and the denitrification activity increased than when the HRT was 48 hours. Also, the doubled supply of carbon substrates may be the reason for the increase in unconsumed TOC. The denitrification amount is HRT24 for 7 days when HRT is 12 hours.
It decreased compared to the time, and the TOC amount of runoff water increased further. During 7 days when the substrate concentration of the inflow water was halved and the HRT was changed to 24 hours, the denitrification amount was almost the same and the TOC amount of the outflow water decreased compared to the HRT 12 hours.

【0041】以上の結果を基に、連続反応条件下におけ
る固定化脱窒細菌の脱窒活性ならびにTOC消費速度に
関する評価を行い、結果を表8に示した。脱窒活性なら
びにTOC消費速度に関する評価は、各実験条件の最終
日の測定値を、この時期が各条件における定常状態であ
ると仮定して用いた。測定値は、2連の平均値である。
Based on the above results, the denitrification activity and TOC consumption rate of the immobilized denitrifying bacteria under continuous reaction conditions were evaluated, and the results are shown in Table 8. The denitrification activity and the TOC consumption rate were evaluated by using the measured values on the last day of each experimental condition, assuming that this time is a steady state under each condition. The measured value is an average value of duplicates.

【表8】 表8にまとめた結果から以下のことが明かとなった。H
RTが48時間の場合は、1.8リットルの反応槽で1
日当り88.2mg−Nが除去されており、これは反応
槽1リットル当りに換算すると49mg−Nである。本
発明者が確立した生物膜法による脱窒能力は、約40m
g−N/l脱窒槽/日であるので(HRTが48時間,
グルコース濃度300mg/lの条件下)、本発明によ
る値はその1.2倍であり、生物膜法と比較してわずか
であるが向上している。HRT24時間の場合は、1.
8リットル反応槽で1日当り202mg−Nが除去され
ており(反応槽1リットル当りでは112mg−N)、
生物膜法に比較して2.8倍の能力があり、生物膜法と
比較して、非常に活性が高かった。HRTが12時間の
場合は、1.8リットルの反応槽で1日当り220mg
−Nが除去されており、生物膜法に比較して3倍の能力
がある。しかし、脱窒槽に添加されたTOCのうち77
%が流出するという問題がある。従って、TOCが魚に
影響を与えることが考えられる場合は、固定化脱窒細菌
を用いた流動床型脱窒槽と、流れ出すTOCの処理槽を
組み合わせることが必要になるかも知れない。また、H
RT24時間の条件で基質濃度を半分にした場合は、脱
窒量もTOC消費速度も約半分に低下するものの、生物
膜法に比べ脱窒効率の若干の向上がみられた。以上の検
討結果から、固定化脱窒細菌を適用した嫌気的流動床に
よる脱窒法は、生物膜法に比較して全般的に脱窒効率が
向上し、特に、基質の糖濃度を炭素換算濃度で240m
g−Cと2倍以上に高め、かつHRTを24時間と2倍
に早めた場合に、その脱窒能力が2.8倍程度に効率化
することが明らかとなった。
[Table 8] The following are clear from the results summarized in Table 8. H
If the RT is 48 hours, 1 in a 1.8 liter reaction tank
88.2 mg-N is removed per day, which is 49 mg-N when converted per liter of the reaction tank. The denitrification capacity by the biofilm method established by the present inventor is about 40 m.
g-N / l denitrification tank / day (HRT is 48 hours,
Under a glucose concentration of 300 mg / l), the value according to the present invention is 1.2 times that, which is slightly improved as compared with the biofilm method. For HRT 24 hours, 1.
202 mg-N was removed per day in an 8-liter reaction tank (112 mg-N per 1-liter reaction tank),
It was 2.8 times more potent than the biofilm method and was much more active than the biofilm method. 220 mg per day in a 1.8 liter reaction tank when HRT is 12 hours
-N has been removed and is three times more potent than the biofilm method. However, 77 of the TOC added to the denitrification tank
There is a problem that% is leaked. Therefore, if TOC is considered to affect fish, it may be necessary to combine a fluidized bed denitrification tank using immobilized denitrifying bacteria with a TOC treatment tank that flows out. Also, H
When the substrate concentration was halved under the condition of RT 24 hours, both the denitrification amount and the TOC consumption rate decreased to about half, but the denitrification efficiency was slightly improved as compared with the biofilm method. Based on the above examination results, the denitrification method using an anaerobic fluidized bed to which immobilized denitrifying bacteria are applied generally improves the denitrification efficiency as compared with the biofilm method. At 240m
It was clarified that the efficiency of denitrification was increased to about 2.8 times when the GRT was increased to twice or more and the HRT was accelerated to 24 hours for 24 hours.

【0042】[0042]

【発明の効果】本発明は上記の構成を採ることにより以
下の効果を奏するものである。まず、有用海洋性脱窒細
菌の高密度での大量培養を可能にしたことにより、濾材
への人工接種を可能とし、該海洋性脱窒細菌は実験室レ
ベルのみならず、工業的レベルでの生物膜法での脱窒に
適用できるものとなった。さらに、本発明は、上記脱窒
細菌を包括固定化し、その固定化脱窒細菌を適用した嫌
気的流動床型の脱窒槽を用いることで、より高い効率で
脱窒を行うことを可能にした。また、本発明の海洋性脱
窒細菌はその見かけ上の代謝が硝酸からガス状窒素へ直
接還元するタイプであるので、亜硝酸発生が望ましくな
い循環濾過養魚システム等における水質浄化の浄化微生
物として、生物膜またはより効率的には固定化細菌の形
態で好適に用いることができる。
The present invention has the following effects by adopting the above configuration. First, by enabling large-scale cultivation of useful marine denitrifying bacteria at high density, artificial inoculation of filter media is possible, and the marine denitrifying bacteria can be used not only at the laboratory level but also at the industrial level. It became applicable to denitrification by the biofilm method. Furthermore, the present invention makes it possible to perform denitrification with higher efficiency by comprehensively immobilizing the denitrifying bacteria and using an anaerobic fluidized bed denitrifying tank to which the immobilized denitrifying bacteria are applied. . Further, the marine denitrifying bacterium of the present invention is a type whose apparent metabolism is a direct reduction from nitric acid to gaseous nitrogen, and therefore, as a purification microorganism for water purification in a circulating filtration fish culture system or the like in which nitrite generation is not desirable, It can preferably be used in the form of biofilms or more efficiently immobilized bacteria.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種脱窒細菌株の嫌気培養後の培地中における
無機窒素三態の量的変化を示すグラフである。
FIG. 1 is a graph showing the quantitative changes of three states of inorganic nitrogen in a medium after anaerobic culture of various denitrifying bacterial strains.

【図2】アセチレン添加嫌気条件下での脱窒細菌アルカ
リゲネス属Ab−A−1株によるN2 O生成量の経時的
変化を示すグラフである。
FIG. 2 is a graph showing changes over time in the amount of N 2 O produced by the denitrifying bacterium Alcaligenes Ab-A-1 strain under acetylene-added anaerobic conditions.

【図3】脱窒細菌の脱窒活性と添加有機物の種類との関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the denitrification activity of denitrifying bacteria and the type of added organic matter.

【図4】脱窒細菌の脱窒活性および有機物分解速度に与
える溶存酸素濃度の影響を示すグラフである。
FIG. 4 is a graph showing the effect of dissolved oxygen concentration on the denitrification activity of denitrifying bacteria and the decomposition rate of organic matter.

【図5】有用海洋性脱窒細菌3株の増殖に及ぼすpHの
影響を示すグラフである。
FIG. 5 is a graph showing the effect of pH on the growth of three useful marine denitrifying bacteria.

【図6】有用海洋性脱窒細菌3株の増殖に及ぼす培地中
海水濃度の影響を示すグラフである。
FIG. 6 is a graph showing the influence of the concentration of Mediterranean water on the growth of three useful marine denitrifying bacteria.

【図7】有用海洋性脱窒細菌3株の増殖に及ぼす温度の
影響を示すグラフである。
FIG. 7 is a graph showing the effect of temperature on the growth of three useful marine denitrifying bacteria.

【図8】有用海洋性脱窒細菌3株の増殖に与える有機物
添加の効果を示すグラフである。
FIG. 8 is a graph showing the effect of adding an organic substance on the growth of three useful marine denitrifying bacteria.

【図9】有用海洋性脱窒細菌3株の震盪培養条件下にお
ける増殖の経時的推移を示すグラフである。
FIG. 9 is a graph showing the time course of growth of three useful marine denitrifying bacteria under shaking culture conditions.

【図10】有用海洋性脱窒細菌3株の大量培養条件下に
おける増殖の経時的推移および培地pH調整を示すグラ
フである。
FIG. 10 is a graph showing the time course of growth and medium pH adjustment of three useful marine denitrifying bacteria strains under large-scale culture conditions.

【図11】バッチ方式および連続方式での固定化脱窒細
菌の反応特性の測定に用いた装置を示す断面図である。
FIG. 11 is a cross-sectional view showing an apparatus used for measuring reaction characteristics of immobilized denitrifying bacteria in a batch system and a continuous system.

【図12】固定化脱窒細菌による脱窒量と基質硝酸濃度
との関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the amount of denitrification by immobilized denitrifying bacteria and the concentration of substrate nitric acid.

【図13】固定化脱窒細菌による脱窒量と基質グルコー
ス濃度との関係を示すグラフである。
FIG. 13 is a graph showing the relationship between the amount of denitrification by immobilized denitrifying bacteria and the concentration of substrate glucose.

【図14】連続反応条件下における固定化脱窒細菌の脱
窒活性ならびに全有機炭素(TOC)消費量の経時的推
移を示すグラフである。
FIG. 14 is a graph showing the time course of denitrification activity and total organic carbon (TOC) consumption of immobilized denitrifying bacteria under continuous reaction conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C12N 1/20 C12R 1:02) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area // (C12N 1/20 C12R 1:02)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 pH6〜8、温度35℃、培養培地塩分
濃度0.85〜3.4%の最適生育条件を有し、硝酸か
ら直接ガス状窒素へ還元する見かけ上の代謝経路をもつ
アルカリゲネス属の海洋性脱窒細菌を塩分濃度0.85
〜3.4%の培養培地中、該培地のpHを6〜8、温度
を32〜38℃に維持して培養液の610nmでの吸光
度が2以上となるまで培養することからなる脱窒細菌の
培養方法。
1. Alkaligenes, which has an optimum growth condition of pH 6 to 8, temperature 35 ° C., culture medium salt concentration of 0.85 to 3.4%, and has an apparent metabolic pathway for direct reduction of nitric acid to gaseous nitrogen. Marine denitrifying bacteria of the genus 0.85 in salinity
A denitrifying bacterium which comprises culturing in a culture medium of up to 3.4% while maintaining the pH of the medium at 6 to 8 and the temperature at 32 to 38 ° C until the absorbance of the culture solution at 610 nm becomes 2 or more. Culture method.
【請求項2】 pH6〜8、温度35℃、培養培地塩分
濃度0.85〜3.4%の最適生育条件を有し、硝酸か
ら直接ガス状窒素へ還元する見かけ上の代謝経路をもつ
アルカリゲネス属の海洋性脱窒細菌を固定化してなる固
定化脱窒細菌。
2. Alkaligenes, which has an optimal growth condition of pH 6 to 8, temperature of 35 ° C., culture medium salt concentration of 0.85 to 3.4% and an apparent metabolic pathway for direct reduction of nitric acid to gaseous nitrogen. An immobilized denitrifying bacterium obtained by immobilizing a marine denitrifying bacterium of the genus.
【請求項3】 海洋性脱窒細菌がアルカリゲネス属G−
A−2−1株(FERM P−13861号)、アルカ
リゲネス属Ab−A−1株(FERM P−13862
号)またはアルカリゲネス属Ab−A−2株(FERM
P−13860号)である請求項2記載の固定化脱窒
細菌。
3. The marine denitrifying bacterium is Alcaligenes genus G-
A-2-1 strain (FERM P-13861), Alcaligenes genus Ab-A-1 strain (FERM P-13862)
No.) or Alcaligenes genus Ab-A-2 strain (FERM
P-13860), The immobilized denitrifying bacterium according to claim 2.
【請求項4】 請求項2または3記載の固定化脱窒細菌
を嫌気的流動床にて流入水と接触させることからなる脱
窒方法。
4. A denitrification method comprising contacting the immobilized denitrifying bacteria according to claim 2 or 3 with inflow water in an anaerobic fluidized bed.
【請求項5】 前記流入水の糖濃度を炭素換算濃度12
0〜360mg−C/l、滞留時間を12〜36時間と
して処理を行う請求項4記載の脱窒方法。
5. The sugar concentration of the inflow water is converted to a carbon concentration of 12
The denitrification method according to claim 4, wherein the treatment is carried out with 0 to 360 mg-C / l and a residence time of 12 to 36 hours.
【請求項6】 前記流入水が循環濾過養魚システムにお
ける飼育水である請求項4または5記載の脱窒方法。
6. The denitrification method according to claim 4, wherein the inflow water is breeding water in a circulating filtration fish culture system.
JP27895093A 1993-10-12 1993-10-12 Culture method of denitrifying bacteria, immobilized denitrifying bacteria and denitrification method using the same Expired - Fee Related JP3396786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27895093A JP3396786B2 (en) 1993-10-12 1993-10-12 Culture method of denitrifying bacteria, immobilized denitrifying bacteria and denitrification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27895093A JP3396786B2 (en) 1993-10-12 1993-10-12 Culture method of denitrifying bacteria, immobilized denitrifying bacteria and denitrification method using the same

Publications (2)

Publication Number Publication Date
JPH07108294A true JPH07108294A (en) 1995-04-25
JP3396786B2 JP3396786B2 (en) 2003-04-14

Family

ID=17604326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27895093A Expired - Fee Related JP3396786B2 (en) 1993-10-12 1993-10-12 Culture method of denitrifying bacteria, immobilized denitrifying bacteria and denitrification method using the same

Country Status (1)

Country Link
JP (1) JP3396786B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346592A (en) * 2001-05-28 2002-12-03 Nippon Steel Chem Co Ltd Low temperature denitrification material and denitrification method using the same
WO2010076794A1 (en) * 2008-12-31 2010-07-08 Technion Research & Development Foundation Ltd. Method of denitrifying brine and systems capable of same
JP2010201423A (en) * 1999-06-10 2010-09-16 Bicom:Kk High-concentration culture method of denitrifying bacterium contained in activated sludge
WO2011003097A3 (en) * 2009-07-03 2011-06-23 University Of Maryland Baltimore County Microbial mediated chemical sequestering of phosphate in a closed-loop recirculating aquaculture system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201423A (en) * 1999-06-10 2010-09-16 Bicom:Kk High-concentration culture method of denitrifying bacterium contained in activated sludge
JP2002346592A (en) * 2001-05-28 2002-12-03 Nippon Steel Chem Co Ltd Low temperature denitrification material and denitrification method using the same
WO2010076794A1 (en) * 2008-12-31 2010-07-08 Technion Research & Development Foundation Ltd. Method of denitrifying brine and systems capable of same
WO2011003097A3 (en) * 2009-07-03 2011-06-23 University Of Maryland Baltimore County Microbial mediated chemical sequestering of phosphate in a closed-loop recirculating aquaculture system
US8997694B2 (en) 2009-07-03 2015-04-07 University Of Maryland Baltimore County Microbial mediated chemical sequestering of phosphate in a closed-loop recirculating aquaculture system

Also Published As

Publication number Publication date
JP3396786B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
Fuhs et al. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater
CN111733113B (en) COD (chemical oxygen demand) degrading strain and application thereof
CN112625942B (en) Aerobic denitrifying bacterium and application thereof
CN104911133B (en) A kind of pseudomonas aeruginosa and application
CN114703095A (en) Pseudomonas mendocina and application thereof in field of sewage and wastewater purification
CN101811779B (en) Preparation method of halophilic decontamination bacterial agent and bacterial agent prepared by same
CN109504642B (en) Denitrifying bacterium and application thereof
WO2024174615A1 (en) Screening of aerobic denitrifying fungus and method for remediating body of water having low carbon-nitrogen ratio
RU2272793C2 (en) Waste water treatment process, means and mixed bacterial population (options) for implementation of the process
JP3396786B2 (en) Culture method of denitrifying bacteria, immobilized denitrifying bacteria and denitrification method using the same
CN114958669B (en) Michigan klebsiella and product and application thereof
JP2009072162A (en) Method for treating lignin-containing material
CN114317324B (en) Alcaligenes and product and application thereof
CN113800652B (en) Salt-tolerant aerobic denitrifying bacterium and application of coupling activated carbon thereof in strengthening water body pollution treatment
CN106434424B (en) Vibrios and application thereof with dirty seawater denitrification ability
CN113249270B (en) Salt-resistant high-self-aggregation-capability bacillus amyloliquefaciens and application thereof in denitrification
CN113862180B (en) Pseudomonas putida and application thereof in degradation of total nitrogen in white spirit wastewater
US20070262018A1 (en) Method and product for protecting the residential and commercial aquatic environment
CN115386520A (en) Rhodococcus pyridinivorans RL-GZ01 strain and application thereof
CN114774322A (en) Bacillus and method for preparing efficient lead-zinc wastewater flocculant by using same
CN111705009B (en) Marine aerobic denitrifying halomonas bacterium, application thereof and method for treating aquaculture wastewater
CN113698047A (en) Method for purifying rural domestic sewage by microorganism-enhanced artificial wetland
EP1831682B1 (en) Microbial consortium useful as seeding material for bod analysis of pulp and paper industrial wastewater and process for its preparation
CN101811780A (en) Preparation method and application of halophilic decontamination bacterial agent
US10400255B2 (en) Method of converting marine fish waste to biomethane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees