JPH07107025B2 - Method for producing polyethylene polyamine - Google Patents

Method for producing polyethylene polyamine

Info

Publication number
JPH07107025B2
JPH07107025B2 JP61128131A JP12813186A JPH07107025B2 JP H07107025 B2 JPH07107025 B2 JP H07107025B2 JP 61128131 A JP61128131 A JP 61128131A JP 12813186 A JP12813186 A JP 12813186A JP H07107025 B2 JPH07107025 B2 JP H07107025B2
Authority
JP
Japan
Prior art keywords
yield
mol
polyethylene polyamine
catalyst
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61128131A
Other languages
Japanese (ja)
Other versions
JPS62285921A (en
Inventor
将実 猪俣
兼光 深山
政徳 北川
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP61128131A priority Critical patent/JPH07107025B2/en
Publication of JPS62285921A publication Critical patent/JPS62285921A/en
Publication of JPH07107025B2 publication Critical patent/JPH07107025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非環状ポリエチレンポリアミンの製造方法に関
する。より詳しくは、イミノジアセトニトリルを原料と
する非環状ポリエチレンポリアミンの製造方法の改良に
関する。
TECHNICAL FIELD The present invention relates to a method for producing an acyclic polyethylene polyamine. More specifically, it relates to an improvement in the method for producing acyclic polyethylene polyamine using iminodiacetonitrile as a raw material.

非環状ポリエチレンポリアミンは、ジエチレントリアミ
ン、トリエチレンテトラミン、テトラエチレンペンタミ
ン、ペンタエチレンヘキサミンのような化合物で、近
年、紙力増強剤、エポキシ樹脂硬化剤等に使用されてい
る。
Acyclic polyethylene polyamines are compounds such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and have been used in recent years as paper strength enhancers, epoxy resin curing agents and the like.

(従来の技術) イミノジアセトニトリルの接触水素化については、
(1)有機酸処理されたラネーニッケル触媒またはラネ
ーコバルト触媒を用いる方法(U.S PAT 2,605,263)、
また(2)アンモニア存在下温度75〜125℃、3000〜500
0psigの水素圧力で、ラネーニッケル触媒を用いる方法
(U.S PAT 2,809,196)が知られているに過ぎない。
(Prior Art) Regarding catalytic hydrogenation of iminodiacetonitrile,
(1) Method using organic acid-treated Raney nickel catalyst or Raney cobalt catalyst (US PAT 2,605,263),
(2) Temperature in the presence of ammonia 75-125 ℃, 3000-500
Only a method using a Raney nickel catalyst at a hydrogen pressure of 0 psig (US PAT 2,809,196) is known.

(発明が解決しようとする問題点) 上記(1)の有機酸処理されたラネーニッケル触媒およ
びまたはラネーコバルト触媒の方法ではピペラジンが約
30%の収率で生成することが記載されている。しかしな
がら触媒活性は未だ低く、ピペラジンおよび非環状ポリ
エチレンポリアミンは、極めて低収率でしか生成しない
という欠点を有する。
(Problems to be Solved by the Invention) In the method of the organic acid-treated Raney nickel catalyst and / or Raney cobalt catalyst of the above (1), piperazine is contained in about
It is described to produce in a yield of 30%. However, the catalytic activity is still low, and piperazine and acyclic polyethylene polyamine have the disadvantage that they are produced only in very low yields.

また、(2)のアンモニア存在下、イミノジアセトニト
リルを接触水素化する方法でも、ピペラジンは高収率で
得られるものの、非環状ポリエチレンポリアミンの最高
収率は約30%程度と低く、且つ実際の接触水素化では水
素圧力が可成り高く、経済的ではないという欠点を有す
る。
Also, in the method (2) of catalytic hydrogenation of iminodiacetonitrile in the presence of ammonia, piperazine can be obtained in a high yield, but the maximum yield of acyclic polyethylene polyamine is low at about 30%, and the actual yield is low. Catalytic hydrogenation has a drawback that the hydrogen pressure is considerably high and is not economical.

このような従来技術で非環状ポリエチレンポリアミンを
高収率でしかも安価に製造することは不可能であった。
It has been impossible to produce acyclic polyethylene polyamine with high yield and at low cost by such conventional techniques.

(問題点を解決するための手段) 本発明者らは、このような従来技術の問題点を解決し、
イミノジアセトニトリルから非環状ポリエチレンポリア
ミンを製造する新規な方法について鋭意研究した結果、
イミノジアセトニトリルの接触水素化において、アルカ
リ展開したラネーニッケル触媒、ラネーコバルト触媒及
びラネーニッケル−コバルト触媒を用い、温度125〜250
℃、水素圧力が10〜200Kg/cm2で連続的に反応させるこ
とによって、プロセスを簡略化し、ピペラジン生成を極
めて少量に抑え、ジエチレントリアミンおよびトリエチ
レンテトラミン等の非環状ポリエチレンポリアミンを高
収率で且つ安価に製造する工業的方法を見出し、さらに
研究を重ねて本発明を完成した。
(Means for Solving Problems) The present inventors have solved such problems of the conventional technology,
As a result of intensive research on a novel method for producing acyclic polyethylene polyamine from iminodiacetonitrile,
In catalytic hydrogenation of iminodiacetonitrile, a Raney nickel catalyst, a Raney cobalt catalyst and a Raney nickel-cobalt catalyst that have been developed with an alkali are used and the temperature is 125 to 250.
By continuously reacting at 0 ° C. and hydrogen pressure of 10 to 200 Kg / cm 2 , the process is simplified, the production of piperazine is suppressed to an extremely small amount, and acyclic polyethylene polyamines such as diethylenetriamine and triethylenetetramine are produced in high yield. The present invention has been completed by finding an industrial method for manufacturing at a low cost and conducting further research.

すなわち、本発明は、イミノジアセトニトリルをニッケ
ル系触媒を用いて温度125〜250℃、水素圧力10〜200Kg/
cm2で連続的に接触水素化することを特徴とする非環状
ポリエチレンポリアミンの製造方法である。
That is, the present invention, iminodiacetonitrile using a nickel-based catalyst temperature 125 ~ 250 ℃, hydrogen pressure 10 ~ 200Kg /.
A method for producing an acyclic polyethylene polyamine, which comprises continuously catalytic hydrogenation at cm 2 .

以下、本発明の方法を更に詳細に説明する。Hereinafter, the method of the present invention will be described in more detail.

本発明の方法に用いられるイミノジアセトニトリルはヘ
キサメチレンテトラミンとシアン化水素を酸性溶媒下で
反応させることによって容易に製造される(U.S PAT 3,
412,137)。
The iminodiacetonitrile used in the method of the present invention is easily produced by reacting hexamethylenetetramine and hydrogen cyanide in an acidic solvent (US PAT 3,
412, 137).

本発明に用いられるラネーニッケル触媒は常法に従い、
ラネーニッケル合金粉末をアルカリ水溶液で展開し、水
洗したものを使用する。
Raney nickel catalyst used in the present invention, according to a conventional method,
Raney nickel alloy powder is developed with an alkaline aqueous solution and washed with water.

使用した触媒は、粒径30μ以下が70〜80重量%、表面積
が40〜60m2/gの性状をしたものであった。
The catalyst used had a particle size of 30 μm or less and 70 to 80% by weight and a surface area of 40 to 60 m 2 / g.

触媒の使用量については、反応時間及び経済性等によ
り、通常、イミノジアセトニトリル1重量部に対し、0.
05〜1重量部であるが、好ましくは0.1〜0.5重量部用い
るのが良い。
Regarding the amount of the catalyst used, depending on the reaction time and economic efficiency, it is usually 0.
The amount is 05 to 1 part by weight, preferably 0.1 to 0.5 part by weight.

また、本発明の方法で用いられる反応溶媒は例えばベン
ゼン、トルエン、キシレン等の芳香族炭化水素、ジメチ
ルエーテル、メチルエチルエーテル、ジエチルエーテ
ル、ジイソプロピルエーテル等の脂肪族炭化水素エーテ
ルまたはジオキサン、テトラヒドロフラン等の環状エー
テルが挙げられる。
The reaction solvent used in the method of the present invention is, for example, aromatic hydrocarbon such as benzene, toluene and xylene, aliphatic hydrocarbon ether such as dimethyl ether, methyl ethyl ether, diethyl ether and diisopropyl ether, or cyclic hydrocarbon such as dioxane and tetrahydrofuran. An example is ether.

反応溶媒の使用量については特に限定されないが、原料
イミノジアセトニトリル濃度と反応時間の関係より、例
えば通常イミノジアセトニトリル1重量部に対して1〜
100重量部であるが、好ましくは10〜50重量部用いるの
が良い。
The amount of the reaction solvent used is not particularly limited, but from the relationship between the starting material iminodiacetonitrile concentration and the reaction time, for example, usually 1 to 1 part by weight of iminodiacetonitrile is used.
It is 100 parts by weight, but preferably 10 to 50 parts by weight is used.

本発明の方法で用いられるアンモニアは、二級アミン生
成抑制剤として使用され、その使用量が多くなると共に
反応速度が遅くなるため、通常イミノジアセトニトリル
1モルに対し0.1〜30モルの範囲で用いるのが好まし
い。
Ammonia used in the method of the present invention is used as a secondary amine production inhibitor, and the reaction rate becomes slower as the amount used becomes larger. Therefore, it is usually used in the range of 0.1 to 30 mol per mol of iminodiacetonitrile. Is preferred.

本発明の方法で用いられる連続反応器には、流通式槽型
反応器及び流通式管型反応器等があり種々のものを用い
ることが可能であるが、気−液−固三相の接触が良く、
反応器中にデッドスペースが極力少なく反応熱等を速や
かに除去し得る反応器が好ましい。
The continuous reactor used in the method of the present invention includes a flow tank type reactor and a flow tube type reactor, and various types can be used, but gas-liquid-solid three-phase contact is possible. Is good
A reactor in which the dead space in the reactor is as small as possible and reaction heat and the like can be quickly removed is preferable.

このような観点に立ち、本発明の実施例で用いた連続反
応装置とその反応器に当たる充填塔式高圧反応器及び往
復円板式高圧反応器をそれぞれ図1〜3に示した。
From such a viewpoint, the continuous reactor used in the examples of the present invention and the packed column type high pressure reactor and the reciprocating disk type high pressure reactor corresponding to the reactor are shown in FIGS.

それぞれの連続高圧反応器の各部の寸法は次の通りであ
る。
The dimensions of each part of each continuous high-pressure reactor are as follows.

本実施例で用いた充填塔式高圧反応器は内径50mm、長さ
500mmであり、内には3/8inchラシヒリングを充填した。
The packed column type high pressure reactor used in this example has an inner diameter of 50 mm and a length.
It was 500 mm and was filled with a 3/8 inch Raschig ring.

本実施例で用いた往復円板式高圧反応器は内径50mm、長
さ650mm、反応室の数は17個で等間隔に隔壁によって仕
切られている。隔壁の中心部の流通孔の直径は13mm、往
復軸径は10mm、往復円板径は44mmである。
The reciprocating disk type high-pressure reactor used in this example has an inner diameter of 50 mm, a length of 650 mm, and the number of reaction chambers is 17 and is partitioned by equal partitions. The diameter of the through hole at the center of the partition wall is 13 mm, the reciprocating shaft diameter is 10 mm, and the reciprocating disc diameter is 44 mm.

往復軸の上下運動の速度は110回/分とした。The vertical movement speed of the reciprocating shaft was 110 times / minute.

本発明の方法における連続的接触水素化の好ましい実施
態様を図1を用いて説明する。
A preferred embodiment of continuous catalytic hydrogenation in the method of the present invention will be described with reference to FIG.

まず、イミノジアセトニトリル、ラネーニッケル触媒、
液体アンモニアおよび反応溶媒を所定の割合で原料タン
ク1内で50℃で加熱混合し、原料液11を調製する。
First, iminodiacetonitrile, Raney nickel catalyst,
Liquid ammonia and reaction solvent are heated and mixed at a predetermined ratio in the raw material tank 1 at 50 ° C. to prepare the raw material liquid 11.

原料液11及び水素ガス12は、それぞれ原料タンク1及び
水素リザーバー4より、高圧ポンプ2、5によって圧力
10〜200Kg/cm2に昇圧された後、加熱炉3、6によって1
25〜250℃好ましくは130〜180℃に加熱され、反応器7
に供給される。
The raw material liquid 11 and the hydrogen gas 12 are pressurized by the high pressure pumps 2 and 5 from the raw material tank 1 and the hydrogen reservoir 4, respectively.
After the pressure is increased to 10-200Kg / cm 2 , it is set to 1 by heating furnaces 3 and 6.
The reactor 7 is heated to 25 to 250 ° C, preferably 130 to 180 ° C.
Is supplied to.

反応器7より流出した気−液−固三相反応終了液13は、
熱交換器8により室温近くまで冷却された後,気相分離
装置9に送られ水素ガス12と固−液相の触媒反応液14に
分離される。
The gas-liquid-solid three-phase reaction completion liquid 13 flowing out from the reactor 7 is
After being cooled to near room temperature by the heat exchanger 8, it is sent to the gas phase separation device 9 and separated into hydrogen gas 12 and a solid-liquid phase catalytic reaction liquid 14.

分離された水素ガス12は再び原料水素ガスとして循環使
用するために、水素リザーバー4に貯蔵される。
The separated hydrogen gas 12 is stored in the hydrogen reservoir 4 for reuse as the raw material hydrogen gas again.

一方触媒反応液14は、減圧され、触媒濾過機10により触
媒を濾別後、粗非環状ポリエチレンポリアミン溶液15が
得られる。
On the other hand, the catalyst reaction liquid 14 is decompressed and the catalyst is filtered off by the catalyst filter 10 to obtain a crude acyclic polyethylene polyamine solution 15.

粗非環状ポリエチレンポリアミン溶液15中の反応溶媒を
蒸発器によって留去した後、減圧蒸留によって目的のジ
エチレントリアミンとトリエチレンテトラミン等の非環
状ポリエチレンポリアミンが得られる。
After distilling off the reaction solvent in the crude acyclic polyethylene polyamine solution 15 with an evaporator, the target acyclic polyethylene polyamine such as diethylenetriamine and triethylenetetramine can be obtained by vacuum distillation.

(作用及び効果) 本発明の非環状ポリエチレンポリアミンの製造方法は、
まず接触水素化するための触媒を非常に容易に調製でき
ること、そのうえ、ラネーニッケル触媒については有機
酸処理することなしに使用できること、プロセスが連続
であるため極めて省力的且つ合理的であること、また、
ピペラジンなどの環状アミンを極めて少量に抑制し、目
的の非環状ポリエチレンポリアミンを高収率で、しかも
安価に得ることができるので極めて経済的な方法であ
る。
(Action and Effect) The method for producing an acyclic polyethylene polyamine of the present invention comprises:
Firstly, the catalyst for catalytic hydrogenation can be prepared very easily, and moreover, Raney nickel catalyst can be used without organic acid treatment, it is extremely labor-saving and rational due to the continuous process, and
This is an extremely economical method because the amount of cyclic amine such as piperazine can be suppressed to an extremely small amount, and the target acyclic polyethylene polyamine can be obtained in high yield and at low cost.

(実施例) 以下実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 市販のラネーコバルト合金(Co:Al、50:50重量比)粉末
をアルカリ展開した後、上澄液が中性〜弱アルカリ性に
なるまで水洗し、ジオキサンで洗浄したラネーコバルト
触媒を使用した。
Example 1 A commercially available Raney cobalt alloy (Co: Al, 50:50 weight ratio) powder was alkali-developed, then washed with water until the supernatant became neutral to weakly alkaline, and the Raney cobalt catalyst washed with dioxane was used. did.

充填塔式高圧反応器を設置した連続反応装置を用い、反
応器にイミノジアセトニトリル121.1g(1.25モル)、ア
ルカリ展開したラネーコバルト触媒49.6g、ジオキサン
4を混合した原料液と水素146とを連続的に6時間
供給し、反応温度160℃、反応圧力150Kg/cm2で接触水素
化を行った。
Using a continuous reactor equipped with a packed-column high-pressure reactor, 121.1 g (1.25 mol) of iminodiacetonitrile, 49.6 g of Raney cobalt catalyst in which alkali was developed, a raw material liquid mixed with dioxane 4 and hydrogen 146 were continuously connected to the reactor. For 6 hours, catalytic hydrogenation was carried out at a reaction temperature of 160 ° C. and a reaction pressure of 150 kg / cm 2 .

触媒濾過後の濾液をガスクロマトグラフィーによって分
析した結果、未反応イミノジアセトニトリルは検出され
なかった。
As a result of analyzing the filtrate after the catalyst filtration by gas chromatography, unreacted iminodiacetonitrile was not detected.

また、減圧蒸留後、ジエチレントリアミン83.2g(収率6
4.5モル%)、トリエチレンテトラミン4.2g(収率2.3モ
ル%)を得た。よって、非環状ポリエチレンポリアミン
収率は66.8モル%であった。この時ピペラジン収率は1
0.1モル%であった。
After distillation under reduced pressure, 83.2 g of diethylenetriamine (yield 6
4.5 mol%) and 4.2 g of triethylenetetramine (yield 2.3 mol%) were obtained. Therefore, the yield of acyclic polyethylene polyamine was 66.8 mol%. At this time, the piperazine yield is 1
It was 0.1 mol%.

実施例2 往復円板式高圧反応器を設置した連続反応装置を用い、
反応器に、ラネーニッケル合金(Ni:Al 50:50重量比)
粉末を実施例1と全く同様に展開して得たラネーニッケ
ル触媒150g、イミノジアセトニトリル364g(3.75モ
ル)、アンモニア25.5g(1.5モル)、ジオキサン12.0Kg
を混合した原料液と水素403を連続的に20時間供給
し、反応温度140℃、反応圧力180Kg/cm2で接触水素化を
行わせた。
Example 2 Using a continuous reactor equipped with a reciprocating disk type high pressure reactor,
Raney nickel alloy (Ni: Al 50:50 weight ratio) in the reactor
Raney nickel catalyst (150 g) obtained by developing the powder in exactly the same manner as in Example 1, 364 g (3.75 mol) of iminodiacetonitrile, 25.5 g (1.5 mol) of ammonia, 12.0 Kg of dioxane.
The mixed raw material liquid and hydrogen 403 were continuously supplied for 20 hours, and catalytic hydrogenation was carried out at a reaction temperature of 140 ° C. and a reaction pressure of 180 kg / cm 2 .

触媒濾過後の濾液をガスクロマトグラフィーによって分
析したところ、イミノジアセトニトリルは確認できなか
った。
When the filtrate after catalyst filtration was analyzed by gas chromatography, iminodiacetonitrile could not be confirmed.

また、減圧蒸留後、ジエチレントリアミン253.4g(収率
65.5モル%)、トリエチレンテトラミン4.9g(収率0.9
モル%)を得た。よって比環状ポリエチレンポリアミン
収率は66.4モル%であり、この時ピペラジン収率は10.1
モル%であった。
After vacuum distillation, 253.4 g of diethylenetriamine (yield
65.5 mol%), triethylenetetramine 4.9 g (yield 0.9
Mol%) was obtained. Therefore, the specific cyclic polyethylene polyamine yield was 66.4 mol%, and the piperazine yield was 10.1.
It was mol%.

実施例3 実施例1において、原料液にアンモニア4.3g(0.25モ
ル)を加え、反応圧力を200Kg/cm2に変えること以外全
く実施例1と同じ装置且つ同様な方法で連続的に接触水
素化を行った。
Example 3 In Example 1, continuous catalytic hydrogenation was carried out using exactly the same apparatus and method as in Example 1, except that 4.3 g (0.25 mol) of ammonia was added to the raw material liquid and the reaction pressure was changed to 200 kg / cm 2 . I went.

その結果、ジエチレントリアミン収率70.8モル%、トリ
エチレンテトラミンを収率3.1モル%、ピペラジンを収
率9.5モル%で得た。よって、非環状ポリエチレンポリ
アミン収率は73.9モル%であった。
As a result, the yield of diethylenetriamine was 70.8 mol%, the yield of triethylenetetramine was 3.1 mol%, and the yield of piperazine was 9.5 mol%. Therefore, the yield of acyclic polyethylene polyamine was 73.9 mol%.

実施例4 実施例2において、ジオキサン12.0Kgをトルエン10.1Kg
に変えた以外は全く実施例2と同じ装置且つ同様な方法
で連続的に接触水素化を行った。
Example 4 In Example 2, 12.0 kg of dioxane was added with 10.1 kg of toluene.
Catalytic hydrogenation was carried out continuously using the same apparatus and the same method as in Example 2 except that

その結果、ジエチレントリアミンを収率50.0モル%、ピ
ペラジンを収率11.6モル%で得た。
As a result, diethylenetriamine was obtained in a yield of 50.0 mol% and piperazine in a yield of 11.6 mol%.

実施例5 ラネーニッケル−コバルト合金(Ni:Co:Al 30:30:40重
量比)粉末を実施例1と同様に調製し得たラネーニッケ
ル−コバルト触媒を用い実施例3と同じ装置且つ同様な
方法で連続的に接触水素化を行った。その結果ジエチレ
ントリアミンを収率69.5モル%、トリエチレンテトラミ
ンを収率2.6モル%、ピペラジン収率9.8モル%で得た。
よって非環状ポリエチレンポリアミン収率は72.1モル%
であった。
Example 5 Raney nickel-cobalt alloy (Ni: Co: Al 30:30:40 weight ratio) powder was prepared in the same manner as in Example 1 using the Raney nickel-cobalt catalyst obtained in the same apparatus and in the same manner as in Example 3. The catalytic hydrogenation was carried out continuously. As a result, diethylenetriamine was obtained in a yield of 69.5 mol%, triethylenetetramine was obtained in a yield of 2.6 mol%, and piperazine was obtained in a yield of 9.8 mol%.
Therefore, the yield of acyclic polyethylene polyamine is 72.1 mol%.
Met.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明の連続反応装置であり、図2は充填塔式高
圧反応器、図3は往復円板式高圧反応器である。但し、
図2は該反応器の一部切欠け図を示し、図3は該反応器
の縦断面図を示す。尚、図3は簡略化されており、実施
例では反応室の数は6個ではなく17個である。 図に於いて、 1……原料タンク、2……高圧ポンプ 3……加熱炉、4……水素リザーバー 5……高圧ポンプ、6……加熱炉 7……反応器、8……熱交換器 9……気液分離装置、10……触媒濾過機 11……原料液、12……水素ガス 13……反応終了液、14……触媒反応液 15……粗非環状ポリエチレンポリアミン溶液 16……排ガス である。
1 is a continuous reactor of the present invention, FIG. 2 is a packed column type high pressure reactor, and FIG. 3 is a reciprocating disk type high pressure reactor. However,
FIG. 2 shows a partial cutaway view of the reactor, and FIG. 3 shows a vertical sectional view of the reactor. Incidentally, FIG. 3 is simplified, and in the embodiment, the number of reaction chambers is 17 instead of 6. In the figure, 1 ... Raw material tank, 2 ... High pressure pump, 3 ... Heating furnace, 4 ... Hydrogen reservoir, 5 ... High pressure pump, 6 ... Heating furnace, 7 ... Reactor, 8 ... Heat exchanger 9: Gas-liquid separation device, 10: Catalyst filter 11: Raw material liquid, 12: Hydrogen gas 13: Reaction completed liquid, 14: Catalytic reaction liquid 15: Crude acyclic polyethylene polyamine solution 16: Exhaust gas.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】イミノジアセトニトリルをニッケル系触媒
を用いて温度125〜250℃、水素圧力10〜200Kg/cm2で連
続的に接触水素化することを特徴とする非環状ポリエチ
レンポリアミンの製造方法。
1. A process for producing an acyclic polyethylene polyamine, which comprises continuously catalytically hydrogenating iminodiacetonitrile at a temperature of 125 to 250 ° C. and a hydrogen pressure of 10 to 200 Kg / cm 2 using a nickel-based catalyst.
【請求項2】ニッケル系触媒がラネーニッケル触媒であ
る特許請求の範囲第1項記載の製造方法。
2. The production method according to claim 1, wherein the nickel-based catalyst is a Raney nickel catalyst.
【請求項3】接触水素化がアンモニアの存在下にて行わ
れる特許請求の範囲第1項又は第2項記載の製造方法。
3. The method according to claim 1, wherein the catalytic hydrogenation is carried out in the presence of ammonia.
【請求項4】接触水素化が反応溶媒 (但し、R1、R2は水素あるいは炭素数1〜3までのアル
キル基)で示される芳香族炭化水素若しくはエーテル中
で行われる特許請求の範囲第1項、第2項、又は第3項
記載の製造方法。
4. A catalytic solvent for catalytic hydrogenation. (Provided that R 1 and R 2 are hydrogen or an alkyl group having 1 to 3 carbon atoms) or an aromatic hydrocarbon represented by the formula (1), (2) or (3). The manufacturing method described.
JP61128131A 1986-06-04 1986-06-04 Method for producing polyethylene polyamine Expired - Lifetime JPH07107025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128131A JPH07107025B2 (en) 1986-06-04 1986-06-04 Method for producing polyethylene polyamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128131A JPH07107025B2 (en) 1986-06-04 1986-06-04 Method for producing polyethylene polyamine

Publications (2)

Publication Number Publication Date
JPS62285921A JPS62285921A (en) 1987-12-11
JPH07107025B2 true JPH07107025B2 (en) 1995-11-15

Family

ID=14977164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128131A Expired - Lifetime JPH07107025B2 (en) 1986-06-04 1986-06-04 Method for producing polyethylene polyamine

Country Status (1)

Country Link
JP (1) JPH07107025B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5393486B2 (en) * 2007-03-01 2014-01-22 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing triethylenetetraamine
US8299249B2 (en) * 2007-03-01 2012-10-30 Basf Se Method for producing TETA by means of EDDN
CN107188809A (en) * 2016-03-14 2017-09-22 史小鸣 A kind of preparation of diethylenetriamine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286350A (en) * 1985-06-12 1986-12-16 ダブリユ−・ア−ル・グレイス・アンド・カンパニ− Synthesis of fatty polyamine

Also Published As

Publication number Publication date
JPS62285921A (en) 1987-12-11

Similar Documents

Publication Publication Date Title
US4739051A (en) Preparation of morpholine
JP2009510018A (en) Process for producing aminodiglycol (ADG) and morpholine
CN102803213B (en) Methyl-substituted TETA Compounds
JP2002105035A (en) Method for producing xylylenediamine
EP0971876B1 (en) A process for continuous hydrogenation of adiponitrile
JP2017197566A (en) Process for preparing eda using so2-free hydrocyanic acid
CN109715610A (en) The method that polyamine is prepared by dintrile and/or amino nitrile
SU685143A3 (en) Method of synthesis of polyamines with ether groups
WO1998043940A9 (en) A process for continuous hydrogenation of adiponitrile
JPH07107025B2 (en) Method for producing polyethylene polyamine
JP2003026638A (en) Method for producing xylylenediamine having high purity
WO1998043941A1 (en) Production of 1,3-diaminopentane by hydrogenation of 3-aminopentanenitrile
US2292949A (en) Process for catalytic hydrogenation
JP4822649B2 (en) Method for producing 3-hydroxyalkanenitrile and hydroxyaminoalkane
JP4291483B2 (en) Method for producing cyclohexanebis (methylamine) s
US9012638B2 (en) Process for preparing EDDN and/or EDMN by conversion of FACH and EDA
JPS62201848A (en) Production of polyethylenepolyamine
JPH0621119B2 (en) Method for producing polyethylene polyamine
US5124485A (en) Catalysts and methods of separation thereof
JP2014525941A (en) Method for producing EDDN and / or EDMN by reaction of EDFA and / or EDMFA with HCN
JP2718740B2 (en) Process for producing bis (aminomethyl) cyclohexanes
KR860002165B1 (en) The process for preparing of amino benzylamine
CN101921200B (en) Preparation method of N-benzyl-1-(4-methoxyphenyl)-2-propylamine
KR820000719B1 (en) Process for preparing alkyl pyrazines
JPS6124569A (en) Preparation of 2,3,5-collidine and/or 2,3,5,6-tetramethylpyridine