JPH07108132A - Flue gas desulfurized and method for evaluating operating performance and method for controlling thereof - Google Patents

Flue gas desulfurized and method for evaluating operating performance and method for controlling thereof

Info

Publication number
JPH07108132A
JPH07108132A JP5253146A JP25314693A JPH07108132A JP H07108132 A JPH07108132 A JP H07108132A JP 5253146 A JP5253146 A JP 5253146A JP 25314693 A JP25314693 A JP 25314693A JP H07108132 A JPH07108132 A JP H07108132A
Authority
JP
Japan
Prior art keywords
desulfurization
desulfurizing agent
temperature
exhaust gas
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5253146A
Other languages
Japanese (ja)
Inventor
Koichi Yokoyama
公一 横山
Hirobumi Yoshikawa
博文 吉川
Naruhito Takamoto
成仁 高本
Yasuhide Sakaguchi
安英 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5253146A priority Critical patent/JPH07108132A/en
Publication of JPH07108132A publication Critical patent/JPH07108132A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maximize the spray quantity to a medium temp. desulfurizing part, to obtain the simplification of a desurfurizer and the higher overall desulftrizing rate than heretofore and to obtain the optimum operating conditions by preventing combustion ash from being recycled. CONSTITUTION:In a flue gas desulfurizer where after a desulfurizing agent is used and waste gas is fed to a desulfurizer 2 at <=200 deg.C of a combustion device and the desulfurizing agent is reacted with SOx in the waste gas, the desulfurizing agent contg. the unreacted de sulfurizing agent is recovered in a low temp. part dust collector 8, after the spent desulfurizing agent contg. the unreacted desulfurizing agent recovered in the dust collector 8 is fed to a medium temp. desulfurizing part 9 at 500-900 deg.C and reacted with SOx in the waste gas, it is recovered in a high temp. part dust collector 4 upstream of the desulfurizing feeding position in the desulfurizer 2. The flue gas desulfurizer is of low temp. desulfurizing and medium temp. recycling type.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ金属又はアルカ
リ土類金属の水酸化物又は水酸化物の一種類以上と酸化
物との混合物又は酸化物のうち一種類以上を含む化合物
を脱硫剤として用いる脱硫装置に係り、特に脱硫装置運
転時に脱硫性能を向上させる脱硫装置とその制御方法に
関する。
FIELD OF THE INVENTION The present invention uses as a desulfurizing agent a compound containing at least one hydroxide or a mixture of one or more alkali metal or alkaline earth metal hydroxides and oxides. The present invention relates to a desulfurization apparatus used, and more particularly to a desulfurization apparatus that improves desulfurization performance during operation of the desulfurization apparatus and a control method thereof.

【0002】[0002]

【従来の技術】火力発電所における重油焚、石炭焚ボイ
ラから排出される排ガス中には、硫黄酸化物(以下、S
2という)やHClなどの酸性有害物質が通常、10
0〜3000ppmの割合で含まれており、酸性雨や光
化学スモッグの原因物質とされるため、その効果的な処
理手段が望まれている。従来から湿式法(例えば石灰石
−石膏法)または乾式法(活性炭法)が実施されている
が、湿式法は有害物質の除去率が高い反面、廃水処理が
困難で、排ガスを再加熱する必要があり、設備費や運転
費が高く、乾式法では高い除去率が得られないという問
題があった。このため、無排水の低コストプロセスで高
い除去率が得られる脱硫方法の開発が望まれている。ボ
イラなどの排ガスの脱硫法としては、上記方法のほか
に、消石灰やそのスラリを排ガス中に噴霧する半乾式法
や火炉内や煙道内の高温ガス中に石灰石を直接分散させ
て酸性有害物質を除去する乾式法が提案されており、設
備費や運転費が安いという特徴を有しているが、いずれ
の方法も除去率が低いという問題がある。
2. Description of the Related Art Sulfur oxides (hereinafter referred to as S) are contained in exhaust gas discharged from heavy oil-fired and coal-fired boilers in thermal power plants.
Acidic noxious substances such as O 2 hereinafter) and HCl is typically 10
Since it is contained in a proportion of 0 to 3000 ppm and is considered to be a causative substance of acid rain and photochemical smog, its effective treatment means is desired. Conventionally, a wet method (for example, limestone-gypsum method) or a dry method (activated carbon method) has been carried out. However, the wet method has a high removal rate of harmful substances, but it is difficult to treat wastewater and it is necessary to reheat exhaust gas. However, there is a problem that a high removal rate cannot be obtained by the dry method because of high equipment cost and operation cost. Therefore, it is desired to develop a desulfurization method capable of obtaining a high removal rate in a low-drainage, low-cost process. As a method for desulfurizing exhaust gas from boilers, etc., in addition to the above methods, limestone is directly dispersed in high temperature gas in a furnace or flue, or a semi-dry method in which slaked lime or its slurry is sprayed into the exhaust gas to disperse acidic harmful substances. Although a dry method for removing has been proposed and has a feature of low equipment cost and operating cost, both methods have a problem of low removal rate.

【0003】消石灰や生石灰を排ガス中に噴霧して排ガ
ス中のSO2と反応させ、これを集塵装置で除去する方
法の代表的なフローシートを図6に示す。ボイラ1から
の排ガス6はエアヒータ3で温度を下げられ、脱硫塔2
に導かれる。消石灰等の脱硫剤は煙道または脱硫塔2内
に脱硫剤噴霧口5から噴霧して供給され、この時水また
は水蒸気も水/水蒸気噴霧口7から供給されることによ
り排ガスの温度を下げ、湿度を上げる。この際水は脱硫
剤と別に供給しても、脱硫剤と共にスラリとして同時に
供給してもよい。反応した脱硫剤は排ガス中の灰と共に
集塵装置8で捕集され、廃棄される。
FIG. 6 shows a typical flow sheet of a method of spraying slaked lime or quick lime into exhaust gas to react with SO 2 in the exhaust gas, and removing this with a dust collector. The temperature of the exhaust gas 6 from the boiler 1 is lowered by the air heater 3, and the desulfurization tower 2
Be led to. A desulfurizing agent such as slaked lime is sprayed and supplied into the flue or the desulfurization tower 2 from the desulfurizing agent spray port 5, and at this time, water or steam is also supplied from the water / steam spray port 7 to lower the temperature of the exhaust gas, Increase humidity. At this time, water may be supplied separately from the desulfurizing agent, or may be simultaneously supplied as a slurry together with the desulfurizing agent. The reacted desulfurizing agent is collected by the dust collector 8 together with the ash in the exhaust gas and is discarded.

【0004】このような方法において、酸性有毒物質の
除去率は排ガス中の水分(相対湿度)が支配的であると
されている。すなわち、除去率を上げるためには、排ガ
スの温度を下げ、水分を上げることが必要である。水分
濃度を上げるために、水や消石灰スラリを噴霧する方法
が提案されているが、このようなガス中の水分濃度を上
げる方法では除去率の向上は十分ではない。除去率が低
い場合は、集塵装置によって捕集された未反応の脱硫剤
を含む粒子に水や蒸気を添加し、表面に形成された反応
生成物の殻を破壊した後、この一部を再び排ガス中に噴
霧することによって除去率が向上する方法も提案されて
いる(例えば、米国特許登録第3481289号、特開
昭61−35827号)。このような半乾式法では、脱
硫反応が終了した際、廃棄物として亜硫酸カルシウムが
含まれた灰が発生する。従来は、前記廃棄物を酸素によ
る酸化雰囲気中で熱処理することにより酸化していた
が、問題点として、 処理時間が長く、従って処理効率が悪い。 燃焼装置とは別系統の装置を設ける必要があり、装置
が複雑・高価になる。 という点があった。
In such a method, the removal rate of acidic toxic substances is said to be dominated by the water content (relative humidity) in the exhaust gas. That is, in order to increase the removal rate, it is necessary to lower the temperature of the exhaust gas and increase the water content. A method of spraying water or slaked lime slurry has been proposed to increase the water concentration, but such a method of increasing the water concentration in the gas does not sufficiently improve the removal rate. If the removal rate is low, water or steam is added to the particles containing the unreacted desulfurizing agent collected by the dust collector to destroy the reaction product shell formed on the surface, and then part of this is removed. A method has also been proposed in which the removal rate is improved by spraying into the exhaust gas again (for example, U.S. Pat. No. 3,481,289, JP-A-61-35827). In such a semi-dry method, when the desulfurization reaction is completed, ash containing calcium sulfite is generated as waste. Conventionally, the waste was oxidized by heat-treating it in an oxidizing atmosphere of oxygen, but the problem is that the treatment time is long and the treatment efficiency is poor. Since it is necessary to provide a device of a system different from the combustion device, the device becomes complicated and expensive. There was a point.

【0005】以上の問題を解決するために、200℃以
上の温度領域にアルカリまたは、アルカリ土類金属の酸
化物、水酸化物または炭酸塩のうち1種類以上を脱硫剤
として噴霧する脱硫プロセスにおいて、200℃以下の
温度域で、その一部が排ガス中のSO2と反応した未反
応の脱硫剤を含む脱硫剤を集塵装置で回収した後、温度
500〜900℃の排ガス中に噴霧供給し、排ガス中の
SO2と反応させることを特徴とする脱硫プロセスが発
明された(以下、このプロセスを低温脱硫中温リサイク
ル方式と呼ぶ)。しかし、この方法ではリサイクルする
際に灰も同時にリサイクルしてしまうため、特に灰分の
高い燃料を用いた燃焼装置では集塵装置の能力でリサイ
クル量が制限され十分な脱硫率の向上は困難であった。
また、火炉吹き込みした脱硫剤をリサイクルする方法も
提案されている(米国特許登録第3481289号)
が、火炉吹き込みは低温脱硫と重畳しないと脱硫率自体
が低いため、リサイクルしても十分な脱硫率向上は難し
く、また低温脱硫中温リサイクル方式と同様に灰もリサ
イクルする方式になっているためリサイクルできる反応
済脱硫剤の量が制限される問題点を有していた。
In order to solve the above problems, in a desulfurization process in which one or more kinds of alkali, alkaline earth metal oxides, hydroxides or carbonates are sprayed as a desulfurizing agent in a temperature range of 200 ° C. or higher. After recovering a desulfurizing agent containing unreacted desulfurizing agent, a part of which has reacted with SO 2 in the exhaust gas in a temperature range of 200 ° C. or lower, by a dust collector, spray supply into the exhaust gas at a temperature of 500 to 900 ° C. Then, a desulfurization process characterized by reacting with SO 2 in exhaust gas was invented (hereinafter, this process is referred to as a low temperature desulfurization medium temperature recycling system). However, this method also recycles ash at the same time when recycling, so it is difficult to improve the desulfurization rate adequately because the amount of recycle is limited by the capacity of the dust collector in a combustion device using a fuel with a high ash content. It was
A method for recycling the desulfurizing agent blown into the furnace has also been proposed (US Pat. No. 3,481,289).
However, since the desulfurization rate itself is low unless the furnace injection overlaps with the low-temperature desulfurization, it is difficult to improve the desulfurization rate sufficiently even if it is recycled, and the ash is recycled like the low-temperature desulfurization medium-temperature recycling method. There is a problem that the amount of the reacted desulfurization agent that can be formed is limited.

【0006】[0006]

【発明が解決しようとする課題】従来の低温脱硫中温リ
サイクル法ではリサイクルする際に、灰も同時にリサイ
クルするため、集塵装置の能力により未反応脱硫剤のリ
サイクル量が制限されていた。そこで、本発明の目的は
燃焼灰がリサイクルするのを防ぐことにより、中温脱硫
部噴霧量を最大限にでき、集塵装置の簡素化と従来以上
の総合脱硫率を得る点にある。また。本発明の目的は、
燃焼灰がリサイクルするのを防ぐ新規な低温脱硫中温リ
サイクル方式において、従来以上の総合脱硫率を得るた
めに、最適な運転条件を求める方法の確立にある。
In the conventional low temperature desulfurization medium temperature recycling method, since the ash is also recycled at the time of recycling, the recycling amount of the unreacted desulfurizing agent is limited by the capacity of the dust collector. Therefore, an object of the present invention is to prevent the combustion ash from being recycled, thereby maximizing the spray amount of the intermediate temperature desulfurization section, simplifying the dust collector and obtaining a higher overall desulfurization rate than before. Also. The purpose of the present invention is to
In a new low-temperature desulfurization medium-temperature recycling system that prevents the combustion ash from being recycled, the establishment of a method for obtaining optimal operating conditions in order to obtain a higher overall desulfurization rate than before.

【0007】[0007]

【課題を解決するための手段】本発明の上記目的は、次
の主要構成によって達成される。すなわち、アルカリ金
属またはアルカリ土類金属の少なくとも一種類以上の金
属の化合物を脱硫剤として用い、燃焼装置の排ガス路の
温度200℃以下の低温脱硫部に供給し、排ガス中のS
2と反応させた後、未反応脱硫剤を含む脱硫剤を集塵
装置(低温部集塵装置という)で回収する排煙脱硫装置
において、該集塵装置で回収した未反応脱硫剤を含む使
用済脱硫剤を、排ガス路の温度500〜900℃の中温
脱硫部に供給し、排ガスの硫黄酸化物と反応させた後、
低温脱硫部における脱硫剤供給位置よりも上流部で集塵
装置(高温部集塵装置という)により回収する低温脱硫
中温リサイクル方式の排煙脱硫装置である。
The above object of the present invention is achieved by the following main constitutions. That is, a compound of at least one kind of metal of an alkali metal or an alkaline earth metal is used as a desulfurizing agent and is supplied to a low temperature desulfurization section of the exhaust gas passage of the combustion device at a temperature of 200 ° C. or lower to obtain S in exhaust gas.
In a flue gas desulfurization device in which a desulfurizing agent containing an unreacted desulfurizing agent is recovered by a dust collector (referred to as a low temperature part dust collector) after reacting with O 2 , the unreacted desulfurizing agent recovered by the dust collector is included. After the used desulfurizing agent is supplied to the medium temperature desulfurization section of the exhaust gas passage at a temperature of 500 to 900 ° C. and reacted with the sulfur oxides of the exhaust gas,
This is a low-temperature desulfurization mid-temperature recycle type flue gas desulfurization device that collects by a dust collector (referred to as a high-temperature part dust collector) upstream of the desulfurization agent supply position in the low-temperature desulfurization unit.

【0008】また、本発明の前記低温脱硫中温リサイク
ル方式の総合脱硫率を向上させた最適な運転条件を求め
る方法は次のような方法で行う。すなわち、(a)中温
部で反応した脱硫剤の低温脱硫部を含む温度500℃以
下の排ガス路領域での脱硫反応を無視する、(b)集塵
装置で回収された中温脱硫部に供給される脱硫剤の脱硫
率は、中温脱硫部での単位時間当たりの(未反応脱硫剤
の供給モル数)/(排ガス中のSO2モル数)および排
ガス中のSO2濃度の2つをパラメータとして予め評価
しておいた中温脱硫部単独の脱硫率から決定する、
(c)低温脱硫部での脱硫率は、低温脱硫部での単位時
間当たりの(脱硫剤供給モル数)/(排ガス中のSO2
モル数)(以後、As/Sと言うことがある。)および
低温脱硫部の相対湿度をパラメータとして決定し、排ガ
ス中のSO2濃度をパラメータとはしない、ことを条件
として総合脱硫率を求め、排煙脱硫装置の運転性能を評
価する排煙脱硫装置の運転性能評価方法である。
Further, the method for obtaining the optimum operating conditions in which the total desulfurization rate of the low-temperature desulfurization / medium-temperature recycling system of the present invention is improved is as follows. That is, (a) ignoring the desulfurization reaction in the exhaust gas passage region at a temperature of 500 ° C. or lower that includes the low temperature desulfurization part of the desulfurization agent reacted in the middle temperature part, (b) is supplied to the middle temperature desulfurization part collected by the dust collector. The desulfurization rate of the desulfurizing agent with two parameters, (the number of moles of unreacted desulfurizing agent supplied) / (the number of SO 2 moles in the exhaust gas) and the SO 2 concentration in the exhaust gas per unit time in the medium temperature desulfurization section are two parameters. Determined from the desulfurization rate of the medium temperature desulfurization unit alone that was evaluated in advance,
(C) The desulfurization rate in the low-temperature desulfurization unit is (mol desulfurizing agent supplied) / (SO 2 in exhaust gas per unit time in the low-temperature desulfurization unit)
The total desulfurization rate was determined under the condition that the number of moles) (hereinafter sometimes referred to as As / S) and the relative humidity of the low temperature desulfurization section were used as parameters and the SO 2 concentration in the exhaust gas was not used as a parameter. Is a method for evaluating the operating performance of a flue gas desulfurization device, which evaluates the operating performance of a flue gas desulfurization device.

【0009】また、本発明は上記排煙脱硫装置の運転性
能評価方法により、低温脱硫部での単位時間当たりの
(As/S)と中温脱硫部での単位時間当たりの(未反
応脱硫剤の供給モル数)/(排ガス中のSO2モル数)
の少なくともいずれかを変化させて排煙脱硫装置の総合
脱硫率を制御する排煙脱硫装置の制御方法である。脱硫
率は各脱硫部におけるAb/Sと深く結びついており、
特に中温脱硫部ではその脱硫反応の特性から温度とガス
が同じ場合、脱硫率はAb/S依存性が非常に大きいこ
とがわかった。前記本発明の低温脱硫中温リサイクル方
式はリサイクルした後の脱硫剤は回収するので、リサイ
クル後の脱硫剤の低温反応は考えない。また、中温脱硫
部におけるAb/Sは低温脱硫部の脱硫率によって変動
するので、低温脱硫剤中の未反応脱硫剤の割合を正確に
求めることによって、中温脱硫の脱硫率を正確に予測す
ることが可能になる。また、本発明は上記排煙脱硫装置
における低温集塵装置で回収した未反応脱硫剤を含む使
用済脱硫剤を、排ガス路の中温脱硫部に供給するプロセ
スに代えて、前記使用済脱硫剤をスラリ化した上で中温
脱硫部に供給するプロセスにした排煙脱硫装置に適用し
ても良い。
Further, according to the present invention, the operating performance evaluation method of the flue gas desulfurization apparatus is used (As / S) per unit time in the low temperature desulfurization section and (unreacted desulfurization agent supply moles) / (SO 2 moles of flue gas)
Of the flue gas desulfurization apparatus by changing at least one of the above. Desulfurization rate is closely related to Ab / S in each desulfurization section,
In particular, in the medium temperature desulfurization section, it was found from the characteristics of the desulfurization reaction that the desulfurization rate has a very large Ab / S dependency when the temperature and the gas are the same. In the low-temperature desulfurization medium-temperature recycling method of the present invention, the desulfurizing agent after recycling is recovered, so the low-temperature reaction of the desulfurizing agent after recycling is not considered. Further, since Ab / S in the medium temperature desulfurization section varies depending on the desulfurization rate of the low temperature desulfurization section, it is possible to accurately predict the desulfurization rate of the medium temperature desulfurization by accurately calculating the ratio of the unreacted desulfurization agent in the low temperature desulfurization agent. Will be possible. Further, the present invention, the used desulfurization agent containing the unreacted desulfurization agent recovered by the low temperature dust collector in the flue gas desulfurization apparatus, instead of the process of supplying to the intermediate temperature desulfurization section of the exhaust gas passage, the used desulfurization agent It may be applied to a flue gas desulfurization apparatus which has a process in which it is made into a slurry and then supplied to the intermediate temperature desulfurization section.

【0010】[0010]

【作用】本発明は種々の条件下で中温脱硫部および低温
脱硫部における脱硫の実験を行うことにより、得られた
次のような新たな知見に基づくものである。 (1)中温脱硫部において、使用済脱硫剤を噴霧するこ
とにより脱硫剤表面の水和物の分解により、殻状の反応
層に亀裂が発生し、脱硫剤の未反応部分が排ガスに曝さ
れる。その結果、中温脱硫部では使用済脱硫剤であって
も未反応の脱硫剤と同様な反応性を有する。このこと
は、脱硫剤の履歴(新しい脱硫剤を用いるか、一旦、低
温部を経由したリサイクル脱硫剤であるか、またはその
低温部のリサイクル数が何回目かなど)および性状は問
題とならないことをも示している。 (2)低温脱硫部での脱硫率は脱硫剤の比表面積と低温
脱硫部内の相対湿度で決定されるため、比表面積の低い
中温脱硫部での脱硫処理後の脱硫剤を低温脱硫部に供給
しても脱硫率の向上はほとんどない。 (3)低温脱硫部では、脱硫塔内の相対湿度と排ガス組
成が一定ならば、排ガス中のSO2流量に対する脱硫剤
供給量のモル比Ab/Sに比例して脱硫率は向上する。
The present invention is based on the following new findings obtained by conducting desulfurization experiments in the medium temperature desulfurization section and the low temperature desulfurization section under various conditions. (1) In the medium temperature desulfurization section, spraying the used desulfurization agent causes decomposition of hydrates on the surface of the desulfurization agent, causing cracks in the shell-like reaction layer, and exposing the unreacted portion of the desulfurization agent to exhaust gas. It As a result, in the medium temperature desulfurization section, even the used desulfurizing agent has the same reactivity as the unreacted desulfurizing agent. This means that the history of the desulfurization agent (whether a new desulfurization agent is used, whether it is a recycled desulfurization agent that once passed through the low-temperature part, or how many times the low-temperature part has been recycled) or the property does not matter. Is also shown. (2) Since the desulfurization rate in the low temperature desulfurization section is determined by the specific surface area of the desulfurization agent and the relative humidity in the low temperature desulfurization section, the desulfurization agent after desulfurization treatment in the medium temperature desulfurization section with a low specific surface area is supplied to the low temperature desulfurization section. Even so, there is almost no improvement in the desulfurization rate. (3) In the low temperature desulfurization section, if the relative humidity in the desulfurization tower and the exhaust gas composition are constant, the desulfurization rate improves in proportion to the molar ratio Ab / S of the desulfurizing agent supply amount to the SO 2 flow rate in the exhaust gas.

【0011】以上の結果から、最も脱硫剤を有効に使う
気流噴霧脱硫装置として、低温脱硫部および中温脱硫部
でそれぞれ脱硫剤を噴霧し、しかも中温脱硫部には低温
脱硫部で反応した使用済脱硫剤を噴霧する装置を用い
る。さらに、これに加えてそれぞれの脱硫部の下流で集
塵することによってリサイクル比(低温部集塵装置から
中温部に噴霧する量/低温部集塵装置から廃棄する量)
を高くできるため、従来よりさらに高性能な脱硫装置と
することが可能になる。また、中温脱硫部で噴霧する使
用済脱硫剤は高温集塵部での集塵率を向上させることに
よって、ほとんど燃焼灰が混合していないため装置全体
を流れる灰の量はリサイクルしない場合と同等になり、
灰分の高い燃料を用いた場合は、従来法よりも小容量の
集塵装置で運転可能である。更に、本発明によって、燃
焼装置の運転条件に併せて脱硫装置の運転条件を前もっ
て決定することが可能になる上、脱硫装置の運転条件の
変更にともなう脱硫性能の変化も容易に予測できるため
システム全体で最も効率的な脱硫システムの運用が可能
になる。
From the above results, as an air flow spray desulfurization device that uses the desulfurizing agent most effectively, the desulfurizing agent was sprayed in each of the low temperature desulfurizing section and the medium temperature desulfurizing section, and the medium temperature desulfurizing section was reacted in the low temperature desulfurizing section. A device for spraying a desulfurizing agent is used. In addition to this, the recycling ratio by collecting dust downstream of each desulfurization unit (amount sprayed from the low temperature part dust collector to the middle temperature part / amount discarded from the low temperature part dust collector)
Therefore, it is possible to obtain a desulfurizer having higher performance than the conventional one. In addition, the used desulfurization agent sprayed in the medium temperature desulfurization unit improves the dust collection rate in the high temperature dust collection unit, and almost no combustion ash is mixed, so the amount of ash flowing through the entire equipment is the same as when not recycled. become,
When a fuel with a high ash content is used, it is possible to operate with a dust collector having a smaller capacity than the conventional method. Further, according to the present invention, it is possible to determine in advance the operating conditions of the desulfurization device together with the operating conditions of the combustion device, and it is also possible to easily predict the change in the desulfurization performance due to the change in the operating conditions of the desulfurization device. It enables the most efficient operation of the desulfurization system as a whole.

【0012】本発明の排煙脱硫装置の運転性能評価方法
(低温脱硫中温リサイクル方式)の詳細を次に説明す
る。本発明の前記低温脱硫中温リサイクル方式では前記
条件(1)〜(3)を設定し、その条件に従って各温度
域における脱硫率を算出し、それに基づき総合脱硫率を
求める。 総合脱硫率=中温脱硫部脱硫率+(1−中温脱硫部脱硫
率)×低温脱硫部脱硫率 集塵装置で回収され、中温脱硫部にリサイクルされる使
用済み脱硫剤の成分が変化する理由を低温脱硫中温リサ
イクル方式で説明すると次の通りである。 まず、低温脱硫部に新しい脱硫剤(未反応脱硫剤)1
が供給され低温脱硫部における脱硫だけが行われる場合 リサイクル脱硫剤1=低温脱硫部脱硫剤1 次に、リサイクル脱硫剤1による中温脱硫部における
脱硫と次に供給される新しい脱硫剤2による低温脱硫部
における脱硫が行われる場合 リサイクル脱硫剤2=リサイクル脱硫剤1+低温脱硫部
脱硫剤2 さらに、リサイクル脱硫剤2による中温脱硫部におけ
る脱硫と新しい脱硫剤3による低温脱硫部における脱硫
が行われる場合 リサイクル脱硫剤3=リサイクル脱硫剤2+低温脱硫部
脱硫剤3
The operation performance evaluation method of the flue gas desulfurization apparatus of the present invention (low temperature desulfurization medium temperature recycling method) will be described in detail below. In the low temperature desulfurization medium temperature recycling method of the present invention, the conditions (1) to (3) are set, the desulfurization rate in each temperature range is calculated according to the conditions, and the total desulfurization rate is obtained based on the desulfurization rate. Total desulfurization rate = Middle-temperature desulfurization section desulfurization rate + (1-Medium-temperature desulfurization section desulfurization rate) x Low-temperature desulfurization section desulfurization rate The reason why the components of the used desulfurization agent recovered by the dust collector and recycled to the middle-temperature desulfurization section change The low temperature desulfurization medium temperature recycling method is as follows. First, a new desulfurizing agent (unreacted desulfurizing agent) 1 is added to the low temperature desulfurization section
Is supplied and only desulfurization is performed in the low-temperature desulfurization section Recycling desulfurization agent 1 = low-temperature desulfurization section desulfurization agent 1 Next, desulfurization in the medium-temperature desulfurization section by the recycling desulfurization agent 1 and low-temperature desulfurization by the new desulfurization agent 2 supplied next When desulfurization is performed in the recycle section: Recycle desulfurization agent 2 = Recycle desulfurization agent 1 + Low temperature desulfurization section desulfurization agent 2 Further, desulfurization in the medium temperature desulfurization section by the recycle desulfurization agent 2 and desulfurization in the low temperature desulfurization section by the new desulfurization agent 3 Recycle Desulfurization agent 3 = Recycling desulfurization agent 2 + Low temperature desulfurization part desulfurization agent 3

【0013】このように総合脱硫率は中温脱硫部にリサ
イクルする脱硫剤成分が最初の2〜3サイクル目では変
化する。しかし、大体5〜6サイクル目で脱硫剤成分は
安定化する。そのため、総合脱硫率もリサイクル脱硫剤
成分が安定化してから算出する。そこで、特定のリサイ
クル比において、リサイクルされる脱硫剤中の未反応脱
硫剤量(例えば消石灰量)が一定(偏差<0.0000
1)になるかどうかで収束を判断する。そして、この収
束計算に、本発明の前記条件(1)〜(3)(請求項3
および請求項7記載の発明の要件(a)〜(c)に同
じ)を考慮に入れて行う。
Thus, the total desulfurization rate changes in the desulfurizing agent components recycled to the medium temperature desulfurization section in the first 2-3 cycles. However, the desulfurizing agent component is stabilized in the 5th to 6th cycles. Therefore, the total desulfurization rate is also calculated after the recycled desulfurization agent component is stabilized. Therefore, at a specific recycle ratio, the amount of unreacted desulfurization agent in the recycled desulfurization agent (for example, the amount of slaked lime) is constant (deviation <0.0000).
Convergence is determined by whether or not 1). Then, the conditions (1) to (3) of the present invention are applied to this convergence calculation (claim 3).
And requirements (a) to (c) of the invention according to claim 7) are taken into consideration.

【0014】こうして種々のリサイクル比における収束
条件を満たす中温脱硫部でのAb/S、低温脱硫部での
Ab/Sが求められ、これらのAb/Sに基づきあらか
じめ実験的に求めてある、下記の計算式により各脱硫部
での脱硫率を算出し、それを用いて総合脱硫率を求め
る。標準条件での本脱硫装置の低温脱硫部におけるAb
/Sと低温脱硫部および中温脱硫部での各脱硫率ηL
ηMの関係は、実験値から算出した次式(1)、(2)
から求めた。温脱硫部および中温脱硫部での各脱硫率η
L、ηM ηL=a(θ)×(As/S)b(θ) ・・・(1) ηM=c×(As/S)d ・・・(2) として求めた。ただし、a(θ)とb(θ)は相対湿度
θの関数であり、c、dは定数である。
Thus, Ab / S in the medium temperature desulfurization section and Ab / S in the low temperature desulfurization section satisfying the convergence conditions at various recycle ratios are obtained, and they are experimentally obtained in advance based on these Ab / S. The desulfurization rate in each desulfurization section is calculated by the following formula, and the total desulfurization rate is obtained using the calculated desulfurization rate. Ab in the low temperature desulfurization section of the desulfurizer under standard conditions
/ S and each desulfurization rate η L in the low temperature desulfurization section and the medium temperature desulfurization section,
The relationship of η M is calculated by the following equations (1), (2)
I asked from. Desulfurization rate η in hot desulfurization section and medium temperature desulfurization section
L , η M η L = a (θ) × (As / S) b (θ) ... (1) η M = c × (As / S) d (2) However, a (θ) and b (θ) are functions of the relative humidity θ, and c and d are constants.

【0015】なお、常圧下において、100℃以上の温
度では水蒸気の飽和状態でも、相対湿度は無視し得る程
度(例えば500℃、常圧下で、飽和水蒸気の状態でも
相対湿度は0.30%にしかすぎない。)であるので、
相対湿度という概念は存在しない。このように、相対湿
度θにより、影響を受けるのは低温脱硫部のみであるの
で、式(1)には低温脱硫部でのみ相対湿度による関数
a(θ)とb(θ)を考慮に入れる。また、相対湿度が
一定の条件下ではAb/Sと脱硫率の関係は一次式で近
似できるといえる。だだし、一般に、低温脱硫部内の相
対湿度は、水噴霧量で制御されてほぼ一定(本発明の下
記実施例では標準条件が運転条件)であるので、通常は
関数a(θ)とb(θ)は定数として扱い、相対湿度に
よる脱硫率変化を考慮に入れないこととした。脱硫率η
として算出式(1)、(2)で近似した値を用いて予測
した推算値と実測値が±1%程度の誤差で推測できるこ
とが分かった。また、こうして排ガス中のSO2濃度に
応じて、低温脱硫中温リサイクル方式の排煙脱硫装置で
は低温脱硫部への新鮮な脱硫剤供給量をコントロールす
ることで、総合脱硫率を制御することができる。
Under normal pressure, at a temperature of 100 ° C. or higher, the relative humidity is negligible even in a saturated state of water vapor (for example, at 500 ° C., under normal pressure, in a saturated water vapor state, the relative humidity becomes 0.30%. It's just too much.)
There is no concept of relative humidity. As described above, since the relative humidity θ affects only the low temperature desulfurization section, the equation (1) takes into consideration the functions a (θ) and b (θ) depending on the relative humidity only in the low temperature desulfurization section. . Further, under the condition that the relative humidity is constant, it can be said that the relationship between Ab / S and the desulfurization rate can be approximated by a linear expression. However, in general, the relative humidity in the low temperature desulfurization section is controlled by the amount of water spray and is substantially constant (the standard condition is the operating condition in the following examples of the present invention), and therefore the functions a (θ) and b ( θ) is treated as a constant and the change in desulfurization rate due to relative humidity is not taken into consideration. Desulfurization rate η
It has been found that the estimated value and the actual measured value, which are predicted using the values approximated by the calculation formulas (1) and (2), can be estimated with an error of about ± 1%. Further, according to the SO 2 concentration in the exhaust gas, the total desulfurization rate can be controlled by controlling the fresh desulfurizing agent supply amount to the low temperature desulfurization section in the low temperature desulfurization medium temperature recycling type flue gas desulfurization apparatus. .

【0016】[0016]

【実施例】本発明は、下記の実施例によってさらに詳細
に説明されるが、下記の例で制限されるものではない。 実施例1 脱硫剤として消石灰を用い、石炭焚ボイラの排ガスを脱
硫処理する場合について、脱硫装置への本発明の適用例
を用いて説明する。図1において、石炭はボイラ1に吹
き込まれ、その後、排ガス6はエアヒータ3で温度を下
げられる。そして、排ガス中の石炭灰を高温集塵装置4
で除去した後、フィーダ10内の消石灰を噴霧口5から
噴霧された排ガスは脱硫塔2に導かれる。水噴霧口7か
ら水が噴霧される脱硫塔2内では、排ガスは脱硫剤と反
応し、反応した脱硫剤は集塵装置8で捕集される。ここ
で、集塵装置4にサイクロン、集塵装置8には電気集塵
機を用いているが、集塵装置4は電気集塵機、集塵装置
8には貯塵型フィルタ集塵機を用いても、十分な性能が
得られる。特に、集塵装置8に貯塵型フィルタ集塵機を
用いた場合にはフィルタで回収された使用済脱硫剤の一
部が脱硫反応を起こすため総合脱硫率の向上につなが
る。
The present invention will be explained in more detail by the following examples, but it should not be construed as being limited thereto. Example 1 A case in which slaked lime is used as a desulfurizing agent to desulfurize exhaust gas from a coal-fired boiler will be described using an application example of the present invention to a desulfurization apparatus. In FIG. 1, coal is blown into the boiler 1, and then the temperature of the exhaust gas 6 is lowered by the air heater 3. Then, the coal ash in the exhaust gas is subjected to the high temperature dust collector 4
After being removed in step 1, the exhaust gas in which the slaked lime in the feeder 10 is sprayed from the spray port 5 is guided to the desulfurization tower 2. In the desulfurization tower 2 in which water is sprayed from the water spray port 7, the exhaust gas reacts with the desulfurization agent, and the reacted desulfurization agent is collected by the dust collector 8. Here, the cyclone is used for the dust collector 4 and the electric dust collector is used for the dust collector 8. However, it is sufficient to use the electric dust collector for the dust collector 4 and the dust collecting type filter dust collector for the dust collector 8. Performance is obtained. In particular, when a dust storage type filter dust collector is used for the dust collector 8, a part of the used desulfurizing agent recovered by the filter causes a desulfurization reaction, which leads to an improvement in the total desulfurization rate.

【0017】この装置を用いて、A炭(石炭中の硫黄分
2.5%、灰分12%)を燃焼したときの脱硫性能を測
定した。ただし、脱硫剤は消石灰を用い、燃焼した際に
生じる排ガス中のSO2に対しモル比で2.0倍の消石
灰を(以下、Ca/S=2.0と略す)添加した。この
際、高温集塵装置4における単位時間当たりの石炭灰回
収量(kg/min)と消石灰供給量(kg/min)
はほぼ同じであった。また、脱硫塔2内温度が60℃に
なるように水を噴霧したところ、ガス中の水蒸気分圧
は、大気圧の約17%(相対湿度約85%、水噴霧前は
水蒸気分圧約10%)であった。脱硫剤を噴霧する前に
ボイラ1出口においてガス中の水分を除去した後、SO
2濃度を測定したところ2000ppmであった。脱硫
剤噴霧開始後、リサイクルが行われる前には集塵装置8
出口において、ガス中の水分を除去した後、SO2濃度
を測定したところ600ppmであった。すなわち、排
ガス中のSO2のうち、70%が除去されたことにな
る。
Using this apparatus, the desulfurization performance when A charcoal (sulfur content in coal: 2.5%, ash content: 12%) was burned was measured. However, slaked lime was used as the desulfurizing agent, and 2.0 times the molar ratio of slaked lime (hereinafter abbreviated as Ca / S = 2.0) was added to SO 2 in the exhaust gas generated during combustion. At this time, the coal ash recovery amount (kg / min) and the slaked lime supply amount (kg / min) per unit time in the high temperature dust collector 4
Were about the same. Further, when water was sprayed so that the temperature inside the desulfurization tower 2 became 60 ° C, the partial pressure of water vapor in the gas was about 17% of the atmospheric pressure (relative humidity was about 85%, and the partial pressure of water vapor was about 10% before water spraying). )Met. After removing water in the gas at the outlet of the boiler 1 before spraying the desulfurizing agent,
When 2 concentrations were measured, it was 2000 ppm. After the desulfurizing agent is sprayed and before recycling, the dust collector 8
After removing water in the gas at the outlet, the SO 2 concentration was measured and found to be 600 ppm. That is, 70% of SO 2 in the exhaust gas was removed.

【0018】以上の反応が終了したのち、集塵装置8か
ら回収された灰には脱硫剤1モル当たりの排ガス中のS
2吸収量(以下、S/Caと略す)が35.0%の反
応済み脱硫剤が含まれていた。該反応済み脱硫剤をすべ
てフィーダ10でボイラの中温脱硫部9(ガス温度65
0℃)に供給する。以上のプロセスを繰り返して連続的
に行う。脱硫率が定常化した際の集塵装置8で回収され
る反応済脱硫剤のS/Caは0.32〜0.33、集塵
装置4で回収された灰とリサイクル反応後の反応済脱硫
剤(以上、反応済リサイクル剤と略す)の混合物のS/
Caは0.42〜0.43(不燃性Sおよび燃料中Ca
を考慮済)であった。以上の結果、中温脱硫部および低
温脱硫部を併せた総合脱硫率(以上、総合脱硫率)は約
84〜86%であった。また、集塵装置で回収される灰
および反応済脱硫剤の重量はリサイクルしない場合に比
べてリサイクルする場合は約1.6倍になった。
After the above reaction is completed, the ash recovered from the dust collector 8 contains S in the exhaust gas per mol of the desulfurizing agent.
The reacted desulfurization agent having an O 2 absorption amount (hereinafter, abbreviated as S / Ca) of 35.0% was contained. All of the reacted desulfurization agents are fed by the feeder 10 to the medium temperature desulfurization section 9 of the boiler (gas temperature 65
0 ° C). The above process is repeated and performed continuously. When the desulfurization rate becomes steady, S / Ca of the reacted desulfurization agent recovered by the dust collector 8 is 0.32 to 0.33, and the reacted desulfurization after the recycling reaction with the ash recovered by the dust collector 4 S / of a mixture of agents (abbreviated as a recycled recycling agent)
Ca is 0.42 to 0.43 (incombustible S and Ca in fuel
Was considered). As a result, the total desulfurization rate (above, total desulfurization rate) of the medium temperature desulfurization section and the low temperature desulfurization section was about 84 to 86%. In addition, the weight of the ash and the reacted desulfurization agent recovered by the dust collector was about 1.6 times greater when recycled, compared to when not recycled.

【0019】比較例1 実施例1と同じ燃焼装置において全く同じ石炭を燃料と
して、図5に示すように、実施例1で用いた集塵装置4
がない従来技術を利用して実施例1と特性を比較した。
脱硫剤は消石灰を用い、また、脱硫塔2内において塔内
温度が60℃になるように水を噴霧した。その結果、ガ
ス中の水蒸気分圧は、大気圧の約17%(相対湿度約8
5%、水噴霧前は水蒸気分圧約10%)であった。脱硫
剤を噴霧する前にボイラ出口1においてガス中の水分を
除去した後、SO2濃度を測定したところ2000pp
mであった。脱硫剤噴霧開始後、リサイクルが行われる
前には集塵装置8出口において、ガス中の水分を除去し
た後、SO2濃度を測定したところ600ppmであっ
た。すなわち、排ガス中のSO2の内70%が除去され
たことになる。以上の反応が終了したのち集塵装置8か
ら回収された灰には、S/Caが35.0%の反応済み
脱硫剤が含まれていた。該反応済み脱硫剤の一部をフィ
ーダ10でボイラの中温脱硫部9(ガス温度650℃)
に供給する。この際、リサイクル比は0.5で実験を行
った。以上のプロセスを繰り返して連続的に行う。脱硫
率が定常化した際、システム全体の脱硫率は79〜80
%であった。また集塵装置8で回収される粉体の重量は
リサイクルしない場合の約1.6倍であった。このこと
は、集塵量が一定であれば本発明に基づく実施例1の装
置の方がより高い脱硫率を得ることが可能なことを示し
ている。
Comparative Example 1 As shown in FIG. 5, the dust collector 4 used in Example 1 using exactly the same coal as the fuel in the same combustion apparatus as in Example 1.
The characteristics were compared with those of the example 1 by utilizing the conventional technique which does not have the above.
Slaked lime was used as the desulfurization agent, and water was sprayed in the desulfurization tower 2 so that the temperature inside the tower became 60 ° C. As a result, the partial pressure of water vapor in the gas is about 17% of atmospheric pressure (about 8% relative humidity).
The water vapor partial pressure was 5%, and the water vapor partial pressure before water spraying was about 10%). After removing water in the gas at the boiler outlet 1 before spraying the desulfurizing agent, the SO 2 concentration was measured to be 2000 pp
It was m. After the spraying of the desulfurizing agent and before the recycling, the SO 2 concentration was measured at the outlet of the dust collector 8 after removing water in the gas, and it was 600 ppm. That is, 70% of SO 2 in the exhaust gas was removed. The ash recovered from the dust collector 8 after the above reaction was completed contained the reacted desulfurizing agent having S / Ca of 35.0%. A part of the desulfurized agent after the reaction is fed by the feeder 10 to the middle temperature desulfurization section 9 of the boiler (gas temperature 650 ° C.)
Supply to. At this time, an experiment was conducted with a recycling ratio of 0.5. The above process is repeated and performed continuously. When the desulfurization rate becomes steady, the desulfurization rate of the entire system is 79-80.
%Met. The weight of the powder collected by the dust collector 8 was about 1.6 times that of the case without recycling. This indicates that if the amount of collected dust is constant, the device of Example 1 according to the present invention can obtain a higher desulfurization rate.

【0020】実施例2 実施例1と全く同じ装置および排ガス条件下で、集塵装
置8で回収した使用済脱硫剤をスラリ化し、中温脱硫部
に噴霧した。総合脱硫率は実測で約86〜88%であ
り、操作は実施例1より煩雑であるが、実施例1の場合
よりもやや高い脱硫率となった。 実施例3 実施例1と全く同じ装置および排ガス条件下で、脱硫剤
に水酸化マグネシウム(Mg(OH)2)を用いた場合
について検討を行った。水酸化マグネシウムは低温脱硫
時にCO2を吸収してMgCO3が形成されてもMgCO
3の分解温度が500℃前後と低いため中温脱硫を行う
ことによって、再び分解反応を起こすことができる。そ
のため、リサイクルには消石灰よりも有利である。排ガ
ス中のSO2に対するMgCO3のモル比を2.0倍とし
た(Mg/S=2)条件下で、総合脱硫率は約86%と
なった。脱硫剤のコストが消石灰よりも高いものの実施
例1よりも高い脱硫率を得ることが可能であった。
Example 2 Under the same apparatus and exhaust gas conditions as in Example 1, the used desulfurizing agent recovered by the dust collector 8 was slurried and sprayed to the intermediate temperature desulfurizing section. The total desulfurization rate was about 86 to 88% by actual measurement, and although the operation was more complicated than that in Example 1, the desulfurization rate was slightly higher than that in Example 1. Example 3 Under the same equipment and exhaust gas conditions as in Example 1, a case was investigated in which magnesium hydroxide (Mg (OH) 2 ) was used as a desulfurizing agent. Magnesium hydroxide absorbs CO 2 during low temperature desulfurization to form MgCO 3
Since the decomposition temperature of 3 is as low as around 500 ° C, the decomposition reaction can be caused again by performing the medium temperature desulfurization. Therefore, it is more advantageous than slaked lime for recycling. Under the condition that the molar ratio of MgCO 3 to SO 2 in the exhaust gas was 2.0 times (Mg / S = 2), the total desulfurization rate was about 86%. Although the cost of the desulfurization agent was higher than that of slaked lime, it was possible to obtain a higher desulfurization rate than that of Example 1.

【0021】実施例4 実施例1と同じ装置で、B炭(石炭中の硫黄分1.0
%、灰分12%)を燃焼したときの脱硫性能を測定し
た。ただし、脱硫剤は消石灰を用い、燃焼した際に生じ
る排ガス中のSO2に対し、モル比で2.0倍の消石灰
を(Ca/S=2.0)添加した。この際高温集塵装置
4における単位時間当りの石炭灰回収量(kg/mi
n)と消石灰供給量(kg/min)は石炭灰が約2.
5倍である。脱硫剤を噴霧する前にボイラ出口1におい
てガス中の水分を除去した後、SO2濃度を測定したと
ころ800ppmであった。脱硫剤噴霧開始後、リサイ
クルが行われる前には集塵装置8出口において、ガス中
の水分を除去した後、SO2濃度を測定したところ24
0ppmであった。すなわち、排ガス中のSO2の内7
0%が除去されたことになる。
Example 4 B coal (with a sulfur content of 1.0%
%, Ash content 12%), the desulfurization performance was measured. However, slaked lime was used as the desulfurizing agent, and 2.0 mol of slaked lime (Ca / S = 2.0) was added in a molar ratio to SO 2 in the exhaust gas generated during combustion. At this time, the amount of coal ash recovered per unit time in the high temperature dust collector 4 (kg / mi
n) and slaked lime supply rate (kg / min) are about 2.
5 times. After removing water in the gas at the boiler outlet 1 before spraying the desulfurizing agent, the SO 2 concentration was measured and found to be 800 ppm. After the start of spraying the desulfurizing agent and before recycling, the water content in the gas was removed at the outlet of the dust collector 8 and the SO 2 concentration was measured.
It was 0 ppm. That is, 7 out of SO 2 in the exhaust gas
0% has been removed.

【0022】以上の反応が終了したのち集塵装置8から
回収された灰には、脱硫剤1モル当たりのSO2吸収量
(S/Ca)が35.0%の反応済み脱硫剤が含まれて
いた。該反応済み脱硫剤をすべてフィーダ10でボイラ
の中温脱硫部9(ガス温度650℃)に供給する。以上
のプロセスを繰り返して連続的に行う。脱硫率が定常化
した際の集塵装置8で回収される反応済脱硫剤のS/C
aは0.33、集塵装置4で回収された灰とリサイクル
反応後の反応済リサイクル剤の混合物のS/Caは0.
43(不燃性Sおよび燃料中Caを考慮済)であった。
以上の結果、中温脱硫部および低温脱硫部を併せた総合
脱硫率(以下、総合脱硫率)は約86%であった。ま
た、集塵装置で回収される灰および反応済脱硫剤の重量
はリサイクルしない場合に比べてリサイクルする場合は
約1.3倍になった。
After the above reaction is completed, the ash recovered from the dust collector 8 contains the reacted desulfurization agent having an SO 2 absorption amount (S / Ca) of 35.0% per mol of the desulfurization agent. Was there. All of the reacted desulfurization agent is fed to the medium temperature desulfurization section 9 (gas temperature 650 ° C.) of the boiler by the feeder 10. The above process is repeated and performed continuously. S / C of the reacted desulfurization agent recovered by the dust collector 8 when the desulfurization rate becomes steady
a is 0.33, and S / Ca of the mixture of the ash recovered by the dust collector 4 and the reacted recycle agent after the recycling reaction is 0.
It was 43 (non-combustible S and Ca in fuel were taken into consideration).
As a result, the total desulfurization rate (hereinafter, total desulfurization rate) including the intermediate temperature desulfurization section and the low temperature desulfurization section was about 86%. In addition, the weight of the ash and the reacted desulfurization agent recovered by the dust collector was about 1.3 times as much as when they were recycled.

【0023】比較例2 比較例1と同じ装置で実施例4と同じ石炭Bを用い、実
施例4の各種特性とを比較した。リサイクルを行う前に
集塵装置8から回収された灰には、脱硫剤1モル当りの
SO2吸収量(S/Ca)が35.0%の反応済み脱硫
剤が含まれていた。該反応済み脱硫剤の一部をフィーダ
10でボイラの中温脱硫部9(ガス温度650℃)に供
給する。この際、リサイクル比は0.33として実験を
行った。以上のプロセスを繰り返して連続的に行う。脱
硫率が定常化した際、システム全体の脱硫率は76〜7
7%であった。また、集塵装置8で回収される粉体の重
量はリサイクルしない場合の約1.3倍であった。この
ことは、集塵量が一定であれば本発明に基づく実施例4
の装置の方が比較例2より高い脱硫率を得ることが可能
であることおよび燃料中の硫黄分はそれの灰分に対する
比(S/ash)が小さい程、本発明の脱硫プロセスが
従来技術と同じ容量の集塵装置(集塵装置4、8を併せ
て)でより高い脱硫性能を示すことを表している。
Comparative Example 2 Using the same apparatus as in Comparative Example 1 and using the same coal B as in Example 4, various characteristics of Example 4 were compared. The ash recovered from the dust collector 8 before the recycling contained the reacted desulfurization agent having an SO 2 absorption amount (S / Ca) of 35.0% per mol of the desulfurization agent. A part of the reacted desulfurizing agent is supplied to the medium temperature desulfurizing section 9 (gas temperature 650 ° C.) of the boiler by the feeder 10. At this time, an experiment was conducted with a recycling ratio of 0.33. The above process is repeated and performed continuously. When the desulfurization rate becomes steady, the desulfurization rate of the entire system is 76-7.
It was 7%. Further, the weight of the powder collected by the dust collector 8 was about 1.3 times that of the case where it was not recycled. This means that if the amount of collected dust is constant, the fourth embodiment according to the present invention will be described.
It is possible to obtain a higher desulfurization rate than the apparatus of Comparative Example 2 and the smaller the ratio of sulfur content to ash content (S / ash) in the fuel, the more the desulfurization process of the present invention is compared with the prior art. It shows that the same capacity dust collector (combining the dust collectors 4 and 8) exhibits higher desulfurization performance.

【0024】実施例5 本実施例以降は本発明の排煙脱硫装置の制御装置につい
ての実施例である。図2に示す本実施例の装置には、実
施例1で説明した図1の排煙脱硫装置に加えて、脱硫塔
2の直前の煙道に新鮮な脱硫剤を供給するためのフィー
ダ10’、フィーダ10、10’中の脱硫剤の供給量制
御装置11、ボイラ1の空気供給路に送風量測定装置1
2、ボイラ1の出口にボイラ出口SO2濃度測定装置1
3、集塵装置8の出口に低温部集塵装置出口SO2濃度
測定装置14および脱硫塔2の入口に脱硫塔入口SO2
濃度測定装置15をそれぞれ設けている。脱硫剤の供給
量制御装置11は前記各測定装置で測定されるSO2
度および送風量データに基づき、脱硫剤供給量を算出・
制御する。
Embodiment 5 This embodiment and subsequent embodiments are embodiments of the control device of the flue gas desulfurization apparatus of the present invention. In addition to the flue gas desulfurization apparatus of FIG. 1 described in the first embodiment, a feeder 10 ′ for supplying fresh desulfurizing agent to the flue immediately before the desulfurization tower 2 is added to the apparatus of the present embodiment shown in FIG. , A supply amount control device 11 for the desulfurizing agent in the feeders 10, 10 ', and an air flow rate measuring device 1 for the air supply passage of the boiler 1.
2. Boiler outlet SO 2 concentration measuring device 1 at the boiler 1 outlet
3. Low-temperature part dust collector outlet SO 2 concentration measuring device 14 at the outlet of the dust collector 8 and desulfurization tower inlet SO 2 at the inlet of the desulfurization tower 2.
Each of the concentration measuring devices 15 is provided. The desulfurizing agent supply amount control device 11 calculates the desulfurizing agent supply amount based on the SO 2 concentration and the air flow rate data measured by the respective measuring devices.
Control.

【0025】この装置を用いて、A炭(石炭中の硫黄分
2.5%、灰分12%)を燃焼したときの脱硫性能を測
定した。ただし、脱硫剤は消石灰を用い、Ca/S、脱
硫塔2内への水噴霧による脱硫塔2内温度、ガス中の水
蒸気分圧は実施例1と同一の条件で行った。脱硫剤を噴
霧する前のボイラ1出口におけるガス中の水分を除去し
た後、SO2濃度を測定したところ2000ppmであ
った。脱硫剤噴霧開始後、リサイクルが行われる前には
集塵装置8出口において、ガス中の水分を除去した後、
SO2濃度は実施例1と同様に600ppmであった。
すなわち、排ガス中のSO2のうち、70%が除去され
たことになる(以下、この条件を標準運転条件とい
う)。
Using this apparatus, the desulfurization performance when A charcoal (sulfur content in coal: 2.5%, ash content: 12%) was burned was measured. However, slaked lime was used as the desulfurization agent, Ca / S, the temperature inside the desulfurization tower 2 by water spraying into the desulfurization tower 2, and the partial pressure of water vapor in the gas were the same as in Example 1. After removing water in the gas at the outlet of the boiler 1 before spraying the desulfurizing agent, the SO 2 concentration was measured and found to be 2000 ppm. After the desulfurizing agent is sprayed and before the recycling is performed, after removing the moisture in the gas at the outlet of the dust collector 8,
The SO 2 concentration was 600 ppm as in Example 1.
That is, 70% of SO 2 in the exhaust gas has been removed (hereinafter, this condition is referred to as standard operating condition).

【0026】この際、低温脱硫部の脱硫率とCa/Sと
の関係(図3)およびCa/Sと中温脱硫部脱硫率との
関係(図4)を求めた。標準運転条件中に集塵装置8か
ら回収された灰には、実施例1と同様に脱硫剤1モル当
りのSO2吸収量(S/Ca)が35.0%の反応済み
脱硫剤が含まれていた。該反応済み脱硫剤を一定時間毎
(ここでは3時間)にバッチで回収し、回収した脱硫剤
をすべてフィーダ10でバッチと同じ時間間隔(ここで
は3時間)でボイラの中温脱硫部9(ガス温度650
℃)に供給する。以上のプロセスを繰り返して連続的に
行う。この際、集塵装置8で回収される使用済脱硫剤の
S/CaおよびC/Caを分析したものを表1に示す。
At this time, the relationship between the desulfurization rate in the low temperature desulfurization section and Ca / S (FIG. 3) and the relationship between Ca / S and the desulfurization rate in the intermediate temperature desulfurization section (FIG. 4) were determined. As in Example 1, the ash recovered from the dust collector 8 during the standard operating conditions contained the reacted desulfurization agent having an SO 2 absorption amount (S / Ca) of 35.0% per mol of the desulfurization agent. It was The reacted desulfurization agent is collected in batches at regular intervals (here, 3 hours), and all the collected desulfurization agents are fed by the feeder 10 at the same temperature interval as the batch (here, 3 hours) to the boiler middle temperature desulfurization section 9 (gas. Temperature 650
℃). The above process is repeated and performed continuously. At this time, Table 1 shows an analysis of S / Ca and C / Ca of the used desulfurizing agent collected by the dust collector 8.

【0027】[0027]

【表1】 この結果と図3および図4の実験結果を低温脱硫部と中
温脱硫部での脱硫率η=a×(Ca/S)bの式で近似
した値を用いて予測した推算値との比較も併せてそれぞ
れ示す。推算値と実測値が±1%程度の誤差で推測でき
ることが分かった。
[Table 1] Comparison of this result and the experimental results of FIGS. 3 and 4 with the estimated value using the value approximated by the formula of desulfurization rate η = a × (Ca / S) b in the low temperature desulfurization section and the intermediate temperature desulfurization section is also compared. They are also shown together. It was found that the estimated value and the actually measured value can be estimated with an error of about ± 1%.

【0028】また、この条件下で脱硫装置が定常状態に
なると低温脱硫部のCa/Sは2.5倍になるように脱
硫塔2の入口SO2濃度測定装置15からの情報で消石
灰の供給量を制御して運転したところ、総合脱硫率(=
(ボイラ出口SO2濃度−集塵装置出口SO2濃度)/ボ
イラ出口SO2濃度)は立ち上がり状態(まだ出口使用
済脱硫剤をリサイクルしていない状態)で約82%であ
った。使用済脱硫剤のリサイクル開始後の総合脱硫率8
5〜86%と安定化した(この脱硫率を以下標準脱硫率
とする)。従来の脱硫剤(ここでは消石灰)供給量一定
の条件下では立ち上がり状態での総合脱硫率は約70%
にすぎなかったが、本発明を利用した制御法を用いるこ
とによって脱硫率が立ち上がり状態から十分高い脱硫率
が得られた。以上の結果、本発明の脱硫装置制御方法を
用いることによって、装置の起動時など従来、低温脱硫
中温リサイクル方式の排煙脱硫装置の総合脱硫率が不安
定だった場合に脱硫率を安定化させることが可能になっ
た。なお、本実施例以下の全ての実施例では、ボイラ燃
料よりの排ガス中のSO2濃度は一定として扱えるの
で、中温脱硫部での脱硫率の算出にはSO2濃度の関数
は算入しないこととした。
Further, under such conditions, when the desulfurization apparatus is in a steady state, Ca / S in the low temperature desulfurization section becomes 2.5 times, and the slaked lime is supplied by the information from the inlet SO 2 concentration measuring device 15 of the desulfurization tower 2. When the system was operated with the amount controlled, the total desulfurization rate (=
(Boiler outlet SO 2 concentration-dust collector outlet SO 2 concentration) / boiler outlet SO 2 concentration) was about 82% in the rising state (the state where the used desulfurizing agent at the outlet has not been recycled). Total desulfurization rate after recycling used desulfurization agent 8
Stabilized to 5 to 86% (this desulfurization rate is hereinafter referred to as standard desulfurization rate). Conventional desulfurization agent (here slaked lime) supply rate is about 70%
However, by using the control method utilizing the present invention, the desulfurization rate was sufficiently high from the rising state. As a result of the above, by using the desulfurization apparatus control method of the present invention, the desulfurization rate is stabilized when the overall desulfurization rate of the low temperature desulfurization medium temperature recycling type flue gas desulfurization apparatus is unstable, such as at the time of starting the apparatus. It has become possible. It should be noted that, in all of the following Examples, since the SO 2 concentration in the exhaust gas from the boiler fuel can be treated as a constant, the SO 2 concentration function should not be included in the calculation of the desulfurization rate in the intermediate temperature desulfurization section. did.

【0029】実施例6 実施例5とまったく同じ装置および排ガス条件下で、集
塵装置で回収した使用済脱硫剤をスラリ化し、中温域に
噴霧した。実施例5と同じ制御法で立ち上がり状態の総
合脱硫率は約85%であり、定常状態の総合脱硫率は実
測で約86〜88%であり、操作は実施例5より煩雑で
あるが、実施例5の場合よりもやや高い脱硫率となっ
た。 実施例7 実施例5と同じ装置および排ガス条件下で、脱硫剤に水
酸化マグネシウム(Mg(OH)2)を用いた場合につ
いても検討を行った。実施例5と同じ制御下で、立ち上
がり脱硫率83%、総合脱硫率は約86%となった。脱
硫剤のコストが消石灰よりも高いものの実施例5よりも
高い脱硫率を得ることが可能であった。
Example 6 Under the same apparatus and exhaust gas conditions as in Example 5, the used desulfurizing agent recovered by the dust collector was slurried and sprayed in the medium temperature range. With the same control method as in Example 5, the total desulfurization rate in the standing state was about 85%, the total desulfurization rate in the steady state was about 86 to 88%, and the operation is more complicated than that in Example 5, but The desulfurization rate was slightly higher than that of Example 5. Example 7 Under the same apparatus and exhaust gas conditions as in Example 5, a study was also conducted on the case where magnesium hydroxide (Mg (OH) 2 ) was used as the desulfurizing agent. Under the same control as in Example 5, the rising desulfurization rate was 83% and the total desulfurization rate was about 86%. Although the cost of the desulfurization agent was higher than that of slaked lime, it was possible to obtain a higher desulfurization rate than that of Example 5.

【0030】実施例8 実施例5の装置を定常運転から燃焼装置の出力を低減す
るために石炭供給量と送風量をともに60%に低減させ
た(バッチ間隔は3時間)。ここで、ボイラ1出口のS
2流量に対する低温脱硫部と中温脱硫部での消石灰の
供給量をCa/S=2.0に固定して制御した場合(制
御条件)と脱硫塔2入口のSO2濃度に対して消石灰
の供給量を制御した場合、つまり低温脱硫部でのCa/
SをCa/S=2.5となるように消石灰供給量を制御
した場合(制御条件)を比較した。制御条件では、
中温脱硫部の脱硫剤の供給量は定常状態と同じであるか
ら中温脱硫部でのCa/Sが1.67倍(中温脱硫部C
a/S=2.0と表1のCa/S=1.2との比)とな
るため、標準脱硫率よりもかなり高い値(約90〜92
%)となり、その分低温脱硫で使う脱硫剤は無駄にな
る。一方、制御条件の方法で制御すれば総合脱硫率は
(約86〜88%)と抑えられる。また、出力低減状態
で6時間運転後、定常運転に復帰した場合、制御条件
では中温脱硫部のCa/Sが約0.7になるため総合脱
硫率が80〜82%になるが、制御条件では84〜8
6%となり総合脱硫率は燃焼装置の出力装置の出力変動
に関わらず84〜88%の範囲で安定であった。
Example 8 In order to reduce the output of the combustion apparatus from the steady operation of the apparatus of Example 5, both the coal supply rate and the air flow rate were reduced to 60% (batch interval was 3 hours). Here, S at the exit of boiler 1
When the supply amount of slaked lime in the low temperature desulfurization section and the medium temperature desulfurization section with respect to the O 2 flow rate is fixed and controlled at Ca / S = 2.0 (control condition), the slaked lime content is changed with respect to the SO 2 concentration at the desulfurization tower 2 inlet. When the supply amount is controlled, that is, Ca / in the low temperature desulfurization section
The case where the slaked lime supply amount was controlled so that S was Ca / S = 2.5 (control condition) was compared. In the control condition,
Since the supply amount of the desulfurizing agent in the medium-temperature desulfurization unit is the same as in the steady state, Ca / S in the medium-temperature desulfurization unit is 1.67 times (medium-temperature desulfurization unit C
Since a / S = 2.0 and Ca / S = 1.2 in Table 1), the value is considerably higher than the standard desulfurization rate (about 90 to 92).
%), And the desulfurizing agent used for low temperature desulfurization is wasted accordingly. On the other hand, the total desulfurization rate can be suppressed to (about 86 to 88%) if controlled by the control condition method. Moreover, when the operation is returned to the steady operation after the operation for 6 hours in the reduced output state, the total desulfurization rate becomes 80 to 82% because the Ca / S of the intermediate temperature desulfurization section becomes about 0.7 under the control conditions. Then 84-8
The total desulfurization rate was 6% and was stable in the range of 84 to 88% regardless of the output fluctuation of the output device of the combustion device.

【0031】本実施例の排煙脱硫装置の運転性能評価方
法により、低温脱硫部での排ガス脱硫後の脱硫剤中の硫
黄濃度および炭素濃度を測定することによって未反応石
灰/全供給脱硫剤のモル比を正確に求めて排煙脱硫装置
を制御してもよい(全固形分中の硫黄濃度から燃料分の
硫黄相当分(炭素濃度の測定により得られる)を差し引
いて求める。)。なお、反応済脱硫剤の中温脱硫部への
リサイクル時に、スラリ化した場合についても、低温脱
硫部の脱硫率の値を変更することによって、上記と同様
な検討を行ったところスラリ化しない場合と同等の精度
で推算できることが確認された。上記実施例では脱硫剤
として消石灰を用いた例を示したが、その他、酸化カル
シウム、炭酸カルシウム、炭酸マグネシウム、水酸化ナ
トリウム等を用いることができる。
According to the operation performance evaluation method of the flue gas desulfurization apparatus of this example, the unreacted lime / total supply desulfurization agent was measured by measuring the sulfur concentration and carbon concentration in the desulfurization agent after exhaust gas desulfurization in the low temperature desulfurization section. The flue gas desulfurization device may be controlled by accurately obtaining the molar ratio (obtained by subtracting the sulfur equivalent of the fuel (obtained by measuring the carbon concentration) from the sulfur concentration in the total solid content). In addition, even when slurry was formed during the recycling to the medium temperature desulfurization section of the reacted desulfurization agent, the same examination as above was performed by changing the desulfurization rate of the low temperature desulfurization section. It was confirmed that the estimation can be performed with the same accuracy. In the above examples, slaked lime was used as the desulfurizing agent, but calcium oxide, calcium carbonate, magnesium carbonate, sodium hydroxide or the like may be used.

【0032】[0032]

【発明の効果】本発明によれば、従来、十分な脱硫率を
得るために行った低温脱硫中温リサイクル方式に伴って
発生する集塵装置の大容量化という欠点を補い、発生す
る粉体の量に比べて脱硫率を更に向上させることが可能
になる。さらに、上記の特性を脱硫剤供給量/排ガス中
のSO2流量(Ab/S)の低減に用いれば、従来のリ
サイクル法を用いた場合よりも脱硫剤の供給量を低減で
き十分な総合脱硫率と運転コストの低減の両立が可能に
なる。また、本発明によれば、十分な脱硫率を得るため
に行った本発明の低温脱硫中温リサイクル方式の排煙脱
硫装置の運転方法において、いかなる条件での総合脱硫
率も算出可能となり、それを用いて脱硫剤供給法を従来
のボイラ出口SO2流量とのモル比で制御するよりも、
定常状態の低温脱硫部Ab/Sを算出し、低温脱硫部A
b/Sが一定になるように制御することによって脱硫率
を脱硫装置の立ち上がり状態においても十分高い値に制
御することができるようになった。その結果、装置全体
の脱硫率をどのような状態においても安定化させること
が可能となった。
EFFECTS OF THE INVENTION According to the present invention, the disadvantage of increasing the capacity of the dust collector, which is generated by the conventional low temperature desulfurization medium temperature recycling method performed to obtain a sufficient desulfurization rate, is compensated, and the generated powder is It becomes possible to further improve the desulfurization rate compared to the amount. Furthermore, if the above characteristics are used to reduce the amount of desulfurizing agent supplied / SO 2 flow rate in the exhaust gas (Ab / S), the amount of desulfurizing agent supplied can be reduced as compared with the case of using the conventional recycling method, and sufficient total desulfurization can be achieved. It is possible to achieve both the rate and the reduction of operating cost. Further, according to the present invention, in the operating method of the flue gas desulfurization apparatus of the low temperature desulfurization medium temperature recycling method of the present invention performed to obtain a sufficient desulfurization rate, it is possible to calculate the total desulfurization rate under any condition, Rather than controlling the desulfurization agent supply method by the molar ratio with the conventional boiler outlet SO 2 flow rate,
The low temperature desulfurization unit Ab / S in the steady state is calculated, and the low temperature desulfurization unit A is calculated.
By controlling b / S to be constant, the desulfurization rate can be controlled to a sufficiently high value even when the desulfurization apparatus is in a standing state. As a result, it has become possible to stabilize the desulfurization rate of the entire apparatus in any state.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の脱硫装置のフローシート
および概略図である。
FIG. 1 is a flow sheet and a schematic view of a desulfurization device according to a first embodiment of the present invention.

【図2】 本発明の実施例5の脱硫装置のフローシート
および概略図である。
FIG. 2 is a flow sheet and a schematic diagram of a desulfurization apparatus according to a fifth embodiment of the present invention.

【図3】 本発明の実施例5の脱硫装置の運転方法にお
ける低温脱硫部の脱硫率とCa/Sとの関係を示す試験
結果の図である。
FIG. 3 is a diagram of test results showing the relationship between the desulfurization rate of the low temperature desulfurization section and Ca / S in the method for operating the desulfurization apparatus of Example 5 of the present invention.

【図4】 本発明の実施例5の脱硫装置の運転方法にお
ける中温脱硫部の脱硫率とCa/Sとの関係を示す試験
結果の図である。
FIG. 4 is a diagram of test results showing the relationship between the desulfurization rate of the intermediate temperature desulfurization section and Ca / S in the operating method of the desulfurization apparatus of Example 5 of the invention.

【図5】 従来の低温脱硫中温リサイクルプロセスを含
む脱硫装置の概略図である。
FIG. 5 is a schematic diagram of a desulfurization apparatus including a conventional low temperature desulfurization medium temperature recycling process.

【図6】 従来の代表的な気流層への脱硫剤噴霧法の乾
式脱硫装置の概略図である。
FIG. 6 is a schematic view of a conventional dry desulfurization apparatus of a method of spraying a desulfurizing agent onto a typical airflow layer.

【符号の説明】[Explanation of symbols]

1…ボイラ、2…脱硫塔、3…エアヒータ、4…高温集
塵装置、5…脱硫剤噴霧口、6…排ガス、7…水噴霧
口、8…(低温部)集塵装置、9…中温脱硫部、10、
10’…フィーダ、11…脱硫剤供給量制御装置、12
…送風量測定装置、13…ボイラ出口SO2濃度測定装
置、14…低温部集塵装置出口SO2濃度測定装置、1
5…脱硫塔入口SO2濃度測定装置
1 ... Boiler, 2 ... Desulfurization tower, 3 ... Air heater, 4 ... High temperature dust collector, 5 ... Desulfurizing agent spray port, 6 ... Exhaust gas, 7 ... Water spray port, 8 ... (Low temperature part) dust collector, 9 ... Medium temperature Desulfurization unit, 10,
10 '... Feeder, 11 ... Desulfurizing agent supply amount control device, 12
... Blower amount measuring device, 13 ... Boiler outlet SO 2 concentration measuring device, 14 ... Low temperature part dust collector outlet SO 2 concentration measuring device, 1
5 ... SO 2 concentration measuring device at desulfurization tower inlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 ZAB (72)発明者 坂口 安英 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01D 53/34 ZAB (72) Inventor Sakaguchi Anei 3-36 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Ltd. Kure Institute

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属またはアルカリ土類金属の
少なくとも一種類以上の金属の化合物を脱硫剤として用
い、燃焼装置の排ガス路の温度200℃以下の低温脱硫
部に供給し、排ガス中の硫黄酸化物と反応させた後、未
反応脱硫剤を含む脱硫剤を集塵装置で回収する排煙脱硫
装置において、該集塵装置で回収した未反応脱硫剤を含
む使用済み脱硫剤を、排ガス路の温度500〜900℃
の中温脱硫部に供給し、排ガスの硫黄酸化物と反応させ
た後、低温脱硫部における脱硫剤供給位置よりも上流部
で回収することを特徴とする排煙脱硫装置。
1. Sulfur oxidation in exhaust gas by using a compound of at least one metal of an alkali metal or an alkaline earth metal as a desulfurizing agent and supplying the compound to a low temperature desulfurization section of an exhaust gas passage of a combustion device at a temperature of 200 ° C. or lower. In a flue gas desulfurization device that recovers a desulfurizing agent containing an unreacted desulfurizing agent with a dust collector after the reaction with a substance, the used desulfurizing agent containing the unreacted desulfurizing agent recovered with the dust collecting device is used in the exhaust gas passage. Temperature 500 ~ 900 ℃
The flue gas desulfurization apparatus characterized in that after being supplied to the medium-temperature desulfurization section and reacted with the sulfur oxides of the exhaust gas, it is recovered at the upstream side of the desulfurizing agent supply position in the low-temperature desulfurization section.
【請求項2】 アルカリ金属またはアルカリ土類金属の
少なくとも一種類以上の金属の化合物を脱硫剤として用
い、燃焼装置の排ガス路の温度200℃以下の低温脱硫
部に供給し、排ガス中の硫黄酸化物と反応させた後、未
反応脱硫剤を含む脱硫剤を集塵装置で回収する排煙脱硫
装置において、該集塵装置で回収した未反応脱硫剤を含
む使用済み脱硫剤に水を添加してスラリ状態にした後、
排ガス路の温度500〜900℃の中温脱硫部に供給
し、排ガスの硫黄酸化物と反応させた後、低温脱硫部に
おける脱硫剤供給位置よりも上流部で回収することを特
徴とする排煙脱硫装置。
2. Sulfur oxidation in exhaust gas by using a compound of at least one metal of an alkali metal or an alkaline earth metal as a desulfurizing agent and supplying it to a low temperature desulfurization section of an exhaust gas passage of a combustion device at a temperature of 200 ° C. or lower. In a flue gas desulfurization device in which a desulfurizing agent containing an unreacted desulfurizing agent is collected by a dust collector after reacting with a substance, water is added to a used desulfurizing agent containing an unreacted desulfurizing agent collected by the dust collecting device. After making it into a slurry state,
The flue gas desulfurization is characterized in that the temperature of the exhaust gas passage is supplied to a medium-temperature desulfurization unit of 500 to 900 ° C., reacted with the sulfur oxides of the exhaust gas, and then recovered at a portion upstream of the desulfurizing agent supply position in the low-temperature desulfurization unit. apparatus.
【請求項3】 アルカリ金属またはアルカリ土類金属の
少なくとも一種類以上の金属の化合物を脱硫剤として用
い、燃焼装置の排ガス路の温度200℃以下の低温脱硫
部に供給し、排ガス中の硫黄酸化物と反応させた後、未
反応脱硫剤を含む脱硫剤を集塵装置で回収し、該集塵装
置で回収した未反応脱硫剤を含む使用済み脱硫剤を、排
ガス路の温度500〜900℃の中温脱硫部に供給し、
排ガスの硫黄酸化物と反応させた後、低温脱硫部におけ
る脱硫剤供給位置よりも上流部で回収する排煙脱硫装置
において、(a)中温部で反応した脱硫剤の低温脱硫部
を含む温度500℃以下の排ガス路領域での脱硫反応を
無視する、(b)集塵装置で回収された中温脱硫部に供
給される脱硫剤の脱硫率は、中温脱硫部での単位時間当
たりの(未反応脱硫剤の供給モル数)/(排ガス中の硫
黄酸化物モル数)および排ガス中の硫黄酸化物濃度の2
つをパラメータとして予め評価しておいた中温脱硫部単
独の脱硫率から決定する、(c)低温脱硫部での脱硫率
は、低温脱硫部での単位時間当たりの(脱硫剤供給モル
数)/(排ガス中の硫黄酸化物モル数)および低温脱硫
部の相対湿度をパラメータとして決定し、排ガス中の硫
黄酸化物濃度をパラメータとはしない、ことを条件とし
て総合脱硫率を求め、排煙脱硫装置の運転性能を評価す
ることを特徴とする排煙脱硫装置の運転性能評価方法。
3. Use of a compound of at least one metal of an alkali metal or an alkaline earth metal as a desulfurizing agent, and supply the compound to a low temperature desulfurization section of an exhaust gas passage of a combustion device at a temperature of 200 ° C. or lower to oxidize sulfur in exhaust gas. After reacting with the substance, the desulfurizing agent containing the unreacted desulfurizing agent is collected by the dust collector, and the used desulfurizing agent containing the unreacted desulfurizing agent collected by the dust collecting apparatus is used at the exhaust gas passage temperature of 500 to 900 ° C. Supply to the medium temperature desulfurization section of
In a flue gas desulfurization device that recovers the sulfur oxides of the exhaust gas at a portion upstream of the desulfurizing agent supply position in the low temperature desulfurization section, (a) a temperature 500 including the low temperature desulfurization section of the desulfurization agent reacted in the intermediate temperature section. The desulfurization rate of the desulfurization agent supplied to the intermediate temperature desulfurization section recovered by the dust collector (b) per unit time (unreacted) 2 of the desulfurizing agent supply mole number) / (sulfur oxide mole number in the exhaust gas) and the sulfur oxide concentration in the exhaust gas
Determined from the desulfurization rate of the medium-temperature desulfurization section alone, which has been evaluated in advance as one parameter, (c) the desulfurization rate in the low-temperature desulfurization section is (mol desulfurizing agent supply moles) per unit time in the low-temperature desulfurization section / The total desulfurization rate is calculated under the condition that (the number of moles of sulfur oxides in the exhaust gas) and the relative humidity of the low temperature desulfurization part are used as parameters, and that the concentration of sulfur oxides in the exhaust gas is not used as a parameter. A method for evaluating the operational performance of a flue gas desulfurization device, characterized by evaluating the operational performance of
【請求項4】 請求項3記載の排煙脱硫装置の運転性能
評価方法により、低温脱硫部での単位時間当たりの(脱
硫剤供給モル数)/(排ガス中の硫黄酸化物モル数)と
中温脱硫部での単位時間当たりの(未反応脱硫剤の供給
モル数)/(排ガス中の硫黄酸化物モル数)の少なくと
もいずれかを変化させて排煙脱硫装置の総合脱硫率を制
御することを特徴とする排煙脱硫装置の制御方法。
4. The method for evaluating operational performance of a flue gas desulfurization apparatus according to claim 3, wherein (desulfurizing agent supply mole number) / (sulfur oxide mole number in exhaust gas) per unit time and low temperature in the low temperature desulfurization section. It is possible to control the total desulfurization rate of the flue gas desulfurization unit by changing at least one of (the number of moles of unreacted desulfurizing agent supplied) / (the number of moles of sulfur oxides in the exhaust gas) per unit time in the desulfurization section. A method for controlling a flue gas desulfurization device characterized.
【請求項5】 請求項3記載の排煙脱硫装置の運転性能
評価方法により、脱硫剤リサイクル時の定常状態での低
温脱硫部または中温脱硫部の少なくともいずれかの脱硫
部での単位時間当たりの(脱硫剤供給モル数)/(低温
脱硫部入口硫黄酸化物流入モル数)を推算し、該推算モ
ル比を運転当初から推算した値とすることによって排煙
脱硫装置をより早く定常状態にすることを特徴とする排
煙脱硫装置の制御方法。
5. The method for evaluating operational performance of a flue gas desulfurization apparatus according to claim 3, wherein at least one of the low temperature desulfurization section and the intermediate temperature desulfurization section in a steady state during recycling of the desulfurization agent is used per unit time. (Desulfurizing agent supply mole number) / (low temperature desulfurization unit inlet sulfur oxide inflow mole number) is estimated, and the estimated mole ratio is set to a value estimated from the beginning of operation, so that the flue gas desulfurization apparatus is brought into a steady state faster. A method for controlling a flue gas desulfurization apparatus, which is characterized by the above.
【請求項6】 請求項3記載の排煙脱硫装置の運転性能
評価方法により、低温脱硫部での排ガス脱硫後の脱硫剤
中の硫黄濃度および炭素濃度を測定することによって未
反応石灰/全供給脱硫剤のモル比を正確に求めることを
特徴とする排煙脱硫装置の制御方法。
6. The unreacted lime / total supply by measuring the sulfur concentration and carbon concentration in the desulfurization agent after exhaust gas desulfurization in the low temperature desulfurization section by the method for evaluating the operation performance of the flue gas desulfurization apparatus according to claim 3. A method for controlling a flue gas desulfurization device, characterized in that the molar ratio of a desulfurizing agent is accurately obtained.
【請求項7】 アルカリ金属またはアルカリ土類金属の
少なくとも一種類以上の金属の化合物を脱硫剤として用
い、燃焼装置の排ガス路の温度200℃以下の低温脱硫
部に供給し、排ガス中の硫黄酸化物と反応させた後、未
反応脱硫剤を含む脱硫剤を集塵装置で回収し、該集塵装
置で回収した未反応脱硫剤を含む使用済み脱硫剤に水を
添加してスラリ状態にした後、排ガス路の温度500〜
900℃の中温脱硫部に供給し、排ガスの硫黄酸化物と
反応させた後、低温脱硫部における脱硫剤供給位置より
も上流部で回収する排煙脱硫装置において、(a)中温
部で反応した脱硫剤の低温脱硫部を含む温度500℃以
下の排ガス路領域での脱硫反応を無視する、(b)集塵
装置で回収された中温脱硫部に供給される脱硫剤の脱硫
率は、中温脱硫部での単位時間当たりの(未反応脱硫剤
の供給モル数)/(排ガス中の硫黄酸化物モル数)およ
び排ガス中の硫黄酸化物濃度の2つをパラメータとして
予め評価しておいた中温脱硫部単独の脱硫率から決定す
る、(c)低温脱硫部での脱硫率は、低温脱硫部での単
位時間当たりの(脱硫剤供給モル数)/(排ガス中の硫
黄酸化物モル数)および低温脱硫部の相対湿度をパラメ
ータとして決定し、排ガス中の硫黄酸化物濃度はパラメ
ータとしない、ことを条件として総合脱硫率を求め、排
煙脱硫装置の運転性能を評価することを特徴とする排煙
脱硫装置の運転性能評価方法。
7. Sulfur oxidation in exhaust gas by using a compound of at least one metal of an alkali metal or an alkaline earth metal as a desulfurizing agent and supplying it to a low temperature desulfurization section of an exhaust gas passage of a combustion device at a temperature of 200 ° C. or lower. After reacting with the substance, the desulfurizing agent containing the unreacted desulfurizing agent is collected by the dust collector, and water is added to the used desulfurizing agent containing the unreacted desulfurizing agent collected by the dust collecting apparatus to form a slurry state. After that, the temperature of the exhaust gas path is 500 ~
In a flue gas desulfurization device that is supplied to a medium-temperature desulfurization unit at 900 ° C. and reacted with sulfur oxides of exhaust gas, and then is recovered in an upstream portion of a desulfurizing agent supply position in the low-temperature desulfurization unit, (a) reacted in the middle-temperature portion. The desulfurization rate of the desulfurization agent supplied to the intermediate temperature desulfurization section recovered by the dust collector is the intermediate temperature desulfurization, ignoring the desulfurization reaction in the exhaust gas passage region at a temperature of 500 ° C or less including the low temperature desulfurization section of the desulfurization agent. Medium-temperature desulfurization evaluated in advance using two parameters: (number of moles of unreacted desulfurization agent supplied) / (number of moles of sulfur oxides in exhaust gas) per unit time and concentration of sulfur oxides in exhaust gas (C) The desulfurization rate in the low temperature desulfurization section is determined from the desulfurization rate of the single part, and the (desulfurizing agent supply mole number) / (sulfur oxide mole number in exhaust gas) per unit time in the low temperature desulfurization section and the low temperature Relative humidity of the desulfurization part was determined as a parameter. Sulfur oxides concentration in the exhaust gas is not a parameter, determine the overall desulfurization rate on the condition that the operating performance evaluation method of flue gas desulfurization apparatus and evaluating the operation performance of the flue gas desulfurization system.
【請求項8】 請求項7記載の排煙脱硫装置の運転性能
評価方法により、低温脱硫部での単位時間当たりの(脱
硫剤供給モル数)/(排ガス中の硫黄酸化物モル数)と
中温脱硫部での単位時間当たりの(未反応脱硫剤の供給
モル数)/(排ガス中の硫黄酸化物モル数)の少なくと
もいずれかを変化させて排煙脱硫装置の総合脱硫率を制
御することを特徴とする排煙脱硫装置の制御方法。
8. The method for evaluating operational performance of a flue gas desulfurization apparatus according to claim 7, wherein (desulfurizing agent supply mole number) / (sulfur oxide mole number in exhaust gas) per unit time and low temperature in the low temperature desulfurization section. It is possible to control the total desulfurization rate of the flue gas desulfurization unit by changing at least one of (the number of moles of unreacted desulfurizing agent supplied) / (the number of moles of sulfur oxides in the exhaust gas) per unit time in the desulfurization section. A method for controlling a flue gas desulfurization device characterized.
【請求項9】 請求項7記載の排煙脱硫装置の運転性能
評価方法により、脱硫剤リサイクル時の定常状態での低
温脱硫部または中温脱硫部の少なくともいずれかの脱硫
部での単位時間当たりの(脱硫剤供給モル数)/(低温
脱硫部入口硫黄酸化物流入モル数)を推算し、該推算モ
ル比を運転当初から推算した値とすることによって排煙
脱硫装置をより早く定常状態にすることを特徴とする排
煙脱硫装置の制御方法。
9. The method for evaluating operational performance of a flue gas desulfurization apparatus according to claim 7, wherein at least one of the low temperature desulfurization section and the medium temperature desulfurization section at a desulfurization section in a steady state during desulfurization agent recycling (Desulfurizing agent supply mole number) / (low temperature desulfurization unit inlet sulfur oxide inflow mole number) is estimated, and the estimated mole ratio is set to a value estimated from the beginning of operation, so that the flue gas desulfurization apparatus is brought into a steady state faster. A method for controlling a flue gas desulfurization apparatus, which is characterized by the above.
【請求項10】 請求項7記載の排煙脱硫装置の運転性
能評価方法により、低温脱硫部での排ガス脱硫後の脱硫
剤中の硫黄濃度および炭素濃度を測定することによって
未反応石灰/全供給脱硫剤のモル比を正確に求めること
を特徴とする排煙脱硫装置の制御方法。
10. The unreacted lime / total supply by measuring the sulfur concentration and carbon concentration in the desulfurizing agent after exhaust gas desulfurization in the low temperature desulfurization section by the method for evaluating the operation performance of the flue gas desulfurization apparatus according to claim 7. A method for controlling a flue gas desulfurization device, characterized in that the molar ratio of a desulfurizing agent is accurately obtained.
JP5253146A 1993-10-08 1993-10-08 Flue gas desulfurized and method for evaluating operating performance and method for controlling thereof Pending JPH07108132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253146A JPH07108132A (en) 1993-10-08 1993-10-08 Flue gas desulfurized and method for evaluating operating performance and method for controlling thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253146A JPH07108132A (en) 1993-10-08 1993-10-08 Flue gas desulfurized and method for evaluating operating performance and method for controlling thereof

Publications (1)

Publication Number Publication Date
JPH07108132A true JPH07108132A (en) 1995-04-25

Family

ID=17247165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253146A Pending JPH07108132A (en) 1993-10-08 1993-10-08 Flue gas desulfurized and method for evaluating operating performance and method for controlling thereof

Country Status (1)

Country Link
JP (1) JPH07108132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140074314A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during steady-state conditions in dry scrubber
KR20140074315A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during non-steady state conditions in dry scrubber
CN108686496A (en) * 2018-08-06 2018-10-23 江苏垦乐节能环保科技有限公司 A kind of flue gas desulfurization minimum discharge pretreatment system and its implementation
CN117414697A (en) * 2023-12-19 2024-01-19 北京工业大学 Medium-temperature flue gas desulfurizing agent for cement kiln and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140074314A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during steady-state conditions in dry scrubber
KR20140074315A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during non-steady state conditions in dry scrubber
JP2014534054A (en) * 2011-09-29 2014-12-18 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Dry adsorbent injection during non-steady state to a dry scrubber
JP2014534897A (en) * 2011-09-29 2014-12-25 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Dry adsorbent input during steady state in dry scrubber
CN108686496A (en) * 2018-08-06 2018-10-23 江苏垦乐节能环保科技有限公司 A kind of flue gas desulfurization minimum discharge pretreatment system and its implementation
CN108686496B (en) * 2018-08-06 2023-12-08 江苏垦乐节能环保科技有限公司 Flue gas desulfurization ultra-low emission pretreatment system and implementation method thereof
CN117414697A (en) * 2023-12-19 2024-01-19 北京工业大学 Medium-temperature flue gas desulfurizing agent for cement kiln and preparation method thereof
CN117414697B (en) * 2023-12-19 2024-03-12 北京工业大学 Medium-temperature flue gas desulfurizing agent for cement kiln and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2300489C (en) Process for removing nox and sox from exhaust gas
JPWO2004023040A1 (en) Smoke treatment system
CN105561753A (en) Novel dry process cement kiln flue gas online desulfurization device and technology
KR930012041B1 (en) Simultaneous desulphurization and denitrogenation method
JPH07108132A (en) Flue gas desulfurized and method for evaluating operating performance and method for controlling thereof
JP3032247B2 (en) Desulfurization method of spraying fine powder desulfurizing agent to combustion exhaust gas
JPS6251645B2 (en)
JPH0557141A (en) Flue gas desulfurization apparatus
JP2655725B2 (en) Exhaust gas treatment method for pulverized coal combustion boiler
JP3274663B2 (en) Combustion ash treatment method
JPH0521609B2 (en)
KR100225474B1 (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JP2725784B2 (en) Flue gas desulfurization method
US4891194A (en) Method for scrubbing flue gases from a firing unit
RU2796494C1 (en) Method and installation for joint flue gas cleaning with several pollutants
JPH10118446A (en) Apparatus for treatment highly concentrated so2 gas containing exhaust gas
JP3790358B2 (en) Method for reducing sulfuric acid and anhydrous sulfuric acid in combustion exhaust gas
CN109813131B (en) Method for treating gypsum calcination flue gas
JPS6251644B2 (en)
JP2796429B2 (en) Combustion gas desulfurization method and apparatus
JPH05154336A (en) Desulfurization of exhaust gas
JPH05177113A (en) Method for evaluating operation capacity of exhaust gas desulfurization equipment and method for controlling same equipment
JPH07308540A (en) Waste gas treatment
CA1304939C (en) Process for controlling acid gas emissions in power plant flue gases
JPH0549853A (en) Method for stack gas desulfurization method and device therefor