JPH07107582B2 - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH07107582B2
JPH07107582B2 JP61058661A JP5866186A JPH07107582B2 JP H07107582 B2 JPH07107582 B2 JP H07107582B2 JP 61058661 A JP61058661 A JP 61058661A JP 5866186 A JP5866186 A JP 5866186A JP H07107582 B2 JPH07107582 B2 JP H07107582B2
Authority
JP
Japan
Prior art keywords
lens
scanning
mirror
optical scanning
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61058661A
Other languages
Japanese (ja)
Other versions
JPS62215228A (en
Inventor
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61058661A priority Critical patent/JPH07107582B2/en
Publication of JPS62215228A publication Critical patent/JPS62215228A/en
Publication of JPH07107582B2 publication Critical patent/JPH07107582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザービームプリンタに用いられる光走査装
置に関する。さらに詳しくは走査レンズ系に関する。
The present invention relates to an optical scanning device used in a laser beam printer. More specifically, it relates to a scanning lens system.

〔従来の技術〕[Conventional technology]

レーザービームを高速に偏向走査して画像情報を記録す
るレーザービームプリンタは、高速、高解像度、低騒音
という優れた特徴を有しており、小型化低価格化が進む
につれ急速にその需要を増してきている。そこで、その
重要な構成要素である光書き込みヘッドとして、光走査
装置に対しても小型化低価格化の要求は大きい。光走査
装置は大きくわけて光源と偏向器との結像レンズ系とか
ら成る。中でも結像レンズ系の単純化は小型化低価格化
に有効である。
Laser beam printers, which record image information by deflecting and scanning a laser beam at high speed, have the outstanding features of high speed, high resolution, and low noise, and the demand for them rapidly increases as miniaturization and cost reduction proceed. Is coming. Therefore, as an optical writing head, which is an important component thereof, there is a great demand for downsizing and cost reduction of an optical scanning device. The optical scanning device is roughly divided into a light source and an image forming lens system of a deflector. Above all, simplification of the imaging lens system is effective for downsizing and cost reduction.

従来、レーザービームプリンタの光走査装置は第4図に
示すように偏向鏡13と、被走査平面Slの間に結像レンズ
11が配されたプリオブジエクテイブ型の走査光学系がほ
とんどである。プリオブジエクテイブ型の走査光学系は
像面湾曲収差を補正できること、走査速度の補正を光学
的に行なえること等の利点を有するが、広い画角をカバ
ーする必要上、レーザービームの径はきわめて小さいに
も拘らず結像レンズ11が大口径となつてしまう。
Conventionally, an optical scanning device of a laser beam printer has an imaging lens between a deflecting mirror 13 and a scanning plane S l as shown in FIG.
Most of them are pre-obvious active scanning optical systems in which 11 is arranged. The pre-objective type scanning optical system has the advantages that it can correct field curvature aberration and that it can optically correct the scanning speed, but since it is necessary to cover a wide angle of view, the diameter of the laser beam is Despite being extremely small, the imaging lens 11 has a large aperture.

一方第5図に示すように光源と偏向鏡13の間に結像レン
ズ11が配されたポストオブジエクテイブ型の走査光学系
は、結像レンズ11が小口径でよく低価格化が可能であ
る。この場合に問題となる像面湾曲収差(第5図に示さ
れるように結像面SGは円弧状になる。)の問題は、像側
のビーム開口角が小さいため焦点深度が深いことを利用
して、焦点深度と結像面SGの曲率とのかねあいで解決す
ることができる。また走査速度の補正は光源の点灯周期
を電気的に補正することによつて行える。また光源であ
るレーザーダイオードから出射される光束は発散光束で
あるから、プリオブジエクテイブ型の走査光学系では、
光源12と偏向鏡13の間にコリメートレンズ16が必要であ
るのに対し、ポストオブジエクテイブ型では光源12から
出射した発散光束をそのまま結像用レンズ11に入射させ
ることができ、コリメートレンズが必要となる。
On the other hand, in the post-objective type scanning optical system in which the imaging lens 11 is arranged between the light source and the deflecting mirror 13 as shown in FIG. 5, the imaging lens 11 has a small aperture and the cost can be reduced. is there. In this case, the problem of field curvature aberration (the image plane S G has an arc shape as shown in FIG. 5) is that the depth of focus is deep because the beam aperture angle on the image side is small. It can be solved by a trade-off between the depth of focus and the curvature of the image plane S G. The scanning speed can be corrected by electrically correcting the lighting cycle of the light source. Further, since the light beam emitted from the laser diode which is the light source is a divergent light beam, in the pre-objective scanning optical system,
While the collimator lens 16 is required between the light source 12 and the deflecting mirror 13, in the post-objective type, the divergent light beam emitted from the light source 12 can be directly incident on the imaging lens 11, and the collimator lens can be used. Will be needed.

ところで、レーザービームプリンタにこのような結像レ
ンズを用いた場合、像面でのビームスポツト径と光波長
から決まる像側の開口角は非常に小さくなるが、レーザ
ーダイオードの出射ビームが拡がり角によつて決まる光
源側の開口角はかなり大きい。従つて結像レンズは開口
数の大きなものを用いねばならず、球面収差を良好に補
正することが必要となるため、従来このようなレンズは
複数枚で構成されていた。
By the way, when such an imaging lens is used in a laser beam printer, the aperture angle on the image side, which is determined by the beam spot diameter on the image plane and the light wavelength, becomes very small, but the emission beam of the laser diode has a divergent angle. The aperture angle on the light source side, which is decided by a large number, is quite large. Therefore, an imaging lens having a large numerical aperture must be used, and it is necessary to satisfactorily correct spherical aberration. Therefore, conventionally, such a lens is composed of a plurality of lenses.

〔発明が解決しようとする問題点および目的〕[Problems and Objectives to be Solved by the Invention]

上述の如く、プリオブジエクテイブ型の走査光学系では
結像レンズが大口径であり、ポストオブジエクテイブ型
の走査光学系ではレーザーダイオードから出射した発散
光束を結像させるために複数枚構成の結像レンズを必要
とする。レーザー光学系は一般に高い面精度が必要であ
るから上述の走査光学系による光走査装置は高価なもの
にならざるを得ないという欠点を有していた。
As described above, in the pre-objective type scanning optical system, the imaging lens has a large aperture, and in the post-objective type scanning optical system, a plurality of lenses are used to form an image of the divergent light beam emitted from the laser diode. Requires an imaging lens. Since the laser optical system generally requires high surface accuracy, the optical scanning device based on the above-mentioned scanning optical system has a drawback that it must be expensive.

本発明は上述の点に鑑みてなされたもので、その目的と
するところは、小型低価格、高性能なレーザプリンタ用
光走査装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a small-sized, low-cost, high-performance optical scanning device for a laser printer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光走査装置は、発散光束を出射する光源と、該
光束を偏向走査する回転多面鏡と、前記回転多面鏡によ
り偏向された前記光束を結像する感光体とを備え光走査
をおこなう光走査装置において、前記光源と前記回転鏡
偏向装置との間に非球面レンズを配置し、前記箇所に非
球面レンズを備えた光学系が、 f:単玉非球面レンズの焦点距離 r1:単玉非球面レンズの第1面頂点の曲率半径 s1:光源と単玉非球面レンズの第1主平面との距離 s2:結像面と単玉非球面レンズの第2主平面との距離 l1:回転鏡偏向装置の回転多面鏡の偏向鏡面と結像面と
の距離 l2:有効走査幅 としたとき、 (i)0.689<r1/f<2.377 (ii)l2 2s1 2/l1s2 2<1.0×10-2mm の条件を満たすことを特徴とする。
The optical scanning device of the present invention includes a light source that emits a divergent light beam, a rotary polygonal mirror that deflects and scans the light beam, and a photoconductor that forms an image of the light beam that is deflected by the rotary polygonal mirror, and performs optical scanning. In the optical scanning device, an aspherical lens is arranged between the light source and the rotating mirror deflecting device, and an optical system having an aspherical lens at the location is f: focal length r 1 of a single-lens aspherical lens: Radius of curvature of the apex of the first surface of the single-lens aspherical lens s 1 : Distance between the light source and the first principal plane of the single-lens aspherical lens s 2 : Between the image plane and the second principal plane of the single-lens aspherical lens Distance l 1 : Distance between the deflecting mirror surface of the rotating polygon mirror of the rotating mirror deflecting device and the image plane l 2 : When the effective scanning width is set, (i) 0.689 <r1 / f <2.377 (ii) l 2 2 s 1 It is characterized by satisfying the condition of 2 / l 1 s 2 2 <1.0 × 10 -2 mm.

〔実施例〕〔Example〕

以下、本発明の光走査装置を構成する走査光学系を詳し
く説明する。走査光学系の説明に入る前に第1図を用い
て本発明の光走査装置の全体像を説明する。レーザーダ
イオード2から出射したレーザービームは単玉非球面結
像レンズ1で感光ドラム5上の被走査面全体が焦点深度
範囲内に入るよう集光される。レーザービームは回転多
面鏡偏向器4の偏向鏡3によつて偏向走査される。この
時被走査平面上でのレーザースポツトの走査速度は等速
とならないが、レーザーダイオード2の発光タイミング
を走査速度にあわせて補正することによつて等ピツチの
走査を行う。この走査1回につき感光ドラムが1ピツチ
だけ回転してそれが繰返されることによつて感光ドラム
上に潜像が形成される。
Hereinafter, the scanning optical system which constitutes the optical scanning device of the present invention will be described in detail. Before starting the description of the scanning optical system, an overall image of the optical scanning device of the present invention will be described with reference to FIG. The laser beam emitted from the laser diode 2 is focused by the single-lens aspherical imaging lens 1 so that the entire surface to be scanned on the photosensitive drum 5 falls within the depth of focus range. The laser beam is deflected and scanned by the deflecting mirror 3 of the rotary polygon mirror deflector 4. At this time, the scanning speed of the laser spot on the plane to be scanned is not constant, but the light emitting timing of the laser diode 2 is corrected in accordance with the scanning speed to perform equal pitch scanning. The latent image is formed on the photosensitive drum by rotating the photosensitive drum by one pitch and repeating it for each scanning.

本発明の光学系は、レーザーダイオードからかなり大き
い拡がり角で出射したレーザービームを所望のスポツト
サイズに結像する機能と、回転多面鏡によつて偏向され
たレーザービームが像面上で形成するスポツトのスポツ
トサイズを像面上のいたるところで均一にする機能に分
けて考えることができる。
The optical system of the present invention has a function of forming a laser beam emitted from a laser diode with a considerably large divergence angle into a desired spot size, and a spot formed on the image plane by a laser beam deflected by a rotating polygon mirror. It can be considered by dividing it into the functions to make the spot size of the image uniform throughout the image plane.

第2図は前者の機能を説明するための図で、光軸上の一
点POにあるレーザーダイオード2の出射点から出射した
レーザービームは単玉結像レンズ1によつて同じく光軸
上の一点PIに結像される。従つて単玉結像レンズ1は球
面収差のみを考慮すればよく、レンズの第1面S1または
第2面S2のいずれかを非球面化することによつてほぼ無
収差の結像光学系が構成できる。ただし組立誤差等によ
り出射点が光軸からずれることを許容するとすればコマ
収差の発生も考えてS1,S2の両面を非球面化する必要が
ある。
FIG. 2 is a diagram for explaining the former function. The laser beam emitted from the emission point of the laser diode 2 at one point P O on the optical axis is also on the optical axis by the single-lens imaging lens 1. An image is formed at one point P I. Therefore, the single-lens imaging lens 1 only needs to take spherical aberration into consideration, and by making either the first surface S 1 or the second surface S 2 of the lens aspherical, almost no aberration is generated. The system can be configured. However, if the exit point is allowed to deviate from the optical axis due to assembly error, it is necessary to make both surfaces S 1 and S 2 aspherical in consideration of coma.

さて、上述の非球面形状を、入射高yの面上の点と面頂
点の接平面SPからの距離をxとして、 と表現する。このようにy10の項まで考慮すればほぼ無
収差の結像系が得られる。このような非球面形状はプラ
スチツク成形加工、またはガラス成形加工を用いて安価
に得ることができる。
Now, with the above aspherical shape, the distance from the tangent plane S P between the point on the surface of the incident height y and the surface vertex is x, Express. In this way, an imaging system with almost no aberration can be obtained by considering the term of y 10 . Such an aspherical shape can be obtained at low cost by using plastic molding or glass molding.

第2図においてSMは偏向鏡3の鏡面を表しており、レー
ザービームは紙面上のSMを回転軸として紙面から離れる
方向に回転して走査されるわけである。第3図は前述の
後者の走査機能を説明するための図である。偏向鏡3を
通過した後のレーザービームは開口角が非常に小さいた
め、球面収差、コマ収差を考慮する必要がなく、またレ
ーザービームの主光線は結像レンズ1の中心を通過して
いるため非点収差も考慮しなくてよい。さらに歪曲収差
はレーザーダイオードの点灯周期によつて補正可能であ
る。従つて像面湾曲のみを考えればよい。即ち第3図に
示すようにレーザービームの焦点深度をδとして2δの
幅を持つ円弧帯が被走査平面SI全体を含むようにするこ
とによつて走査方向全体にわたつて均一なスポツトサイ
ズを得ることができるわけである。
In FIG. 2, S M represents the mirror surface of the deflecting mirror 3, and the laser beam is scanned while rotating in the direction away from the paper surface with the S M on the paper surface as the rotation axis. FIG. 3 is a diagram for explaining the latter scanning function described above. Since the aperture angle of the laser beam after passing through the deflecting mirror 3 is very small, it is not necessary to consider spherical aberration and coma aberration, and the principal ray of the laser beam passes through the center of the imaging lens 1. Astigmatism need not be considered. Further, the distortion aberration can be corrected by the lighting period of the laser diode. Therefore, only the curvature of field should be considered. That is, as shown in FIG. 3, a circular spot having a width of 2δ, where the focal depth of the laser beam is δ, includes the entire plane S I to be scanned, thereby obtaining a uniform spot size over the entire scanning direction. You can get it.

さて本発明の光学系は特許請求の範囲に記載された
(i)(ii)の条件を満足しているわけであるが、これ
について説明する。(i)はレーザーダイオードの出力
の利用効率を悪化させない、即ちレンズの開口径を大き
くとるための条件である。(i)よりもr1/fが小さけれ
ば第1面の曲率が強すぎ、(i)よりもr1/fが大きけれ
ば第2面の曲率が強すぎてレンズ口径を大きくできず、
通常のレーザーダイオードのビーム拡がり角のもとでは
光出力の利用効率を90%以上にできないことが、種々の
検討の結果判明した。
The optical system of the present invention satisfies the conditions (i) and (ii) described in the claims, which will be described. (I) is a condition for not deteriorating the utilization efficiency of the output of the laser diode, that is, for making the aperture diameter of the lens large. If r 1 / f is smaller than (i), the curvature of the first surface is too strong, and if r 1 / f is larger than (i), the curvature of the second surface is too strong to increase the lens aperture,
As a result of various studies, it was found that the utilization efficiency of the optical output cannot be 90% or more under the beam divergence angle of a normal laser diode.

(ii)は、走査方向全体にわたつて均一なスポツトサイ
ズを得るための条件である。スポツトの均一性がl2 2・S
1 2/l1S1 2に比例することは以下のようにして導ける。
すなわち、レーザービームの焦点深度δはビームの像側
開口角θ′の自乗に反比例することが知られている。す
なわち、 δ=A・1/θ′ (2) また2δの幅で中央部半径l1の円弧帯がl2の走査幅をお
おう条件 16δl1<l2 2 (3) とレーザービームの光源側開口角θと像側開口角θ′の
関係 S1θ=S2θ′ (4) をあわせて となる。種々のl1,l2,S1,S2について実験的にスポツ
トサイズを測定したところ の範囲であれば走査方向のスポツトサイズの変化は10%
以内に収まることが判明した。
(Ii) is a condition for obtaining a uniform spot size over the entire scanning direction. Spot uniformity is l 2 2 · S
Being proportional to 1 2 / l 1 S 1 2 can be derived as follows.
That is, it is known that the depth of focus δ of the laser beam is inversely proportional to the square of the beam-side opening angle θ ′ of the beam. That is, δ = A · 1 / θ ′ 2 (2) Further, the condition 16δl 1 <l 2 2 (3) and the condition that the circular arc band of the central radius l 1 covers the scanning width of l 2 with the width of 2δ The relationship between the side opening angle θ and the image side opening angle θ ′ S 1 θ = S 2 θ ′ (4) Becomes Experimental spot size measurements for various l 1 , l 2 , S 1 , and S 2 Within the range of, the change in spot size in the scanning direction is 10%.
It turned out to fit within.

以上、本発明の走査光学系の具体的な実施例を数値で示
す。
Above, specific examples of the scanning optical system of the present invention will be shown by numerical values.

(実施例1) f=4.207mm S1=4.246mm S2=450mm l1=400mm l2=210mm 結像レンズの形状は、 r1=3.5mm r2=−3.686mm d=3.5mm 第1面は非球面であつて前述の(1)式で表わされる非
球面係数は A=−2.274×10-5 B=−3.014×10-2 C=4.971×10-3 D=−9.717×10-4 E=9.807×10-5 のである。上記数値中、r1,r2はレンズ面S1,S2の頂点
での曲率半径、dは光軸上で測つた第1面を第2面間の
距離である。またレンズ媒質の屈折率は1.511である。
(Example 1) f = 4.207 mm S 1 = 4.246 mm S 2 = 450 mm l 1 = 400 mm l 2 = 210 mm The shape of the imaging lens is r 1 = 3.5 mm r 2 = −3.686 mm d = 3.5 mm The surface is an aspherical surface, and the aspherical surface coefficient expressed by the equation (1) is A = −2.274 × 10 −5 B = −3.014 × 10 −2 C = 4.971 × 10 −3 D = −9.717 × 10 − 4 E = 9.807 × 10 −5 . In the above numerical values, r 1 and r 2 are radii of curvature at the vertices of the lens surfaces S 1 and S 2 , and d is the distance between the first surface and the second surface measured on the optical axis. The refractive index of the lens medium is 1.511.

この時、条件(i)(ii)は、r1/f=0.832, l2 2S1 2/l1S2 2=9.82×10-3mmである。At this time, the conditions (i) and (ii) are r 1 /f=0.832, l 2 2 S 1 2 / l 1 S 2 2 = 9.82 × 10 −3 mm.

(実施例2) f=4.207mm S1=4.246mm S2=450mm l1=400mm l2=210mm r1=4.5mm r2=−3.033mm d=3.5mm A=−1.535×10-5 B=−3.788×10-2 C=6.432×10-3 D=−1.652×10-3 E=1.852×10-4 r1/f=1.07 l2 2S1 2/11S2 2=9.82×10-3mm 第6図は実施例1,2における被走査平面上でのスポツト
サイズを示したグラフである。スポツト直径は120μm
±10%となつている。
(Example 2) f = 4.207 mm S 1 = 4.246 mm S 2 = 450 mm l 1 = 400 mm l 2 = 210 mm r 1 = 4.5 mm r 2 = −3.033 mm d = 3.5 mm A = −1.535 × 10 −5 B = -3.788 × 10 -2 C = 6.432 × 10 -3 D = -1.652 × 10 -3 E = 1.852 × 10 -4 r 1 /f=1.07 l 2 2 S 1 2/1 1 S 2 2 = 9.82 × 10 −3 mm FIG. 6 is a graph showing the spot size on the plane to be scanned in Examples 1 and 2. Spot diameter is 120 μm
It is ± 10%.

第7図と第8図はそれぞれ実施例1,2の結像レンズの球
面収差(波面収差)を示している。ほぼ無収差のレンズ
ということができる。
7 and 8 show spherical aberration (wavefront aberration) of the imaging lenses of Examples 1 and 2, respectively. It can be said that the lens has almost no aberration.

〔発明の効果〕〔The invention's effect〕

以上述べてきたように、本発明によれば、レーザーダイ
オードから出射した光源を像面上に所望のスポツトサイ
ズに結像する結像レンズが、回転多面鏡偏向装置と像面
との間に配置された単玉非球面レンズであつて、所定の
条件を満足するように構成されているので、小口径の単
玉レンズのみで収差の少ない均一なスポツト径が得ら
れ、小型低価格で高性能な光走査装置を提供することが
できる。なお、仮に単玉非球面レンズを回転多面鏡偏向
装置と感光体との間に設置すると、その光学系は本発明
の光学系とは全く異なったものとなるのみならず、走査
幅全体をカバーする大型のレンズが必要になる、そのた
め光走査装置全体が大型化する、収差の少ない均一なス
ポット径を得るのが困難等の不都合を生じ、本発明の光
走査装置がもたらす小型化等の上記効果を奏することは
極めて困難である。
As described above, according to the present invention, the imaging lens for focusing the light source emitted from the laser diode on the image plane to a desired spot size is arranged between the rotary polygon mirror deflector and the image plane. Since it is a single-lens aspherical lens that is designed to meet the specified conditions, a uniform spot diameter with little aberration can be obtained with only a small-aperture single-lens lens. It is possible to provide a simple optical scanning device. If a single-lens aspherical lens is installed between the rotary polygon mirror deflector and the photoconductor, the optical system will not be completely different from the optical system of the present invention, and the entire scanning width will be covered. The large size of the optical scanning device is required. Therefore, the size of the entire optical scanning device becomes large, and it is difficult to obtain a uniform spot diameter with little aberration. It is extremely difficult to produce an effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の光走査装置の全体像を示す斜視図、第
2図、第3図は本発明の光走査装置における走査光学系
を説明するための原理図、第4図、第5図は従来の走査
光学系の代表例を示す図、第6図は本発明の光走査装置
の一実施例におけるスポツトサイズ変化を示す図、第7
図、第8図はそれぞれ本発明の第1第2の実施例におけ
る球面収差を示す図である。 1……結像レンズ、2……レーザーダイオード 3……偏向鏡、5……感光ドラム
FIG. 1 is a perspective view showing an overall image of the optical scanning device of the present invention, FIGS. 2 and 3 are principle diagrams for explaining a scanning optical system in the optical scanning device of the present invention, FIGS. FIG. 7 is a diagram showing a typical example of a conventional scanning optical system, FIG. 6 is a diagram showing spot size changes in an embodiment of the optical scanning device of the present invention, and FIG.
FIG. 8 and FIG. 8 are diagrams showing spherical aberration in the first and second examples of the present invention, respectively. 1 ... Imaging lens, 2 ... Laser diode, 3 Deflection mirror, 5 ... Photosensitive drum

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発散光束を出射する光源と、該光束を偏向
走査する回転多面鏡と、前記回転多面鏡により偏向され
た前記光束を結像する感光体とを備え光走査をおこなう
光走査装置において、前記光源と前記回転鏡偏向装置と
の間に非球面レンズを配置し、前記箇所に非球面レンズ
を備えた光学系が、 f:単玉非球面レンズの焦点距離 r1:単玉非球面レンズの第1面頂点の曲率半径 s1:光源と単玉非球面レンズの第1主平面との距離 s2:結像面と単玉非球面レンズの第2主平面との距離 l1:回転鏡偏向装置の回転多面鏡の偏向鏡面と結像面と
の距離 l2:有効走査幅 としたとき、 (i)0.689<r1/f<2.377 (ii)l2 2s1 2/l1s2 2<1.0×10-2mm の条件を満たすことを特徴とする光走査装置。
1. An optical scanning device for performing optical scanning, comprising a light source for emitting a divergent light beam, a rotary polygonal mirror for deflecting and scanning the light beam, and a photoconductor for forming an image of the light beam deflected by the rotary polygonal mirror. In, an optical system in which an aspherical lens is arranged between the light source and the rotating mirror deflecting device and an aspherical lens is provided at the position is f: focal length of single-lens aspherical lens r 1 : single-lens non-lens Radius of curvature of the apex of the first surface of the spherical lens s 1 : Distance between the light source and the first principal plane of the single-lens aspherical lens s 2 : Distance between the image plane and the second principal plane of the single-lens aspherical lens l 1 : Distance between the deflecting mirror surface of the rotating polygon mirror of the rotating mirror deflecting device and the image plane l 2 : When the effective scanning width is set, (i) 0.689 <r1 / f <2.377 (ii) l 2 2 s 1 2 / l An optical scanning device characterized by satisfying the condition of 1 s 2 2 <1.0 × 10 -2 mm.
JP61058661A 1986-03-17 1986-03-17 Optical scanning device Expired - Lifetime JPH07107582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61058661A JPH07107582B2 (en) 1986-03-17 1986-03-17 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61058661A JPH07107582B2 (en) 1986-03-17 1986-03-17 Optical scanning device

Publications (2)

Publication Number Publication Date
JPS62215228A JPS62215228A (en) 1987-09-21
JPH07107582B2 true JPH07107582B2 (en) 1995-11-15

Family

ID=13090771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61058661A Expired - Lifetime JPH07107582B2 (en) 1986-03-17 1986-03-17 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH07107582B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498627A (en) * 1978-12-27 1979-08-03 Canon Inc Optical scanning device
JPS6158661A (en) * 1984-08-29 1986-03-25 帝人株式会社 Blood purifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498627A (en) * 1978-12-27 1979-08-03 Canon Inc Optical scanning device
JPS6158661A (en) * 1984-08-29 1986-03-25 帝人株式会社 Blood purifier

Also Published As

Publication number Publication date
JPS62215228A (en) 1987-09-21

Similar Documents

Publication Publication Date Title
JP3466863B2 (en) Scanning optical device and image recording device using the same
US5255113A (en) Pos-objective type optical scanner
JPS6226444B2 (en)
JPH0115046B2 (en)
JPH05346549A (en) Scanning optical device
JP2002350624A (en) Optical device and scanning optical system having optical device and image forming device
JP2584640B2 (en) Scanning optical system such as laser beam printer
JP4454898B2 (en) Scanning optical system and image forming apparatus having the same
JP2002221681A (en) Scanning optical device and image forming device using the same
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP2000002847A (en) Scanning optical device and multi-beam scanning optical device
JPH08248340A (en) Laser beam scanner
JPH0682688A (en) Anisotropic refracting power single lens
JP3104618B2 (en) Optical scanning device and optical lens
US5038156A (en) Light beam scanning optical system
US5477372A (en) Optical scanner
JP4438025B2 (en) Scanning optical device
JP2000249950A (en) Optical scanner
JP2003107382A (en) Scanning optical system
JP2956169B2 (en) Scanning optical device
JP5269000B2 (en) Multi-beam scanning optical apparatus and laser beam printer having the same
JPH0563777B2 (en)
JPH07107582B2 (en) Optical scanning device
JP2702516B2 (en) fθ lens
JP3375397B2 (en) Scanning optical system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term