JPH07106260A - Compound semiconductor epitaxial wafer and measuring method for its film thickness - Google Patents

Compound semiconductor epitaxial wafer and measuring method for its film thickness

Info

Publication number
JPH07106260A
JPH07106260A JP25058093A JP25058093A JPH07106260A JP H07106260 A JPH07106260 A JP H07106260A JP 25058093 A JP25058093 A JP 25058093A JP 25058093 A JP25058093 A JP 25058093A JP H07106260 A JPH07106260 A JP H07106260A
Authority
JP
Japan
Prior art keywords
layer
film thickness
gaas
thickness
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25058093A
Other languages
Japanese (ja)
Inventor
Yukio Sasaki
幸男 佐々木
Shuichi Tawarasako
修一 田原迫
Mikio Kashiwa
幹雄 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP25058093A priority Critical patent/JPH07106260A/en
Publication of JPH07106260A publication Critical patent/JPH07106260A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable measuring the absolute value of film thickness with high reliability, improve the quality ensurance of a product epitaxial wafer, and facilitate failure analysis. CONSTITUTION:An epitaxial wafer for an MESFET has a buffer layer 20 on a semiinsulative GaAs substrate 10 in which layer at least one or more very thin hetero epitaxial layer is inserted, and has, on the layer 20, an N-type GaAs layer 30 as an active layer, and an N<+> type GaAs layer 40 as a contact layer for forming an ohmic electrode. The buffer layer 20 consists of the following in order from below; an un type GaAs layer 23 of 200nm in thickness, an un type Al0.3Ga0.7As layer 24 of 2nm in thickness, an un type GaAs layer 25 of 3nm in thickness, an un type Al0.3Ga0.7As layer 26 of 2nm in thickness, and an un type GaAs layer 27 of 200nm in thickness. Since the hetero epitaxial layer is inserted in the buffer layer having little influence upon device characteristics, film thickness absolute value measurement using a TEM (transmission electronic microscope) is enabled without deteriorating characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上にバッファ層を
介して活性層を有する化合物半導体エピタキシャルウェ
ハ及びその膜厚測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor epitaxial wafer having an active layer on a substrate via a buffer layer, and a film thickness measuring method thereof.

【0002】[0002]

【従来の技術】化合物半導体デバイスに用いられるウェ
ハとして、化合物半導体基板上に気相成長法によりバッ
ファ層を形成し、その上に化合物半導体結晶の活性層を
形成した化合物半導体エピタキシャルウェハがある。こ
れを有機金属気相成長(MOVPE)法を用いて製造し
たGaAsMESFET用のエピタキシャルウェハにつ
いて説明する。
2. Description of the Related Art As a wafer used for a compound semiconductor device, there is a compound semiconductor epitaxial wafer in which a buffer layer is formed on a compound semiconductor substrate by a vapor phase growth method and an active layer of a compound semiconductor crystal is formed thereon. An epitaxial wafer for GaAs MESFET manufactured by using the metal organic chemical vapor deposition (MOVPE) method will be described below.

【0003】図4、図5は従来用いられているMESF
ET用エピタキシャルウェハの代表例である。図4はG
aAs系、図5はGaAs/AlGaAs系を示す。両
エピタキシャルウェハは共に、半絶縁性GaAs基板1
0上にバッファ層、活性層、そして表面にコンタクト層
を有している。バッファ層であるアンドープ(un型)
GaAs層20(厚さ500nm)、またはun型GaA
s層21(厚さ300nm)及びun型Al0.3 Ga0.7
As層22(厚さ200nm)は、基板10と活性層であ
るn型GaAs30との間に、基板10からの影響を緩
衝するために挿入される。表面のn+ 型GaAs層40
(厚さ100nm)はオーミック電極形成用コンタクト層
である。これらのウェハは次のように製造される。
FIGS. 4 and 5 show the MESF used conventionally.
It is a typical example of an epitaxial wafer for ET. Figure 4 is G
aAs system, FIG. 5 shows GaAs / AlGaAs system. Both epitaxial wafers are semi-insulating GaAs substrate 1
0 has a buffer layer, an active layer, and a contact layer on the surface. Undoped (un type) that is a buffer layer
GaAs layer 20 (thickness 500 nm) or un-type GaA
s layer 21 (thickness 300 nm) and un-type Al 0.3 Ga 0.7
The As layer 22 (thickness: 200 nm) is inserted between the substrate 10 and the n-type GaAs 30 which is the active layer in order to buffer the influence from the substrate 10. Surface n + type GaAs layer 40
(Thickness 100 nm) is a contact layer for forming an ohmic electrode. These wafers are manufactured as follows.

【0004】先ず、前処理したGaAs基板をMOVP
E装置の反応炉内に配置する。Ga原料としてGaの有
機金属、Al原料としてAlの有機金属、As原料とし
てAsH3 ガスを用いる。これらの原料ガスを反応炉内
に流し、高温で熱分解させ、基板上に図4、図5に示す
ようなGaAs層、またはGaAs層及びAlGaAs
層からなるバッファ層20を成長する。
First, the pretreated GaAs substrate is MOVP.
It is placed in the reactor of the E unit. An organic metal of Ga is used as a Ga raw material, an organic metal of Al is used as an Al raw material, and AsH 3 gas is used as an As raw material. These raw material gases are caused to flow in the reaction furnace to be thermally decomposed at a high temperature, and a GaAs layer as shown in FIGS. 4 and 5 or a GaAs layer and AlGaAs are formed on the substrate.
A buffer layer 20 consisting of layers is grown.

【0005】次に、反応炉内へのドーピング原料ガス導
入用のバルブを切替え、n型ドーピング、例えばSiH
4 、Si2 6 などのSi原料ガスを導入して、活性層
であるn型GaAs層30を成長する。そして、活性層
形成後、n型ドーピング量を増やしてオーミック電極形
成用コンタクト層であるn+ 型GaAs層40を成長す
る。これらエピタキシャル層20、30及び40の膜厚
は原料ガスの流量、反応炉内に流している時間で制御す
る。
Next, the valve for introducing the doping source gas into the reaction furnace is switched to perform n-type doping, for example SiH.
4 , Si source gas such as Si 2 H 6 is introduced to grow the n-type GaAs layer 30 which is an active layer. After the active layer is formed, the n-type doping amount is increased to grow the n + -type GaAs layer 40 which is the ohmic electrode forming contact layer. The film thickness of these epitaxial layers 20, 30 and 40 is controlled by the flow rate of the raw material gas and the time during which the gas is flowing in the reaction furnace.

【0006】さて、このように製造されたGaAsME
SFET用エピタキシャルウェハの電気特性は、大部分
が活性層であるn型GaAs層30の膜厚dとキャリア
濃度nによって決まる。MESFETの代表特性例であ
るしきい値電圧Vthはn・d2 に比例するため、キャリ
ア濃度nよりも自乗できいてくる膜厚dの依存姓の方が
大きい。このため、ウェハにとって活性層であるn型G
aAs層30の膜厚dをいかに制御するかが最も重要な
技術となる。
Now, the GaAsME manufactured in this way
Most of the electrical characteristics of the SFET epitaxial wafer are determined by the film thickness d and the carrier concentration n of the n-type GaAs layer 30, which is the active layer. Since the threshold voltage V th, which is a typical characteristic example of the MESFET, is proportional to n · d 2 , the dependence of the film thickness d that can be squared is larger than the carrier concentration n. Therefore, the n-type G that is the active layer for the wafer
How to control the film thickness d of the aAs layer 30 is the most important technique.

【0007】[0007]

【発明が解決しようとする課題】ところで、エピタキシ
ャル層の膜厚を制御するためには、膜厚の相対値ではな
く、その絶対値を正確に測定することが重要である。G
aAs、AlGaAsなどの膜厚測定法には、従来、
(1) 電子ビームの衝突による二次電子や反射電子の強度
を検出する断面SEM(走査型電子顕微鏡法)測定、
(2) 赤外線の干渉を利用したFTIR(フーリエ変換赤
外分光法)測定、(3) 反射時の偏光状態を検出するエリ
プソメトリ測定、(4) 針の上下動を電気信号に変えて読
み取る接触式段差計による測定、(5) 一次熱電子または
電界電子による回折あるいは透過拡大像を得る断面TE
M(透過型電子顕微鏡法)による格子像観察などが挙げ
られる。これらの測定法の中で膜厚の絶対値測定として
最も信頼できるのは、(5) のTEMによる格子像観察に
よる膜厚測定だけである。他の測定は種々の理由で絶対
値測定としては不向きである。なお、断面TEMの格子
像観察による絶対膜厚測定は、基板上に形成したヘテロ
構造の積層薄膜(異種エピタキシャル層)に電子線を透
過して、各層を格子像パターンの拡大暗視野像として現
わし、この暗視野像を観察することによって行なう。
In order to control the film thickness of the epitaxial layer, it is important to measure not the relative value of the film thickness but the absolute value thereof accurately. G
Conventional film thickness measurement methods such as aAs and AlGaAs are
(1) Cross-sectional SEM (scanning electron microscopy) measurement to detect the intensity of secondary electrons and backscattered electrons due to electron beam collisions,
(2) FTIR (Fourier Transform Infrared Spectroscopy) measurement using infrared interference, (3) Ellipsometry measurement to detect the polarization state at the time of reflection, (4) Touch to read by changing the vertical movement of the needle into an electrical signal (5) Cross-section TE to obtain a magnified image of diffraction or transmission by primary thermoelectrons or field electrons
Examples include lattice image observation by M (transmission electron microscopy). Of these measuring methods, the most reliable method for measuring the absolute value of the film thickness is only the film thickness measurement by observing the lattice image with the TEM in (5). Other measurements are unsuitable as absolute value measurements for various reasons. In the absolute film thickness measurement by observing the lattice image of the cross-section TEM, the electron beam is transmitted through the heterostructure laminated thin film (heteroepitaxial layer) formed on the substrate, and each layer is displayed as an enlarged dark field image of the lattice image pattern. This is done by observing this dark field image.

【0008】しかしながら、TEMによる格子像観察で
膜厚測定を高分解能で行うには、40万倍程度の高倍率
で測定する必要があるが、膜厚が60nm以上になると、
一視野で測定できなくなる。この点で、図4、図5に示
した従来のMESFET用エピタキシャルウェハでは、
60nm以下の厚さの異種エピタキシャル層が存在しない
ために、膜厚の絶対値測定が正確にできない。従って、
製品としてのエピタキシャルウェハの膜厚に関し、十分
な品質保証が図れない。
However, in order to measure the film thickness with high resolution by observing the lattice image by TEM, it is necessary to measure at a high magnification of about 400,000 times, but when the film thickness becomes 60 nm or more,
It becomes impossible to measure in one view. In this respect, in the conventional epitaxial wafer for MESFETs shown in FIGS. 4 and 5,
The absolute value of the film thickness cannot be accurately measured because there is no heterogeneous epitaxial layer having a thickness of 60 nm or less. Therefore,
Regarding the film thickness of the epitaxial wafer as a product, sufficient quality assurance cannot be achieved.

【0009】また、デバイスを作る上では、上記した膜
厚測定用の異種エピタキシャル層は必要無いが、製品に
何らかの不良が生じた場合、異種エピタキシャル層は構
造解析あるいは不良解析を行う上で非常に重要である。
しかし、製品のMESFET用エピタキシャルウェハに
は膜厚測定用異種エピタキシャル層が無いので、構造解
析あるいは不良解析を行う際、解析がしにくい。
Further, in manufacturing a device, the above-mentioned heterogeneous epitaxial layer for film thickness measurement is not necessary, but when some defect occurs in the product, the heterogeneous epitaxial layer is very necessary for structural analysis or defect analysis. is important.
However, since the epitaxial wafer for MESFET of the product does not have the heterogeneous epitaxial layer for measuring the film thickness, it is difficult to perform the analysis when performing the structural analysis or the defect analysis.

【0010】本発明の目的は、前記した従来技術の欠点
を解消し、エピタキシャル層の膜厚の絶対値測定が可能
な化合物半導体エピタキシャルウェハ及びその膜厚測定
方法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a compound semiconductor epitaxial wafer capable of measuring the absolute value of the film thickness of an epitaxial layer and a film thickness measuring method thereof.

【0011】[0011]

【課題を解決するための手段】第1の発明は、基板上に
バッファ層を介して活性層を有する化合物半導体エピタ
キシャルウェハにおいて、バッファ層の中にヘテロ接合
を形成する膜厚測定用のエピタキシャル層が少なくとも
一層挿入してあり、かつ、膜厚測定用のエピタキシャル
層の膜厚が1〜60nmの範囲内にあるものである。
A first invention is a compound semiconductor epitaxial wafer having an active layer on a substrate via a buffer layer, and an epitaxial layer for forming a heterojunction in the buffer layer for film thickness measurement. At least one layer is inserted, and the film thickness of the epitaxial layer for film thickness measurement is in the range of 1 to 60 nm.

【0012】第2の発明は、半絶縁性GaAs基板上に
バッファ層を有し、このバッファ層は、上下に本来のバ
ッファ層となるアンドープGaAs層の中間に1〜60
nmの膜厚測定用のエピタキシャル層となるアンドープA
lGaAs層、アンドープGaAs層、アンドープAl
GaAs層を挿入した積層構造で構成され、バッファ層
の上に活性層となるn型GaAs層を有し、その上にオ
ーミック電極形成用コンタクト層となるn+ 型GaAs
層を有するものである。
A second aspect of the present invention has a buffer layer on a semi-insulating GaAs substrate, and the buffer layer has 1 to 60 in the middle of an undoped GaAs layer which serves as an original buffer layer above and below.
Undoped A used as an epitaxial layer for measuring the thickness of nm
lGaAs layer, undoped GaAs layer, undoped Al
It has a laminated structure in which a GaAs layer is inserted, has an n-type GaAs layer serving as an active layer on a buffer layer, and an n + -type GaAs serving as a contact layer for forming an ohmic electrode thereon.
It has a layer.

【0013】第3の発明は、半絶縁性GaAs基板上に
バッファ層を有し、このバッファ層は、上下に本来のバ
ッファ層となるアンドープGaAs層の中間に1〜60
nmの膜厚測定用のエピタキシャル層となるアンドープA
lGaAs層、アンドープGaAs層、アンドープAl
GaAs層を挿入した積層構造で構成され、バッファ層
の上に電子供給層となるn型AlGaAs層を有し、そ
の上にオーミック電極形成用コンタクト層となるn+
GaAs層を有するものである。
A third aspect of the present invention has a buffer layer on a semi-insulating GaAs substrate, and the buffer layer has 1 to 60 in the middle of an undoped GaAs layer which serves as an original buffer layer above and below.
Undoped A used as an epitaxial layer for measuring the thickness of nm
lGaAs layer, undoped GaAs layer, undoped Al
It has a laminated structure in which a GaAs layer is inserted, has an n-type AlGaAs layer serving as an electron supply layer on the buffer layer, and has an n + -type GaAs layer serving as a contact layer for ohmic electrode formation thereon. .

【0014】第4の発明は、第1の発明ないし第3の発
明の化合物半導体エピタキシャルウェハの膜厚を測定す
る方法において、バッファ層の中に挿入された膜厚測定
用のエピタキシャル層の膜厚をTEM法による格子像観
察で測定し、測定した膜厚に基づいて活性層もしくは電
子供給層の膜厚を算出するようにしたものである。
A fourth invention is the method for measuring the film thickness of the compound semiconductor epitaxial wafer according to the first invention to the third invention, wherein the film thickness of the epitaxial layer for film thickness measurement inserted in the buffer layer. Is measured by observing a lattice image by the TEM method, and the film thickness of the active layer or the electron supply layer is calculated based on the measured film thickness.

【0015】[0015]

【作用】第1の発明において、膜厚測定用のエピタキシ
ャル層をバッファ層の中に挿入したのは、バッファ層の
デバイス特性に与える影響が小さいからである。また、
バッファ層の中にヘテロ接合を形成するようにしたの
は、格子定数の差による膜の格子観察像を可能とするた
めである。また、厚さを1〜60nmの極く薄い範囲内に
限定したのは、60nm以上だとTEMによる格子像観察
が一視野で測定出来なくなるからであり、また1nm以下
だと測定が困難となるからである。
In the first aspect of the invention, the epitaxial layer for measuring the film thickness is inserted in the buffer layer because it has a small influence on the device characteristics of the buffer layer. Also,
The reason why the heterojunction is formed in the buffer layer is to enable a lattice observation image of the film due to a difference in lattice constant. The reason for limiting the thickness to a very thin range of 1 to 60 nm is that if the thickness is 60 nm or more, the lattice image observation by TEM cannot be measured in one visual field, and if it is 1 nm or less, the measurement becomes difficult. Because.

【0016】活性層がGaAs層である第2の発明にお
いて、上下のバッファ層の中間に挿入した膜厚測定用の
エピタキシャル層をアンドープGaAs層の単層ではな
く、アンドープAlGaAs層、アンドープGaAs
層、アンドープAlGaAs層の三層構造としたのは、
アンドープGaAs層単独では、これと同種材料からな
るバッファ層中にヘテロ接合が形成出来ないからであ
る。
In the second invention in which the active layer is a GaAs layer, the epitaxial layer for measuring the film thickness inserted between the upper and lower buffer layers is not a single undoped GaAs layer but an undoped AlGaAs layer or undoped GaAs.
The three-layer structure of the layer and the undoped AlGaAs layer is
This is because a heterojunction cannot be formed in the buffer layer made of the same material as the undoped GaAs layer alone.

【0017】また、電子供給層がAlGaAs層である
第3の発明において、上下のバッファ層の中間に挿入し
た膜厚測定用のエピタキシャル層を、アンドープAlG
aAs層、アンドープGaAs層、アンドープAlGa
As層の三層構造としたのは、このようにするとバッフ
ァ層までのウェハ構造を第2の発明と共用できるからで
ある。
Further, in the third invention in which the electron supply layer is an AlGaAs layer, an epitaxial layer for film thickness measurement inserted between the upper and lower buffer layers is an undoped AlG layer.
aAs layer, undoped GaAs layer, undoped AlGa
The reason why the As layer has a three-layer structure is that the wafer structure up to the buffer layer can be shared with the second invention in this way.

【0018】第4の発明において、バッファ層の中に挿
入された膜厚測定用のエピタキシャル層をTEM法を用
いて観察すると、各層が格子像パターンの拡大暗視野像
となって現われる。この拡大暗視野像を観察することに
より各層の膜厚を一視野で測定することができる。この
測定した膜厚と、この膜と同種材料で形成された活性層
ないし電子供給層の膜厚とは比例関係が成立する。従っ
て、測定膜厚に基づいて活性層ないし電子供給層の膜厚
を算出することができる。
In the fourth invention, when the epitaxial layer for measuring the film thickness inserted in the buffer layer is observed by the TEM method, each layer appears as an enlarged dark field image of a lattice image pattern. By observing this enlarged dark field image, the film thickness of each layer can be measured in one field. A proportional relationship is established between the measured film thickness and the film thickness of the active layer or electron supply layer formed of the same material as this film. Therefore, the film thickness of the active layer or the electron supply layer can be calculated based on the measured film thickness.

【0019】[0019]

【実施例】以下、本発明の化合物半導体エピタキシャル
ウェハを、GaAsMESFET、及びGaAsHEM
T用のエピタキシャルウェハに適用した実施例を説明す
る。
EXAMPLES Hereinafter, the compound semiconductor epitaxial wafer of the present invention was used as a GaAs MESFET and a GaAs HEM.
An example applied to an epitaxial wafer for T will be described.

【0020】図1に示すGaAsMESFET用エピタ
キシャルウェハの構造は、半絶縁性GaAs基板10上
に、極く薄い異種エピタキシャル層を少なくとも一層以
上挿入したバッファ層20を有し、その上に活性層であ
るn型GaAs層30、さらにオーミック電極形成用コ
ンタクト層であるn+ 型GaAs層40を有する。バッ
ファ層20は、下から順に膜厚200nmのun型GaA
s層23、膜厚2nmのun型Al0.3 Ga0.7 As層2
4、膜厚3nmのun型GaAs層25、膜厚2nmのun
型Al0.3 Ga0.7 As層26、膜厚200nmのun型
GaAs層27からなる。
The structure of the epitaxial wafer for GaAs MESFETs shown in FIG. 1 has a buffer layer 20 in which at least one very thin heterogeneous epitaxial layer is inserted on a semi-insulating GaAs substrate 10, and an active layer is formed thereon. It has an n-type GaAs layer 30 and an n + -type GaAs layer 40 which is a contact layer for forming an ohmic electrode. The buffer layer 20 is an un-type GaA having a thickness of 200 nm in order from the bottom.
s layer 23, un-type Al 0.3 Ga 0.7 As layer 2 having a film thickness of 2 nm
4, un-type GaAs layer 25 with a thickness of 3 nm, un with a thickness of 2 nm
It is composed of a type Al 0.3 Ga 0.7 As layer 26 and an untype GaAs layer 27 having a film thickness of 200 nm.

【0021】また、図2に示すGaAsHEMT用エピ
タキシャルウェハの構造は、基板、バッファ層、及びオ
ーミック電極形成用コンタクト層に関しては、図1と同
じであり、異なる点は活性層、すなわち電子供給層であ
るn型Al0.3 Ga0.7 As層31が45nm厚で形成さ
れている点である。
The structure of the epitaxial wafer for GaAs HEMT shown in FIG. 2 is the same as that of FIG. 1 with respect to the substrate, the buffer layer, and the contact layer for forming the ohmic electrode, except that the active layer, that is, the electron supply layer. The point is that a certain n-type Al 0.3 Ga 0.7 As layer 31 is formed with a thickness of 45 nm.

【0022】これらのエピタキシャル層をMOVPE装
置を用いて成長させるに際し、原料としてトリメチルガ
リウム(Ga原料)、トリメチルアルミニウム(Al原
料)、AsH3 ガス(As原料)、Si2 6 ガス(ド
ーパントSi原料)を用いた。成長圧力は常圧で行っ
た。AlGaAsのAl混晶比は30%、すなわちAl
0.3 Ga0.7 Asとした。
When these epitaxial layers are grown using the MOVPE apparatus, trimethylgallium (Ga raw material), trimethylaluminum (Al raw material), AsH 3 gas (As raw material), Si 2 H 6 gas (dopant Si raw material) are used as raw materials. ) Was used. The growth pressure was atmospheric pressure. The Al mixed crystal ratio of AlGaAs is 30%, that is, Al
It was set to 0.3 Ga 0.7 As.

【0023】既述したように、図1のGaAsMESF
ETでは特性上、活性層のn型GaAs層30の厚さが
重要となる。断面TEMによる格子像観察で、バッファ
層20中の異種エピタキシャル層中のun型GaAs層
25の膜厚絶対値測定を行えば、これと同種材料の活性
層であるn型GaAs層30の膜厚が正確に測定できる
ことになる。
As already mentioned, the GaAs MESF of FIG.
In ET, the thickness of the n-type GaAs layer 30 of the active layer is important in terms of characteristics. If the absolute value of the film thickness of the un-type GaAs layer 25 in the heterogeneous epitaxial layer in the buffer layer 20 is measured by observing the lattice image with a cross-sectional TEM, the film thickness of the n-type GaAs layer 30 which is an active layer of the same kind of material as this Can be measured accurately.

【0024】また、図2のGaAsHEMTでも特性
上、電子供給層であるn型Al0.3 Ga0.7 As層の膜
厚が特性上重要となる。前例と同様にバッファ層20中
のun型Al0.3 Ga0.7 As層24または25の膜厚
絶対値測定を行えば、これと同種材料のn型Al0.3
0.7 As層31の膜厚が正確に測定できることにな
る。
Further, in the GaAs HEMT shown in FIG. 2, the film thickness of the n-type Al 0.3 Ga 0.7 As layer, which is the electron supply layer, is important in the characteristics. When the absolute film thickness of the un-type Al 0.3 Ga 0.7 As layer 24 or 25 in the buffer layer 20 is measured in the same manner as in the previous example, the n-type Al 0.3 G of the same material as this is measured.
The film thickness of the a 0.7 As layer 31 can be accurately measured.

【0025】次に、上述した断面TEM法による測定の
具体例について説明する。図3は、図1及び図2の実施
例のバッファ層中に挿入した極薄の異種エピタキシャル
層を断面TEM法により格子像観察した撮影結果であ
る。
Next, a specific example of measurement by the above-mentioned cross-sectional TEM method will be described. FIG. 3 is a photograph result of observing a lattice image of the ultrathin heterogeneous epitaxial layer inserted in the buffer layer of the embodiment of FIGS. 1 and 2 by a cross-sectional TEM method.

【0026】設計値は、中央のun型GaAs層25が
3.0nm、その上下のun型Al0.3 Ga0.7 As層2
6または24が共に2.0nmである。しかし、TEMの
測定結果では図示するように、GaAs層25が2.8
3nm、Al0.3 Ga0.7 As層24ないし26が2.2
6nmであった。
The design values are as follows: the central un-type GaAs layer 25 has a thickness of 3.0 nm, and the un-type Al 0.3 Ga 0.7 As layer 2 above and below it.
Both 6 and 24 are 2.0 nm. However, the TEM measurement result shows that the GaAs layer 25 is 2.8 as shown in the figure.
3 nm, Al 0.3 Ga 0.7 As layers 24 to 26 are 2.2
It was 6 nm.

【0027】この測定結果を基にして、図1の活性層で
あるn型GaAs層30、及び図2の電子供給層である
n型Al0.3 Ga0.7 As層31の膜厚をそれぞれ比例
計算すると、n型GaAs層30の設計膜厚200nmに
対して、実際には188.7nmで−5.7%のずれ、ま
たn型Al0.3 Ga0.7 A層s31の設計膜厚45nmに
対して50.9nmで+11.6%のずれとなっていたこ
とが分かった。
Based on these measurement results, the thicknesses of the n-type GaAs layer 30 which is the active layer in FIG. 1 and the n-type Al 0.3 Ga 0.7 As layer 31 which is the electron supply layer in FIG. 2 are calculated proportionally. , A deviation of −5.7% at 188.7 nm from the designed film thickness of the n-type GaAs layer 30 of 50 nm, and a deviation of 50.50 from the designed film thickness of the n-type Al 0.3 Ga 0.7 A layer s31 of 45 nm. It was found that the deviation was + 11.6% at 9 nm.

【0028】この設計膜厚に対するずれは、品質保障の
点で問題となる数値である。従って、気付かないでこの
まま製品として出荷すれば品質保証が十分に図れないこ
とになる。この点で本実施例によれば、正確な膜厚測定
結果を製造プロセスにフィードバックすることができる
ので、設計膜厚に限りなく近い製品ウェハを得ることが
でき、十分な品質保証を図ることができるようになる。
The deviation from the designed film thickness is a numerical value which is problematic in terms of quality assurance. Therefore, if the product is shipped as it is without noticing it, the quality cannot be sufficiently guaranteed. In this respect, according to the present embodiment, since the accurate film thickness measurement result can be fed back to the manufacturing process, it is possible to obtain a product wafer as close as possible to the designed film thickness, and to ensure sufficient quality assurance. become able to.

【0029】以上述べたように上記実施例によれば、製
品ウェハのバッファ層の中に60nm以下の異種エピタキ
シャル層を挿入するようにしたので、TEMにおいて4
0万倍程度の高倍率で測定しても、拡大格子像が一視野
に納まり、その結果、膜厚の絶対値測定を行なうことが
できる。
As described above, according to the above-mentioned embodiment, since the heterogeneous epitaxial layer having a thickness of 60 nm or less is inserted into the buffer layer of the product wafer, 4
Even if the measurement is performed at a high magnification of about 100,000 times, the magnified lattice image fits in one visual field, and as a result, the absolute value of the film thickness can be measured.

【0030】なお、上記本実施例では異種エピタキシャ
ル層としてGaAs層とAl0.3 Ga0.7 As層との場
合について説明したが、本発明はTEMの格子像が撮影
できれば、そのエピタキシャル種を限定するものではな
い。例えば、InGaAsやInAlAsなどでもよ
い。
In the above-mentioned embodiment, the case where the GaAs layer and the Al 0.3 Ga 0.7 As layer are used as the heterogeneous epitaxial layers has been described, but the present invention does not limit the epitaxial species as long as the TEM lattice image can be taken. Absent. For example, InGaAs or InAlAs may be used.

【0031】[0031]

【発明の効果】【The invention's effect】

(1) 請求項1に記載の発明によれば、膜厚測定用エピタ
キシャル層をバッファ層中に挿入したので、デバイスの
特性劣化をもたらすことなく、製品の膜厚測定をするこ
とができる。また、膜厚を1〜60nmとしたので、TE
Mによるエピタキシャル膜厚の格子像観察が一視野に納
まめることができ、エピタキシャルウェハの膜厚の絶対
値測定が可能となる。さらに膜厚測定用のエピタキシャ
ル層を活性層と同じ材料で形成したので、膜厚が厚いた
めに直接絶対値測定ができない活性層であっても、膜厚
測定用のエピタキシャル層の膜厚に基づいて正確に求め
ることができ、製品の品質を向上することができる。ま
た、不良解析を行う際、膜厚を正確に測定できるため解
析も容易となる。
(1) According to the invention described in claim 1, since the epitaxial layer for measuring the film thickness is inserted in the buffer layer, it is possible to measure the film thickness of the product without deteriorating the characteristics of the device. Moreover, since the film thickness is set to 1 to 60 nm, TE
The lattice image observation of the epitaxial film thickness by M can be contained in one visual field, and the absolute value of the film thickness of the epitaxial wafer can be measured. Furthermore, since the epitaxial layer for film thickness measurement is formed of the same material as the active layer, even if the active layer cannot be directly measured in absolute value due to its thick film thickness, it is based on the film thickness of the epitaxial layer for film thickness measurement. The product quality can be improved. In addition, when the failure analysis is performed, the film thickness can be accurately measured, which facilitates the analysis.

【0032】(2) 請求項2に記載の発明によれば、Ga
AsMESFET用エピタキシャルウェハの品質を向上
することができる。
(2) According to the invention described in claim 2, Ga
The quality of the epitaxial wafer for AsMESFET can be improved.

【0033】(3) 請求項3に記載の発明によれば、Ga
AsHEMT用エピタキシャルウェハの品質を向上する
ことができる。
(3) According to the invention of claim 3, Ga
The quality of the AsHEMT epitaxial wafer can be improved.

【0034】(4) 請求項4に記載の発明によれば、膜厚
測定用のエピタキシャル層の膜厚を絶対測定し、これよ
り活性層ないし電子供給層の膜厚を計算して求めるよう
にしたので、膜厚の厚い活性層ないし電子供給層であっ
ても正確な膜厚測定ができる。
(4) According to the invention of claim 4, the film thickness of the epitaxial layer for film thickness measurement is absolutely measured, and the film thickness of the active layer or the electron supply layer is calculated from this. Therefore, accurate film thickness measurement can be performed even with a thick active layer or electron supply layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物半導体エピタキシャルウェハの
一実施例であるGaAsMESFETエピタキシャルウ
ェハの断面図。
FIG. 1 is a sectional view of a GaAs MESFET epitaxial wafer which is an example of a compound semiconductor epitaxial wafer of the present invention.

【図2】本発明の化合物半導体エピタキシャルウェハの
他の実施例であるGaAsHEMTエピタキシャルウェ
ハの断面図。
FIG. 2 is a sectional view of a GaAs HEMT epitaxial wafer which is another embodiment of the compound semiconductor epitaxial wafer of the present invention.

【図3】本実施例の極薄異種エピタキシャル層の断面T
EMによる格子像観察結果を示す説明図。
FIG. 3 is a cross section T of the ultrathin heterogeneous epitaxial layer of the present embodiment.
Explanatory drawing which shows the lattice image observation result by EM.

【図4】従来のGaAs系MESFETエピタキシャル
ウェハの断面図。
FIG. 4 is a sectional view of a conventional GaAs-based MESFET epitaxial wafer.

【図5】従来のGaAs/AlGaAs系MESFET
エピタキシャルウェハの断面図。
FIG. 5 Conventional GaAs / AlGaAs MESFET
Sectional drawing of an epitaxial wafer.

【符号の説明】[Explanation of symbols]

10 半絶縁性GaAs基板 20 バッファ層 23 un型GaAs層(バッファ層) 24 un型Al0.3 Ga0.7 As層(バッファ層) 25 un型GaAs層(バッファ層) 26 un型Al0.3 Ga0.7 As層(バッファ層) 27 un型GaAs層(バッファ層) 30 n型GaAs層(活性層) 31 n型GaAs層(電子供給層) 40 n+ 型GaAs層(オーミック電極形成用コンタ
クト層)
10 semi-insulating GaAs substrate 20 buffer layer 23 un-type GaAs layer (buffer layer) 24 un-type Al 0.3 Ga 0.7 As layer (buffer layer) 25 un-type GaAs layer (buffer layer) 26 un-type Al 0.3 Ga 0.7 As layer ( Buffer layer) 27 un-type GaAs layer (buffer layer) 30 n-type GaAs layer (active layer) 31 n-type GaAs layer (electron supply layer) 40 n + -type GaAs layer (contact layer for ohmic electrode formation)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/812 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 29/812

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上にバッファ層を介して活性層を有す
る化合物半導体エピタキシャルウェハにおいて、上記バ
ッファ層の中にヘテロ接合を形成する膜厚測定用のエピ
タキシャル層が少なくとも一層挿入してあり、かつ、該
膜厚測定用のエピタキシャル層の膜厚が1〜60nmであ
ることを特徴とする化合物半導体エピタキシャルウェ
ハ。
1. A compound semiconductor epitaxial wafer having an active layer on a substrate via a buffer layer, wherein at least one epitaxial layer for film thickness measurement for forming a heterojunction is inserted in the buffer layer, and A compound semiconductor epitaxial wafer, wherein the thickness of the epitaxial layer for measuring the film thickness is 1 to 60 nm.
【請求項2】半絶縁性GaAs基板上にバッファ層を有
し、該バッファ層は、上下に本来のバッファ層となるア
ンドープGaAs層の中間にアンドープAlGaAs
層、アンドープGaAs層、アンドープAlGaAs層
からなる積層構造で構成された1〜60nmの膜厚測定用
のエピタキシャル層が挿入され、該バッファ層の上に活
性層となるn型GaAs層を有し、その上にオーミック
電極形成用コンタクト層となるn+ 型GaAs層を有す
ることを特徴とするGaAsMESFET用の化合物半
導体エピタキシャルウェハ。
2. A buffer layer is provided on a semi-insulating GaAs substrate, and the buffer layer is provided above and below an undoped GaAs layer, which is an original buffer layer, in the middle.
Layer, an undoped GaAs layer, an undoped AlGaAs layer having a laminated structure of 1 to 60 nm for measuring the thickness of the epitaxial layer is inserted, and an n-type GaAs layer serving as an active layer is provided on the buffer layer. A compound semiconductor epitaxial wafer for GaAs MESFET, which has an n + -type GaAs layer serving as a contact layer for ohmic electrode formation thereon.
【請求項3】半絶縁性GaAs基板上にバッファ層を有
し、該バッファ層は、上下に本来のバッファ層となるア
ンドープGaAs層の中間にアンドープAlGaAs
層、アンドープGaAs層、アンドープAlGaAs層
からなる積層構造で構成された1〜60nmの膜厚測定用
のエピタキシャル層が挿入され、該バッファ層の上に電
子供給層となるn型AlGaAs層を有し、その上にオ
ーミック電極形成用コンタクト層となるn+ 型GaAs
層を有することを特徴とするGaAsHEMT用の化合
物半導体エピタキシャルウェハ。
3. A buffer layer is provided on a semi-insulating GaAs substrate, and the buffer layer is vertically provided with undoped AlGaAs in the middle of an undoped GaAs layer serving as an original buffer layer.
Layer, an undoped GaAs layer, an undoped AlGaAs layer having a laminated structure of 1 to 60 nm for measuring the thickness of the epitaxial layer is inserted, and an n-type AlGaAs layer serving as an electron supply layer is provided on the buffer layer. , N + -type GaAs, which will be a contact layer for ohmic electrode formation thereon
A compound semiconductor epitaxial wafer for a GaAs HEMT, which has a layer.
【請求項4】請求項1ないし3のいずれかに記載の化合
物半導体エピタキシャルウェハの膜厚を測定する方法に
おいて、上記バッファ層の中に挿入された膜厚測定用の
エピタキシャル層の膜厚を透過型電子顕微鏡(TEM)
法による格子像観察で測定し、測定した膜厚に基づいて
上記活性層ないし電子供給層の膜厚を算出することを特
徴とする化合物半導体エピタキシャルウェハの膜厚測定
方法。
4. The method for measuring the film thickness of a compound semiconductor epitaxial wafer according to claim 1, wherein the film thickness of the epitaxial layer for film thickness measurement inserted in the buffer layer is transmitted. Electron microscope (TEM)
A method for measuring the film thickness of a compound semiconductor epitaxial wafer, which comprises measuring the film thickness of the active layer or the electron supply layer based on the measured film thickness by observing a lattice image by the method.
JP25058093A 1993-10-06 1993-10-06 Compound semiconductor epitaxial wafer and measuring method for its film thickness Pending JPH07106260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25058093A JPH07106260A (en) 1993-10-06 1993-10-06 Compound semiconductor epitaxial wafer and measuring method for its film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25058093A JPH07106260A (en) 1993-10-06 1993-10-06 Compound semiconductor epitaxial wafer and measuring method for its film thickness

Publications (1)

Publication Number Publication Date
JPH07106260A true JPH07106260A (en) 1995-04-21

Family

ID=17210009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25058093A Pending JPH07106260A (en) 1993-10-06 1993-10-06 Compound semiconductor epitaxial wafer and measuring method for its film thickness

Country Status (1)

Country Link
JP (1) JPH07106260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593153B2 (en) 2001-03-16 2003-07-15 The Furukawa Electric Co., Ltd. Method of and apparatus for measuring lattice-constant, and computer program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593153B2 (en) 2001-03-16 2003-07-15 The Furukawa Electric Co., Ltd. Method of and apparatus for measuring lattice-constant, and computer program

Similar Documents

Publication Publication Date Title
JPH07263343A (en) Molecular beam beam epitaxy layer deposition process method
Wickenden et al. Doping of gallium nitride using disilane
Ng et al. Molecular beam epitaxy of GaN/AlxGa1− xN superlattices for 1.52–4.2 μm intersubband transitions
Kobayashi et al. In situ control of heterointerface quality in MOVPE by surface photo-absorption
Norris et al. Reduced pressure MOVPE growth and characterization of GaAs/GaAlAs heterostructures using a triethylgallium source
Chaaben et al. Study of Al diffusion in GaN during metal organic vapor phase epitaxy of AlGaN/GaN and AlN/GaN structures
JPH07106260A (en) Compound semiconductor epitaxial wafer and measuring method for its film thickness
Liu et al. Analysis of ordering in GaInP by means of x‐ray diffraction
Bougrioua et al. Fe doping for making resistive GaN layers with low dislocation density; consequence on HEMTs
Baba et al. Non-destructive characterization of thin layer resonant tunneling diodes
Sugiyama et al. Metal-organic vapor-phase epitaxy growth of InP-based resonant tunneling diodes with a strained In0. 8Ga0. 2As well and AlAs barriers
Sharma et al. Long-wavelength photoluminescence from InGaP/GaAs heterointerfaces grown by metal organic vapour-phase epitaxy
US5296088A (en) Compound semiconductor crystal growing method
CN113257706A (en) Epitaxial wafer and doping concentration monitoring method thereof
Sherwin et al. Investigation and optimization of InGaAs/InP heterointerfaces grown by chemical beam epitaxy using spectroscopic ellipsometry and photoluminescence
Andre et al. Ga 1-x in x as-inp abrupt heterostructures grown by MOVPE at atmospheric pressure
Ruiz et al. Nitrogen and carbon incorporation in GaNxAs1-x grown in a showerhead MOVPE reactor
Kuesters et al. TEM observations of compositional variations in AlxGa1− xAs grown by OMVPE
Coleman et al. III‐V heterostructure interfaces by metalorganic chemical vapor deposition
Kim et al. Chemical characterization of (In, Ga) As/(Al, Ga) As strained interfaces grown by metalorganic chemical vapor deposition
Oliver Application of highly silicon-doped marker layers in the investigation of unintentional doping in GaN on sapphire
Lakner et al. Scanning transmission electron microscopy of heterointerfaces grown by metalorganic vapor phase epitaxy (MOVPE)
Yao et al. Research on the mechanism and influence of P incorporation in N-rich nitride AlPN and growth of high quality AlPN/GaN HEMT
Prost et al. Metalorganic vapor phase epitaxial grown heterointerfaces to GaInP with group-III and group-V exchange
Diaz-Reyes et al. Characterization of AlxGa1− xAs layers grown on (100) GaAs by metallic-arsenic-based-MOCVD