JPH07106243A - Horizontal position detector - Google Patents

Horizontal position detector

Info

Publication number
JPH07106243A
JPH07106243A JP5310510A JP31051093A JPH07106243A JP H07106243 A JPH07106243 A JP H07106243A JP 5310510 A JP5310510 A JP 5310510A JP 31051093 A JP31051093 A JP 31051093A JP H07106243 A JPH07106243 A JP H07106243A
Authority
JP
Japan
Prior art keywords
light
slit
optical system
shielding member
shaped opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5310510A
Other languages
Japanese (ja)
Inventor
Hideo Mizutani
英夫 水谷
Shinji Wakamoto
信二 若本
Yuji Imai
裕二 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5310510A priority Critical patent/JPH07106243A/en
Publication of JPH07106243A publication Critical patent/JPH07106243A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To make it possible to detect accurately th angle of inclination of the surface of an object to a prescribed reference surface even when the object is transparent, specially is transparent and has a high-reflectivity film on the back. CONSTITUTION:A pattern image of a reticle 2 is formed on a glass substrate 3 coated with a sensitive material via a projection objective optical system 1. Either of the images through groups 17 and 18 of slit-shaped open holes in a first light-shielding plate 15 is projected on the surface of the substrate 3 obliquely to the optical axis 1a and the reflected light from the substrate 3 is received in a quadripartite photodetector 23 via either of the groups 17A and 18A of slit-shaped open holes in a second light-shielding plate 24. The groups 17 and 18 are different from each other in the width of an opening part and either of the groups 17 and 18 is used according to the intensity of the reflected light on the back of the substrate 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業状の利用分野】本発明は、所定の基準面に対する
被検物体の被検面の傾きを検出する水平位置検出装置に
関し、特に半導体素子や液晶表示素子の製造工程で使用
される露光装置に適用して好適な水平位置検出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal position detecting apparatus for detecting the inclination of a surface of a test object with respect to a predetermined reference surface, and more particularly to an exposure apparatus used in the manufacturing process of semiconductor elements and liquid crystal display elements. The present invention relates to a horizontal position detecting device that is suitable for use in.

【0002】[0002]

【従来の技術】一般に、半導体素子又は液晶表示素子等
の製造用の投影露光装置(例えばステッパー)には、大
きな開口数(N.A.)を有する投影対物光学系が用いられて
いるため、許容焦点範囲が非常に小さい。このため、感
光基板(表面にレジストが塗布された半導体ウエハ又は
ガラス基板等)上の露光領域を所定の基準面、すなわち
投影対物光学系の結像面に対して焦点深度の範囲内で平
行に維持しない限り、感光基板の露光領域全体に亘って
鮮明なパターンの露光を行うことができない。感光基板
としてレジストが塗布されたウエハを使用した場合、別
途設けられたオートフォーカス機構により、ウエハ面上
の少なくとも3点での高さ(投影対物光学系の光軸方向
の位置)が検出され、ウエハの露光面は全体として投影
対物光学系の光軸に対してほぼ垂直に位置合わせするこ
とができる。
2. Description of the Related Art In general, a projection exposure apparatus (eg, stepper) for manufacturing a semiconductor device or a liquid crystal display device uses a projection objective optical system having a large numerical aperture (NA), and therefore the allowable focus range. Is very small. Therefore, the exposure area on the photosensitive substrate (semiconductor wafer or glass substrate whose surface is coated with resist) is parallel to a predetermined reference plane, that is, the image plane of the projection objective optical system within the range of the depth of focus. Unless maintained, a clear pattern cannot be exposed over the entire exposed area of the photosensitive substrate. When a resist-coated wafer is used as the photosensitive substrate, the height (position in the optical axis direction of the projection objective optical system) at at least three points on the wafer surface is detected by a separately provided autofocus mechanism, The exposure surface of the wafer as a whole can be aligned substantially perpendicular to the optical axis of the projection objective optical system.

【0003】ところが、ウエハが大型化した場合やウエ
ハ自体の平面性が不安定な場合には、ウエハの露光面で
の部分的な高さ検出が必要になる。そして、ウエハ上の
各レイヤ毎の露光及び化学処理により更にウエハの変形
が増大されるため、ウエハの露光面の平均的な面の投影
対物光学系の結像面に対する傾斜角を正確に検出するた
めの水平位置検出が不可欠となってきている。
However, when the size of the wafer is large or the flatness of the wafer itself is unstable, it is necessary to partially detect the height of the exposed surface of the wafer. Then, since the deformation of the wafer is further increased by the exposure and chemical treatment for each layer on the wafer, the tilt angle of the average surface of the exposure surface of the wafer with respect to the image plane of the projection objective optical system is accurately detected. Horizontal position detection is becoming indispensable.

【0004】そこで、ウエハ上の露光される各領域をそ
れぞれ最も良好な状態に維持できるように、各領域毎に
その平均的な面の傾斜状態を検出するための水平位置検
出装置が、本出願人により特開昭58−113706号
公報として提案されている。ここに開示された装置は、
投影型露光装置においてウエハの各露光領域毎に投影対
物光学系の光軸に対する垂直性を正確に測定することが
でき、極めて優れた計測性能を有するものであった。
Therefore, in order to maintain each exposed region on the wafer in the best condition, a horizontal position detecting device for detecting the average inclination of the surface of each region is proposed in the present application. It has been proposed by a person as JP-A-58-113706. The device disclosed here is
In the projection type exposure apparatus, the perpendicularity to the optical axis of the projection objective optical system can be accurately measured for each exposure area of the wafer, and the measurement performance is extremely excellent.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
如き従来の水平位置検出装置において、傾き検出の対象
がレジストが塗布された透明なガラス基板である場合、
特にそのガラス基板の裏面にアルミニウム等の反射率の
高い膜が形成されている場合には、ガラス基板の表面か
らの反射光にガラス基板の裏面からの反射光が混入し、
傾き検出に誤差を生ずる場合があるという不都合があっ
た。更に、ガラス基板の裏面からの反射光がガラス基板
の表面で反射されて裏面に戻り、その後再び裏面で反射
された光や、ガラス基板の裏面と表面との間で多数回繰
り返し反射された光等もガラス基板の表面を透過して受
光素子上に達するため、傾き検出の誤差が増大する場合
もあった。
However, in the conventional horizontal position detecting device as described above, when the object of tilt detection is a transparent glass substrate coated with resist,
Especially when a film having a high reflectance such as aluminum is formed on the back surface of the glass substrate, the reflected light from the back surface of the glass substrate is mixed with the reflected light from the front surface of the glass substrate,
There is an inconvenience that an error may occur in the tilt detection. Further, the light reflected from the back surface of the glass substrate is reflected on the front surface of the glass substrate and returns to the back surface, and then the light reflected on the back surface again or the light repeatedly reflected many times between the back surface and the front surface of the glass substrate. Since the light passes through the surface of the glass substrate and reaches the light receiving element, the error in tilt detection may increase.

【0006】本発明は斯かる点に鑑み、被検物が透明基
板、特に裏面に高反射率の膜がある透明基板からなる場
合にも、その被検物の所定の被検面の所定の基準面(例
えば投影対物光学系の結像面)に対する傾斜角を正確に
検出することができる水平位置検出装置を提供すること
を目的とする。
In view of the above point, the present invention provides a predetermined test surface of the test object even when the test object is a transparent substrate, particularly a transparent substrate having a high reflectance film on the back surface. An object of the present invention is to provide a horizontal position detecting device capable of accurately detecting a tilt angle with respect to a reference plane (for example, an image plane of a projection objective optical system).

【0007】[0007]

【課題を解決するための手段】本発明による第1の水平
位置検出装置は、例えば図1及び図2に示す如く、照射
対物レンズ(14)を介して被検物体(3)の被検面へ
斜め方向から平行光束を照射する照射光学系(10)
と、その被検面で反射される光束を集光する集光対物レ
ンズ(21)及びこの集光された光束を受光する受光素
子(23)を有する集光光学系(20)とを備え、受光
素子(23)の検出信号に基づいてその被検面の所定の
基準面に対する傾きを検出する水平位置検出装置におい
て、照射光学系(10)中に、その被検面上に投影され
るスリット状開口群(17)を有する第1遮光部材(1
5)を設け、集光光学系(20)中に、第1遮光部材
(15)中のスリット状開口群(17)と同一、又は相
似形状のスリット状開口群(17A)を有する第2遮光
部材(24)をその被検面と共役な位置に設け、第1遮
光部材(15)と第2遮光部材(24)とをその被検面
での反射を介して共役な位置に配置し、且つ第1遮光部
材(15)のスリット状開口群(17)及び第2遮光部
材(24)のスリット状開口群(17A)のそれぞれの
スリット状開口の長手方向を照射光学系(10)及び集
光光学系(20)の光軸を含む入射面に対して垂直に設
置し、更に、第1遮光部材(15)のスリット状開口群
(17)及び第2遮光部材(24)のスリット状開口群
(17A)のそれぞれの配列方向における遮光部の幅を
変化させる調整手段(31,MT1 ,MT2 )を設けた
ものである。
The first horizontal position detecting apparatus according to the present invention is, for example, as shown in FIGS. 1 and 2, a surface to be inspected of an object (3) to be inspected through an irradiation objective lens (14). Irradiation optical system (10) for irradiating a parallel light beam obliquely to
And a condensing optical system (20) having a condensing objective lens (21) for condensing the light flux reflected by the surface to be inspected and a light receiving element (23) for receiving the condensed light flux, In a horizontal position detecting device for detecting the inclination of a surface to be inspected with respect to a predetermined reference surface based on a detection signal of a light receiving element (23), a slit projected onto the surface to be inspected in an irradiation optical system (10). First light blocking member (1) having a group of apertures (17)
5), and second condensing optical system (20) having a slit-shaped opening group (17A) of the same or similar shape as the slit-shaped opening group (17) in the first light-shielding member (15). The member (24) is provided at a position conjugate with the surface to be inspected, and the first light shielding member (15) and the second light shielding member (24) are arranged at a position conjugate with each other through reflection on the surface to be inspected. In addition, the longitudinal direction of each slit-shaped opening of the slit-shaped opening group (17) of the first light-shielding member (15) and the slit-shaped opening group (17A) of the second light-shielding member (24) is set to the irradiation optical system (10) and the collection. It is installed perpendicularly to the incident surface including the optical axis of the optical optical system (20), and further, the slit-shaped opening group (17) of the first light shielding member (15) and the slit-shaped opening of the second light shielding member (24). Adjusting means for changing the width of the light shielding part in each array direction of the group (17A) 31, MT 1, MT 2) in which the provided.

【0008】この場合、被検物体(3)は所定のパター
ンが転写される透明基板であり、照射光学系(10)に
よる透明基板(13)上への平行光束の照射領域はその
所定のパターンの転写領域の大きさとほぼ同じ大きさに
定められていることが望ましい。また、その調整手段
は、第1遮光部材(15)のスリット状開口群(17)
の遮光部の幅及び第2遮光部材(24)のスリット状開
口群(17A)の遮光部の幅を、それぞれ対応するスリ
ット状開口群の開口部の幅の2倍程度以上に定めること
が望ましい場合がある。また、第1遮光部材(15)及
び第2遮光部材(24)は、それぞれその遮光部の幅が
互いに異なる複数組のスリット状開口群(17,18及
び17A,18A)を有し、その調整手段は、それら複
数組のスリット状開口群の各々を交換可能に対応する照
射光学系(10)及び集光光学系(20)の光路中に配
置する交換手段(MT1 ,MT2 )を有しても良い。
In this case, the object (3) to be inspected is a transparent substrate onto which a predetermined pattern is transferred, and the irradiation area of the parallel light flux onto the transparent substrate (13) by the irradiation optical system (10) is the predetermined pattern. It is desirable that the size is set to be approximately the same as the size of the transfer area of. Further, the adjusting means is a slit-shaped opening group (17) of the first light shielding member (15).
It is desirable to set the width of the light-shielding portion and the width of the light-shielding portion of the slit-shaped opening group (17A) of the second light-shielding member (24) to be about twice or more the width of the corresponding slit-shaped opening group. There are cases. The first light blocking member (15) and the second light blocking member (24) each have a plurality of sets of slit-shaped opening groups (17, 18 and 17A, 18A) whose light blocking portions have different widths, and the adjustment thereof is performed. The means has exchange means (MT 1 , MT 2 ) for arranging each of the plurality of slit-shaped aperture groups in the optical path of the corresponding irradiation optical system (10) and condensing optical system (20) in an exchangeable manner. You may.

【0009】また、第1遮光部材(15)と第2遮光部
材(24)とは共に、液晶表示素子又はエレクトロクロ
ミック素子で構成され、その調整手段は、第1遮光部材
(15)と第2遮光部材(24)との各々に与える電圧
を制御する電圧制御器を有しても良い。また、その調整
手段は、第1遮光部材(15)のスリット状開口群及び
第2遮光部材(24)のスリット状開口群のそれぞれの
遮光部の幅を連続的、又は段階的に変化させたときに受
光素子(23)から出力される出力信号の変化に基づい
て、その遮光部の幅を被検物体(3)に最適な値に設定
することが望ましい。次に、本発明による第2の水平位
置検出装置は、第1の水平位置検出装置と前提部を同じ
くする。
Further, both the first light-shielding member (15) and the second light-shielding member (24) are composed of a liquid crystal display element or an electrochromic element, and the adjusting means thereof is the first light-shielding member (15) and the second light-shielding member. A voltage controller for controlling the voltage applied to each of the light shielding member (24) may be included. Further, the adjusting means continuously or stepwise changes the widths of the respective light shielding portions of the slit-shaped opening group of the first light-shielding member (15) and the slit-shaped opening group of the second light-shielding member (24). At times, it is desirable to set the width of the light shielding portion to an optimum value for the object to be inspected (3) based on the change in the output signal output from the light receiving element (23). Next, the second horizontal position detecting device according to the present invention has the same premise as the first horizontal position detecting device.

【0010】そして、この第2の水平位置検出装置は、
例えば図7に示すように、照射光学系(10)中に、そ
の被検面上に投影されるスリット状開口群を有する第1
遮光部材(51)を設け、集光光学系(20)中に、そ
の第1遮光部材中のスリット状開口群と同一、又は相似
形状のスリット状開口群を有する第2遮光部材(52)
をその被検面と共役な位置に設け、第1遮光部材(5
1)と第2遮光部材(52)とをその被検面での反射を
介して共役な位置に配置し、且つ第1遮光部材(51)
及び第2遮光部材(52)を、それぞれ照射光学系(1
0)、及び集光光学系(20)の光軸を含む入射面内に
ある軸(51a,52a)を中心に回動する調整手段
(31,MT1 ,MT2 )を設け、この調整手段を介し
て第1遮光部材(51)及び第2遮光部材(52)を回
動することにより、それら照射光学系、及び集光光学系
の光軸を含む入射面に沿ったその被検面上での入射方向
に対する、第1遮光部材(51)のスリット状開口群、
及び第2遮光部材(52)のスリット状開口群のその被
検面上での共役像のピッチを変化させるようにしたもの
である。
The second horizontal position detecting device is
For example, as shown in FIG. 7, in the irradiation optical system (10), there is provided a first slit-shaped opening group projected onto the surface to be inspected.
A second light shielding member (52) provided with a light shielding member (51) and having a slit-shaped opening group in the condensing optical system (20) that is the same as or similar to the slit-shaped opening group in the first light shielding member.
Is provided at a position conjugate with the surface to be inspected, and the first light shielding member (5
1) and the second light shielding member (52) are arranged in a conjugate position through reflection on the surface to be inspected, and the first light shielding member (51)
And the second light-shielding member (52) to the irradiation optical system (1
0) and adjusting means (31, MT 1 , MT 2 ) for rotating about axes (51a, 52a) in the incident surface including the optical axis of the condensing optical system (20), and the adjusting means are provided. By rotating the first light-shielding member (51) and the second light-shielding member (52) via the light-shielding member, the irradiation optical system and the condensing optical system on the surface to be detected along the incident surface including the optical axis The slit-shaped opening group of the first light shielding member (51) with respect to the incident direction at
And the pitch of the conjugate image on the test surface of the slit-shaped opening group of the second light shielding member (52).

【0011】次に、本発明による第3の水平位置検出装
置は、第1の水平位置検出装置と同じ前提部において、
例えば図8に示すように、照射光学系(10)中に、そ
の被検面上に投影されるスリット状開口群を有する第1
遮光部材(56)を設け、集光光学系(20)中に、そ
の第1遮光部材中のスリット状開口群と同一、又は相似
形状のスリット状開口群を有する第2遮光部材(57)
をその被検面とほぼ共役な位置に設け、それら第1遮光
部材と前記第2遮光部材とをその被検面での反射を介し
て共役な位置関係に配置し、且つ第1遮光部材(56)
及び第2遮光部材(57)のスリット状開口群のそれぞ
れのスリット状開口の長手方向をそれら照射光学系及び
集光光学系の光軸を含む入射面に対して垂直に設置し、
更に、その入射面に垂直な軸(56a,57a)を中心
として第1及び第2遮光部材(56,57)を回動する
調整手段(31,MT1 ,MT2 )を設け、この調整手
段を介して第1及び第2遮光部材(56,57)を回動
することにより、照射光学系(10)、及び集光光学系
(20)の光軸を含む入射面に沿ったその被検面上での
入射方向に対する、第1遮光部材(56)及び第2遮光
部材(57)のスリット状開口群のその被検面上での共
役像のピッチを変化させるようにしたものである。
Next, the third horizontal position detecting device according to the present invention has the same premise as that of the first horizontal position detecting device.
For example, as shown in FIG. 8, in the irradiation optical system (10), there is provided a first slit-shaped opening group projected onto the surface to be inspected.
A second light blocking member (57) provided with a light blocking member (56) and having a slit-shaped opening group in the condensing optical system (20) that is the same as or similar to the slit-shaped opening group in the first light blocking member.
Are provided at positions substantially conjugate with the surface to be inspected, and the first light shielding member and the second light shielding member are arranged in a conjugate positional relationship through reflection on the surface to be inspected, and the first light shielding member ( 56)
And the longitudinal direction of each slit-shaped opening of the slit-shaped opening group of the second light shielding member (57) is set perpendicularly to the incident surface including the optical axes of the irradiation optical system and the condensing optical system,
Further, adjusting means (31, MT 1 , MT 2 ) for rotating the first and second light shielding members (56, 57) about axes (56a, 57a) perpendicular to the incident surface are provided, and the adjusting means are provided. By rotating the first and second light blocking members (56, 57) through the light source, the inspection of the irradiation optical system (10) and the condensing optical system (20) along the incident surface including the optical axis is performed. The pitch of the conjugate image of the slit-shaped aperture group of the first light shielding member (56) and the second light shielding member (57) on the surface to be inspected is changed with respect to the incident direction on the surface.

【0012】また、その第3の水平位置検出装置におい
て、第1遮光部材(51)のスリット状開口群、及び第
2遮光部材(52)のスリット状開口群の形状をそれぞ
れ図9に示す市松模様(58)とし、この市松模様の第
1の周期方向及び第2の周期方向のピッチを互いに異な
らしめ、第1遮光部材(51)及び第2遮光部材(5
2)をそれぞれそれら照射光学系、及び集光光学系の光
軸を含む入射面内の軸を中心として回転することによ
り、その市松模様のその第1の周期方向又はその第2の
周期方向と共役なその被検面上での方向(60,61)
を、それら照射光学系、及び集光光学系の光軸を含む入
射面に沿った方向に設定するようにしてもよい。
In the third horizontal position detecting device, the shapes of the slit-shaped opening group of the first light-shielding member (51) and the slit-shaped opening group of the second light-shielding member (52) are shown in FIG. The pattern (58) is used, and the pitches in the first periodic direction and the second periodic direction of the checkered pattern are made different from each other, and the first light shielding member (51) and the second light shielding member (5
By rotating 2) around the axes in the incident plane including the optical axes of the irradiation optical system and the condensing optical system, respectively, the first periodic direction or the second periodic direction of the checkered pattern can be obtained. Conjugate direction on the surface (60, 61)
May be set in a direction along the incident surface including the optical axes of the irradiation optical system and the condensing optical system.

【0013】[0013]

【作用】斯かる本発明の第1の水平位置検出装置によれ
ば、照射光学系(10)中の第1遮光部材(15)のス
リット状開口群(17)を介して被検物体(3)の被検
面上にスリット状パターン群の像を投影し、被検物体
(3)からの光を集光光学系(20)中に配置された第
2遮光部材(24)のスリット状開口群(17A)を通
して受光する。この際に、第1遮光部材(15)と第2
遮光部材(24)とが被検面での反射に関して互いに共
役であるため、受光素子(23)では被検面からの反射
光のみを受光することができる。即ち、被検物体(3)
の裏面からの反射光、その反射光が被検物体(3)の表
面で反射され再び裏面で反射して得られた2回の裏面反
射による反射光、及びその裏面で3回以上反射された反
射光が、集光光学系(20)中に配置された第2遮光部
材(25)のスリット状開口群(17A)の遮光部でほ
とんど除去される。従って、被検物体(3)の裏面での
反射光による水平位置検出への影響が低減され、その被
検面の傾斜角を正確に検出できる。
According to the first horizontal position detecting apparatus of the present invention, the object to be inspected (3) is passed through the slit-shaped opening group (17) of the first light shielding member (15) in the irradiation optical system (10). ) A slit-shaped opening of the second light-shielding member (24), which projects an image of the slit-shaped pattern group on the surface to be inspected and arranges the light from the object to be inspected (3) in the condensing optical system (20). Receive light through group (17A). At this time, the first light blocking member (15) and the second light blocking member (15)
Since the light-shielding member (24) and the light-shielding member (24) are conjugate with each other with respect to the reflection on the test surface, the light receiving element (23) can receive only the reflected light from the test surface. That is, the object to be inspected (3)
From the back surface of the object, the reflected light from the back surface of the object (3) to be reflected and the reflected light from the back surface twice, and the back surface is reflected three times or more. Most of the reflected light is removed by the light-shielding portion of the slit-shaped opening group (17A) of the second light-shielding member (25) arranged in the condensing optical system (20). Therefore, the influence of reflected light on the back surface of the object to be inspected (3) on the horizontal position detection is reduced, and the tilt angle of the surface to be inspected can be accurately detected.

【0014】また、第1遮光部材(15)のスリット状
開口群(17)及び第2遮光部材(24)のスリット状
開口群(17A)のそれぞれの配列方向における遮光部
の幅を変化させる調整手段(31,MT1 ,MT2 )を
設けたので、その遮光部の幅を変えることにより、例え
ば被検物体(3)の裏面での1回目の反射による反射光
のみを受光したり、その裏面での2回目の反射による反
射光のみを受光したりすることができる。これにより、
被検物体(3)の裏面での1回目及び2回目の反射によ
る反射光の水平検出への影響を個別に知ることができ
る。また、被検物体(3)が所定のパターンが転写され
る透明基板であり、照射光学系(10)による透明基板
(3)上への平行光束の照射領域はその所定のパターン
の転写領域の大きさとほぼ同じ大きさに定められている
場合には、その透明基板(3)の裏面での反射光の影響
を除去した上で、その転写領域の平均的な面の傾斜角を
正確に求めることができる。
Also, the adjustment is performed to change the width of the light-shielding portion in the arrangement direction of the slit-shaped opening group (17) of the first light-shielding member (15) and the slit-shaped opening group (17A) of the second light-shielding member (24). Since the means (31, MT 1 , MT 2 ) is provided, by changing the width of the light-shielding portion, for example, only the light reflected by the first reflection on the back surface of the object (3) to be inspected or It is possible to receive only the light reflected by the second reflection on the back surface. This allows
The influence on the horizontal detection of the reflected light by the first and second reflections on the back surface of the object to be inspected (3) can be individually known. Further, the object to be inspected (3) is a transparent substrate onto which a predetermined pattern is transferred, and the irradiation area of the parallel light flux onto the transparent substrate (3) by the irradiation optical system (10) is the transfer area of the predetermined pattern. When the size is set to be approximately the same as the size, the influence of the reflected light on the back surface of the transparent substrate (3) is removed, and then the average surface inclination angle of the transfer area is accurately obtained. be able to.

【0015】また、その調整手段が、第1遮光部材(1
5)のスリット状開口群(17)の遮光部の幅及び第2
遮光部材(24)のスリット状開口群(17A)の遮光
部の幅を、それぞれ対応するスリット状開口群の開口部
の幅の2倍程度以上に定める場合には、例えば図3に示
すように、被検物体(3)上でのスリット状開口群の像
(25)の暗部(26A)の幅が明部(26B)の幅w
の2倍以上になる。従って、被検物体(3)の裏面で2
回反射した光をも遮光することができる。また、第1遮
光部材(15)及び第2遮光部材(24)が、それぞれ
その遮光部の幅が互いに異なる複数組のスリット状開口
群(17,18及び17A,18A)を有し、その調整
手段は、それら複数組のスリット状開口群の各々を交換
可能に対応する照射光学系(10)及び集光光学系(2
0)の光路中に配置する交換手段(MT1 ,MT2 )を
有する場合には、機械的に容易にその遮光部の幅を変え
ることができる。
Further, the adjusting means is the first light shielding member (1
5) The width of the light shielding portion of the slit-shaped opening group (17) and the second
When the width of the light-shielding portion of the slit-shaped opening group (17A) of the light-shielding member (24) is set to be about twice the width of the opening of the corresponding slit-shaped opening group or more, for example, as shown in FIG. , The width of the dark part (26A) of the image (25) of the slit-shaped aperture group on the test object (3) is the width w of the bright part (26B).
More than twice. Therefore, 2 on the back surface of the object to be inspected (3)
It is possible to block the light that is reflected once. In addition, the first light shielding member (15) and the second light shielding member (24) each have a plurality of sets of slit-shaped opening groups (17, 18 and 17A, 18A) having mutually different widths of the light shielding portions, and adjusting the same. The means includes an irradiation optical system (10) and a condensing optical system (2) corresponding to each of the plurality of sets of slit-shaped apertures interchangeably.
In the case of having the exchange means (MT 1 , MT 2 ) arranged in the optical path of 0), the width of the light shielding portion can be easily changed mechanically.

【0016】また、第1遮光部材(15)と第2遮光部
材(24)とが共に、液晶表示素子、又はエレクトロク
ロミック素子で構成され、その調整手段は、第1遮光部
材(15)と第2遮光部材(24)との各々に与える電
圧を制御する電圧制御器を有している場合には、第1遮
光部材(15)のスリット状開口群(17)及び第2遮
光部材(24)のスリット状開口群(17A)を液晶パ
ターン等の形式で表現できる。従って、それらスリット
状開口群(17,17A)の遮光部の幅を電子的に且つ
容易にほぼ連続的に変えることができる。また、その調
整手段が、第1遮光部材(15)のスリット状開口群及
び第2遮光部材(24)のスリット状開口群のそれぞれ
の遮光部の幅を連続的、又は段階的に変化させたときに
受光素子(23)から出力される出力信号の変化に基づ
いて、その遮光部の幅を被検物体(3)に最適な値に設
定する場合には、被検物体(3)に応じて最適な幅の遮
光部が設定される。
Further, both the first light-shielding member (15) and the second light-shielding member (24) are composed of a liquid crystal display element or an electrochromic element, and the adjusting means is the first light-shielding member (15) and the first light-shielding member (15). When a voltage controller for controlling the voltage applied to each of the two light blocking members (24) is provided, the slit-shaped opening group (17) of the first light blocking member (15) and the second light blocking member (24) The slit-shaped opening group (17A) can be expressed in the form of a liquid crystal pattern or the like. Therefore, the width of the light shielding portion of the slit-shaped opening group (17, 17A) can be electronically and easily and substantially continuously changed. Further, the adjusting means continuously or stepwise changes the widths of the respective light shielding portions of the slit-shaped opening group of the first light shielding member (15) and the slit-shaped opening group of the second light shielding member (24). When the width of the light-shielding portion is set to an optimum value for the object to be inspected (3) on the basis of the change in the output signal output from the light receiving element (23), the object to be inspected (3) may be changed. A light-shielding portion having an optimum width is set.

【0017】次に、本発明の第2の水平位置検出装置に
よれば、例えば図7(a)及び(b)に示すように、調
整手段(31,MT1 ,MT2 )を介して第1遮光部材
(51)及び第2遮光部材(52)を回動すると、被検
物体(3)の被検面上でのスリット状開口群の像(5
3)の長手方向と、その被検面での入射面の方向(5
5)との角度θx が変化し、その入射面の方向(55)
へのスリット状開口群の像(53)のピッチpxも変化
する。従って、被検物体(3)が透明基板でありその裏
面での反射光が強い場合には、その被検物体(3)の厚
さに応じてその裏面からの反射光がスリット状開口群の
像(53)の暗部に入るようにその角度θx(ピッチp
x)を調整する。これにより、裏面からの反射光が第2
遮光部材(52)により遮光され、その被検面の所定の
基準面に対する傾斜角を正確に検出することができる。
Next, according to the second horizontal position detecting device of the present invention, as shown in FIGS. 7 (a) and 7 (b), for example, the adjusting means (31, MT 1 , MT 2 ) When the first light blocking member (51) and the second light blocking member (52) are rotated, an image (5) of the slit-shaped aperture group on the test surface of the test object (3) is obtained.
3) longitudinal direction and the direction of the incident surface on the test surface (5
5) angle θ x changes and the direction of the incident surface (55)
The pitch px of the image (53) of the slit-shaped aperture group to is also changed. Therefore, when the object to be inspected (3) is a transparent substrate and the light reflected from the back surface thereof is strong, the light reflected from the back surface of the object to be inspected (3) has a slit-shaped opening group depending on the thickness of the object to be inspected (3). The angle θ x (pitch p so that it enters the dark part of the image (53)
Adjust x). This allows the reflected light from the back surface to
The light is blocked by the light blocking member (52), and the inclination angle of the test surface with respect to a predetermined reference plane can be accurately detected.

【0018】次に、本発明の第3の水平位置検出装置に
よれば、例えば図8に示すように、調整手段(31,M
1 ,MT2 )を介して第1遮光部材(56)及び第2
遮光部材(57)を入射面に垂直な軸(56a,57
a)を中心として回動すると、その被検面での入射面の
方向(55)へのスリット状開口群の像のピッチが変化
する。この場合、その回動角によっては、スリット状開
口群の像が部分的にデフォーカス状態となるが、照射光
学系(10)内の光源(11)の大きさが小さい場合は
実質的に問題なく、照射光学系(10)及び集光光学系
(20)をそれぞれテレセントリックにしておくことに
より、そのスリット状開口群の像のピッチの均一性は維
持される。従って、第2の水平位置検出装置と同様に、
その被検物体(3)の厚さに応じてそのスリット状開口
群の像のピッチを調整することにより、被検物体(3)
の裏面からの反射光が第2遮光部材(57)により遮光
され、その被検面の所定の基準面に対する傾斜角を正確
に検出できる。
Next, according to the third horizontal position detecting device of the present invention, for example, as shown in FIG.
The first light blocking member (56) and the second light blocking member (56) through T 1 , MT 2 )
The light blocking member (57) is connected to the axis (56a, 57a) perpendicular to the incident surface.
When it is rotated around a), the pitch of the image of the slit-shaped aperture group in the direction (55) of the incident surface on the test surface changes. In this case, the image of the slit-shaped aperture group is partially defocused depending on the rotation angle, but it is substantially a problem when the size of the light source (11) in the irradiation optical system (10) is small. Alternatively, by making the irradiation optical system (10) and the condensing optical system (20) telecentric, the pitch uniformity of the image of the slit-shaped aperture group is maintained. Therefore, like the second horizontal position detecting device,
The object to be inspected (3) is adjusted by adjusting the pitch of the image of the slit-shaped aperture group according to the thickness of the object to be inspected (3).
The reflected light from the back surface of the light is blocked by the second light blocking member (57), and the inclination angle of the test surface with respect to the predetermined reference surface can be accurately detected.

【0019】また、その第3の水平位置検出装置におい
て、第1遮光部材(51)のスリット状の開口群、及び
第2遮光部材(52)のスリット状の開口群の形状をそ
れぞれ図9に示す市松模様(58)とし、この市松模様
の第1の周期方向及び第2の周期方向のピッチを互いに
異ならしめ、第1遮光部材(51)及び第2遮光部材
(52)をそれぞれそれら照射光学系、及び集光光学系
の光軸を含む入射面内の軸を中心として回転することに
より、その市松模様のその第1の周期方向又はその第2
の周期方向と共役なその被検面上での方向(60,6
1)を、それら照射光学系、及び集光光学系の光軸を含
む入射面に沿った方向(X方向)に設定することによ
り、被検面上のスリット状開口群の像のピッチを大きく
変えることができる。
Further, in the third horizontal position detecting device, the shapes of the slit-shaped opening group of the first light-shielding member (51) and the slit-shaped opening group of the second light-shielding member (52) are shown in FIG. The checkerboard pattern (58) shown is provided, and the pitches in the first and second periodic directions of the checkerboard pattern are made different from each other, and the first light-shielding member (51) and the second light-shielding member (52) are respectively irradiated with these irradiation optics. By rotating about the axis in the incident plane including the optical axis of the system and the condensing optical system, the first periodic direction of the checkered pattern or the second periodic direction thereof
Direction on the surface to be inspected (60, 6)
By setting 1) in the direction (X direction) along the incident surface including the optical axes of the irradiation optical system and the condensing optical system, the pitch of the images of the slit-shaped aperture group on the surface to be inspected is increased. Can be changed.

【0020】[0020]

【実施例】以下に、本発明による水平位置検出装置の第
1実施例につき図面を参照して説明する。本実施例は、
レチクルのパターン像をフォトレジストが塗布されたガ
ラス基板上に投影露光する縮小投影型露光装置のレベリ
ング系に本発明を適用したものである。図1は本実施例
の縮小投影型露光装置の概略光路図であり、この図1に
おいて、投影対物光学系1に関してレチクル2のパター
ン形成面とフォトレジストが塗布されたガラス基板3の
表面(露光面)とが共役に配置され、図示なき照明光学
系によって照明されたレチクル2上のパターン像がガラ
ス基板3の表面上に縮小投影される。また、ガラス基板
3はウエハホルダー34を介してウエハステージ33上
に保持されている。ウエハステージ33は、投影対物光
学系1の光軸に垂直な面(XY平面)内でガラス基板3
の位置決めを行うXYステージ、投影対物光学系1の光
軸に平行なZ方向にガラス基板3の位置決めを行うZス
テージ、及びガラス基板3の露光面の傾斜角を投影対物
光学系1の結像面に平行に設定するためのレベリングス
テージ等より構成されている。このレベリングステージ
は、一例として3個の支点のそれぞれのZ方向への突き
出し量を調整することにより、ガラス基板3の傾斜角を
調整するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a horizontal position detecting device according to the present invention will be described below with reference to the drawings. In this example,
The present invention is applied to a leveling system of a reduction projection type exposure apparatus that projects and exposes a pattern image of a reticle onto a glass substrate coated with a photoresist. FIG. 1 is a schematic optical path diagram of a reduction projection type exposure apparatus of the present embodiment. In FIG. 1, a pattern formation surface of a reticle 2 and a surface of a glass substrate 3 coated with a photoresist (exposure) with respect to the projection objective optical system 1. Plane) and the pattern image on the reticle 2 illuminated by an illumination optical system (not shown) are reduced and projected onto the surface of the glass substrate 3. The glass substrate 3 is held on the wafer stage 33 via the wafer holder 34. The wafer stage 33 moves the glass substrate 3 in a plane (XY plane) perpendicular to the optical axis of the projection objective optical system 1.
XY stage for positioning, the Z stage for positioning the glass substrate 3 in the Z direction parallel to the optical axis of the projection objective optical system 1, and the tilt angle of the exposure surface of the glass substrate 3 for imaging the projection objective optical system 1. It is composed of a leveling stage etc. for setting parallel to the surface. As an example, this leveling stage adjusts the inclination angle of the glass substrate 3 by adjusting the amount of protrusion of each of the three fulcrums in the Z direction.

【0021】ガラス基板3へレチクル2のパターンを露
光する際には、装置全体の動作を制御する主制御系31
が駆動装置32を介してウエハステージ33を駆動し、
ガラス基板3を順次所定量だけ移動させながらステップ
・アンド・リピート方式で焼付け露光が繰り返される。
そして、異なるパターンを有するレチクルに交換する毎
に同様の露光動作が繰り返される。また、投影対物光学
系1の光軸1aを挟んで、図1の紙面に平行なX方向に
対称に照射光学系10と集光光学系20とが配置され、
ガラス基板3のレベリングを行うときには、照射光学系
10から被検物体としてのガラス基板3上に検出光が照
射される。そして、ガラス基板3からの反射光が集光光
学系20により受光されて、ガラス基板3の露光領域に
ついての水平位置検出、即ち投影対物光学系1の光軸1
aに対して垂直な面(結像面)からの傾きの検出がなさ
れる。
When the pattern of the reticle 2 is exposed on the glass substrate 3, a main control system 31 for controlling the operation of the entire apparatus.
Drives the wafer stage 33 via the drive unit 32,
Printing exposure is repeated by a step-and-repeat method while sequentially moving the glass substrate 3 by a predetermined amount.
Then, the same exposure operation is repeated every time a reticle having a different pattern is exchanged. Further, the irradiation optical system 10 and the condensing optical system 20 are arranged symmetrically in the X direction parallel to the paper surface of FIG. 1 with the optical axis 1a of the projection objective optical system 1 interposed therebetween.
When the glass substrate 3 is leveled, the irradiation optical system 10 irradiates the glass substrate 3 as an object to be detected with detection light. Then, the reflected light from the glass substrate 3 is received by the condensing optical system 20, and the horizontal position of the exposure area of the glass substrate 3 is detected, that is, the optical axis 1 of the projection objective optical system 1.
The tilt is detected from a plane (image plane) perpendicular to a.

【0022】照射光学系10は、光源11、コリメータ
レンズ12a、集光レンズ12b、微小円形開口を有す
る絞り13、照射対物レンズ14等からなる。照射光学
系10において、光源11からの光がコリメータレンズ
12aにより平行光束に変換され、この平行光束がミラ
ーM1 を介して集光レンズ12bに導かれ、集光レンズ
12bはこの平行光束を集光して光源11の像を絞り1
3の微小開口上に形成する。照射対物レンズ14は絞り
13の微小開口上に焦点を有し、照射対物レンズ14
は、その微小開口からの発散光束を平行光束に変換して
ガラス基板3上に供給する。また、本例のコリメータレ
ンズ12aと集光レンズ12bとの間には、複数のスリ
ット状開口群を有する円盤状の第1遮光板15が配置さ
れている。
The irradiation optical system 10 comprises a light source 11, a collimator lens 12a, a condenser lens 12b, a diaphragm 13 having a minute circular aperture, an irradiation objective lens 14 and the like. In the irradiation optical system 10, the light from the light source 11 is converted into a parallel light flux by the collimator lens 12a, the parallel light flux is guided to the condenser lens 12b via the mirror M 1 , and the condenser lens 12b collects the parallel light flux. Illuminates and stops the image of the light source 11
3 is formed on the minute opening. The irradiation objective lens 14 has a focus on a minute aperture of the diaphragm 13, and the irradiation objective lens 14
Converts the divergent light beam from the minute aperture into a parallel light beam and supplies it to the glass substrate 3. Further, between the collimator lens 12a and the condenser lens 12b of this example, a disk-shaped first light shielding plate 15 having a plurality of slit-shaped opening groups is arranged.

【0023】図2(a)はその第1遮光板15を示し、
この図2(a)において、第1遮光板15の周囲にはほ
ぼ90°間隔で円形の光透過板16、遮光部と光透過部
とを交互に半径方向に配列して形成した第1のスリット
状開口群17、遮光部と光透過部とを交互に半径方向に
配列して形成した第2のスリット状開口群18及び遮光
部と光透過部とを交互に円周方向に配列して形成した第
3のスリット状開口群19が設けられている。主制御系
31が駆動モータMT1 (図1参照)を介して第1遮光
板15を軸15aを中心に回転することにより、光透過
板16、第1のスリット状開口群17〜第3のスリット
状開口群19の内の何れかを図1のコリメータレンズ1
2aと集光レンズ12bとの間に配置することができ
る。図1のコリメータレンズ12aと集光レンズ12b
との間に配置された場合、スリット状開口群17及び1
8の各開口部17a及び18aの長手方向は、それぞれ
図1の紙面に垂直な方向になり、第3のスリット状開口
群19の各開口部19aの長手方向は、図1の紙面に平
行な方向になる。
FIG. 2A shows the first light shielding plate 15,
In FIG. 2 (a), circular light transmission plates 16 are formed around the first light shielding plate 15 at intervals of approximately 90 °, and first light shielding plates and light transmitting portions are alternately arranged in the radial direction. The slit-shaped opening group 17, the second slit-shaped opening group 18 formed by alternately arranging the light shielding part and the light transmitting part in the radial direction, and the second light shielding part and the light transmitting part are alternately arranged in the circumferential direction. The formed third slit-shaped opening group 19 is provided. The main control system 31 rotates the first light-shielding plate 15 about the shaft 15a via the drive motor MT 1 (see FIG. 1), so that the light transmitting plate 16 and the first slit-shaped opening groups 17 to 3 are formed. Any one of the slit-shaped aperture groups 19 is set to the collimator lens 1 of FIG.
It can be arranged between 2a and the condenser lens 12b. Collimator lens 12a and condenser lens 12b of FIG.
And the slit-shaped opening groups 17 and 1 when arranged between
The longitudinal direction of each of the openings 17a and 18a of 8 is a direction perpendicular to the paper surface of FIG. 1, and the longitudinal direction of each of the opening portions 19a of the third slit-shaped opening group 19 is parallel to the paper surface of FIG. Direction.

【0024】例えば第1遮光板15中の第1のスリット
状開口群17が、図1のコリメータレンズ12aと集光
レンズ12bとの間に配置されているものとすると、そ
の第1のスリット状開口群17の複数の開口部17aの
像が被検物体としてのガラス基板3の表面上に投影され
る。第1のスリット状開口群17の各開口部17aの長
手方向は、照射光学系10の光軸10aと集光光学系2
0の光軸20aとを含む入射面(図1の紙面)に対して
垂直である。なお、照射光学系10から供給される光は
ガラス基板3上のレジストを感光させないために、レチ
クル2を照明する露光光とは異なる波長の光である。ま
た、照射光学系10からガラス基板3の表面に照射され
る光束の照射領域は、ガラス基板3上における投影対物
光学系1の露光フィールドとほぼ同じ領域である。これ
により、その露光フィールドの傾きを検出することがで
きる。
For example, assuming that the first slit-shaped opening group 17 in the first light shielding plate 15 is arranged between the collimator lens 12a and the condenser lens 12b in FIG. 1, the first slit-shaped opening group 17 is formed. Images of the plurality of openings 17a of the opening group 17 are projected onto the surface of the glass substrate 3 as the object to be inspected. The longitudinal direction of each opening 17a of the first slit-shaped opening group 17 is defined by the optical axis 10a of the irradiation optical system 10 and the focusing optical system 2.
It is perpendicular to the incident surface (the paper surface of FIG. 1) including the optical axis 20a of 0. The light supplied from the irradiation optical system 10 has a wavelength different from that of the exposure light for illuminating the reticle 2 because the resist on the glass substrate 3 is not exposed. The irradiation area of the light flux irradiated from the irradiation optical system 10 to the surface of the glass substrate 3 is substantially the same as the exposure field of the projection objective optical system 1 on the glass substrate 3. Thereby, the inclination of the exposure field can be detected.

【0025】更に、本例では、集光レンズ12b及び照
射対物レンズ14よりなる照射側結像光学系に関して、
第1遮光板15の配置面とガラス基板3の表面とがシャ
インプルフの原理に基づく所謂アオリの配置を満たすよ
うになっている。シャインプルフの原理に基づく所謂ア
オリの配置とは、一般に、物体面、像面及び結像光学系
の主平面の3つの平面が一直線上に交差するような配置
のことである。この配置においては、共役面間において
物体距離と像距離が異なるため、結像倍率が位置によっ
て異なることが避けられないが、像面の全面にわたって
物体の鮮明な像を形成することができる。従って、本例
のガラス基板3の露光領域には、第1遮光板15中の第
1のスリット状開口群17の複数の開口部の像が全面で
鮮明に結像される。
Further, in this example, with respect to the irradiation side image forming optical system including the condenser lens 12b and the irradiation objective lens 14,
The arrangement surface of the first light shielding plate 15 and the surface of the glass substrate 3 satisfy the so-called tilted arrangement based on the Scheimpflug principle. The so-called tilted arrangement based on the Scheimpflug's principle is generally an arrangement in which three planes of the object plane, the image plane, and the main plane of the imaging optical system intersect in a straight line. In this arrangement, since the object distance and the image distance are different between the conjugate planes, it is inevitable that the imaging magnification varies depending on the position, but a clear image of the object can be formed over the entire image surface. Therefore, in the exposure area of the glass substrate 3 of this example, images of the plurality of openings of the first slit-shaped opening group 17 in the first light shielding plate 15 are clearly formed on the entire surface.

【0026】一方、集光光学系20は集光対物レンズ2
1、コリメータレンズ22a、集光レンズ22b及び4
分割受光素子23等を有する。照射光学系10から供給
されガラス基板3の表面で反射された光束は、集光光学
系20内の集光対物レンズ21により集光対物レンズ2
1の焦点位置に集光された後、コリメータレンズ22a
により平行光束に変換される。この平行光束はミラーM
2 を介して集光レンズ22bに入射し、集光レンズ22
bによりその後側焦点位置に設けられた4分割受光素子
23上に集光される。その4分割受光素子23の4個の
受光部の検出信号が主制御系31に供給されている。主
制御系31では、それら4個の検出信号の大小関係より
4分割受光素子23の受光面での反射光の光量分布の重
心の座標を求める。ガラス基板3の表面が傾斜すると、
その4分割受光素子23の受光面での光量分布の重心の
位置が変化することから、主制御系31は、その受光面
での光量分布の重心位置からガラス基板3の表面の傾斜
角を求める。また、予めガラス基板3の表面が投影結像
光学系1の結像面に平行なときのその光量分布の重心位
置(基準位置)を求めておき、主制御系1が、ウエハス
テージ33内のレベリングステージを駆動して、その4
分割受光素子23の受光面の光量分布の重心位置をその
基準位置に設定することにより、ガラス基板3の表面が
投影対物光学系1の結像面に平行に設定される。なお、
4分割受光素子23の代わりに2次元CCD等の撮像素
子を使用することもできる。
On the other hand, the condensing optical system 20 includes the condensing objective lens 2
1, collimator lens 22a, condenser lenses 22b and 4
It has a divided light receiving element 23 and the like. The luminous flux supplied from the irradiation optical system 10 and reflected on the surface of the glass substrate 3 is condensed by the condenser objective lens 21 in the condenser optical system 20.
After being focused at the focal position of 1, the collimator lens 22a
Is converted into a parallel light flux by. This parallel light beam is reflected by the mirror M
2 is incident on the condenser lens 22b via
By b, the light is focused on the four-division light receiving element 23 provided at the rear focus position. The detection signals of the four light receiving portions of the four-division light receiving element 23 are supplied to the main control system 31. The main control system 31 obtains the coordinates of the center of gravity of the light amount distribution of the reflected light on the light receiving surface of the four-division light receiving element 23 based on the magnitude relationship of these four detection signals. When the surface of the glass substrate 3 tilts,
Since the position of the center of gravity of the light amount distribution on the light receiving surface of the four-division light receiving element 23 changes, the main control system 31 obtains the inclination angle of the surface of the glass substrate 3 from the position of the center of gravity of the light amount distribution on the light receiving surface. . Further, when the surface of the glass substrate 3 is parallel to the image forming plane of the projection image forming optical system 1, the barycentric position (reference position) of the light amount distribution is obtained, and the main control system 1 moves the inside of the wafer stage 33. Driving the leveling stage, part 4
By setting the barycentric position of the light amount distribution of the light receiving surface of the divided light receiving element 23 at its reference position, the surface of the glass substrate 3 is set parallel to the image forming surface of the projection objective optical system 1. In addition,
An image pickup device such as a two-dimensional CCD may be used instead of the four-division light receiving device 23.

【0027】但し、ガラス基板3では裏面反射があるた
め、その裏面反射の影響を除去する必要がある。そのた
め、本例では集光光学系20内のコリメータレンズ22
aと集光レンズ22bとの間には、円盤状の第2遮光板
24が配置されている。第2遮光板24の配置面は被検
物体としてのガラス基板3の表面と共役であり、更にガ
ラス基板3の表面での反射に関して、第2遮光板24は
照射光学系中の第1遮光板15と共役である。第2遮光
板24は第1遮光板15と同様に、複数のスリット状開
口群を有している。図2(b)はその第2遮光板24を
示し、この図2(b)において、第2遮光板24の周囲
にはほぼ90°間隔で円形の光透過板16A、第1遮光
板15の第1のスリット状開口群17とほぼ共役な第1
のスリット状開口群17A、第1遮光板15の第2のス
リット状開口群18とほぼ共役な第2のスリット状開口
群18A及び第1遮光板15の第3のスリット状開口群
19とほぼ共役な第3のスリット状開口群19Aが設け
られている。主制御系31が駆動モータMT2 (図1参
照)を介して第2遮光板24を軸24aを中心に回転す
ることにより、光透過板16A、第1のスリット状開口
群17A〜第3のスリット状開口群19Aの内の何れか
を図1のコリメータレンズ22aと集光レンズ22bと
の間に配置することができる。
However, since the glass substrate 3 has a back surface reflection, it is necessary to remove the influence of the back surface reflection. Therefore, in this example, the collimator lens 22 in the condensing optical system 20
A disk-shaped second light shielding plate 24 is disposed between a and the condenser lens 22b. The arrangement surface of the second light shielding plate 24 is conjugate with the surface of the glass substrate 3 as the object to be inspected, and regarding the reflection on the surface of the glass substrate 3, the second light shielding plate 24 is the first light shielding plate in the irradiation optical system. It is conjugate with 15. The second light shielding plate 24 has a plurality of slit-shaped opening groups, like the first light shielding plate 15. FIG. 2B shows the second light shield plate 24. In FIG. 2B, the circular light transmission plates 16A and the first light shield plate 15 are arranged around the second light shield plate 24 at intervals of approximately 90 °. The first slit-shaped aperture group 17 and the substantially first conjugate
17A, the second slit-shaped opening group 18A of the first light-shielding plate 15, and the second slit-shaped opening group 18A of the first light-shielding plate 15 and the third slit-shaped opening group 19 of the first light-shielding plate 15 A conjugate third slit-shaped opening group 19A is provided. By rotating the second light shielding plate 24 via the main control system 31 drives the motor MT 2 (see FIG. 1) about the shaft 24a, the light transmitting plate 16A, a first slit-shaped aperture group 17A~ third Any of the slit-shaped aperture groups 19A can be arranged between the collimator lens 22a and the condenser lens 22b in FIG.

【0028】図2のコリメータレンズ22aと集光レン
ズ22bとの間に配置された場合、スリット状開口群1
7A及び18Aの各開口部17Aa及び18Aaの長手
方向は、それぞれ図1の紙面に垂直な方向になり、第3
のスリット状開口群19Aの各開口部19Aaの長手方
向は、図1の紙面に平行な方向になる。ここでは第2遮
光板24中の第1のスリット状開口群17Aが、図1の
コリメータレンズ22aと集光レンズ22bとの間に配
置されているものとすると、その第1のスリット状開口
群17Aの各開口部の長手方向は、照射光学系10の光
軸10aと集光光学系20の光軸20aとを含む入射面
(図1の紙面)に対して垂直である。更に、本例では、
集光対物レンズ21及びコリメータレンズ22aよりな
る集光側結像光学系に関して、ガラス基板3の表面と第
2遮光板24の配置面とがシャインプルフの原理に基づ
く所謂アオリの配置を満たすようになっている。従っ
て、本例の第2遮光板24の第1のスリット状開口群1
7A上には、ガラス基板3の表面に投影された第1のス
リット状開口群17の像が全面で鮮明に結像される。
When arranged between the collimator lens 22a and the condenser lens 22b of FIG. 2, the slit-shaped aperture group 1
The longitudinal direction of each of the openings 17Aa and 18Aa of 7A and 18A is the direction perpendicular to the paper surface of FIG.
The longitudinal direction of each opening 19Aa of the slit-shaped opening group 19A is parallel to the paper surface of FIG. Here, assuming that the first slit-shaped opening group 17A in the second light shielding plate 24 is arranged between the collimator lens 22a and the condenser lens 22b in FIG. 1, the first slit-shaped opening group is formed. The longitudinal direction of each opening of 17A is perpendicular to the incident surface (paper surface of FIG. 1) including the optical axis 10a of the irradiation optical system 10 and the optical axis 20a of the condensing optical system 20. Furthermore, in this example,
Regarding the condensing side imaging optical system including the condensing objective lens 21 and the collimator lens 22a, the surface of the glass substrate 3 and the disposition surface of the second light shielding plate 24 satisfy the so-called tilted disposition based on the Scheimpflug principle. Has become. Therefore, the first slit-shaped opening group 1 of the second light shielding plate 24 of this example
An image of the first slit-shaped aperture group 17 projected on the surface of the glass substrate 3 is clearly formed on the entire surface of 7A.

【0029】図1において、光源11との共役関係を示
す光線を実線で示し、各遮光板15,24とガラス基板
3の表面との共役関係を示す光線を破線で示した。図1
中に実線で示されるとおり、ガラス基板3の表面に照射
される光束は平行光束であり、第1遮光板15も平行光
束中に配置されている。このように、照射光学系10に
よる第1遮光板15の投影系は、その物体側及び像側の
両側においてテレセントリックである。同様に、集光光
学系20においてガラス基板3の表面と第2遮光板24
とを共役にする投影系についても、両側においてテレセ
ントリックである。従って、第1遮光板15及び第2遮
光板24が各光学系の光軸10a及び20aに対して傾
いて配置され、シャインプルフの原理に基づく所謂アオ
リの配置となってはいても、各遮光板15,24のガラ
ス基板3の表面上での投影像に部分的な倍率差を生ずる
ことがない。即ち、第1の遮光板15のスリット状開口
群の一定のピッチはガラス基板3の表面上においても、
第2の遮光板24上においてもそれぞれ厳密に維持され
る。
In FIG. 1, light rays showing the conjugate relationship with the light source 11 are shown by solid lines, and light rays showing the conjugate relationship between the respective light shielding plates 15 and 24 and the surface of the glass substrate 3 are shown by broken lines. Figure 1
As indicated by a solid line therein, the light flux irradiated on the surface of the glass substrate 3 is a parallel light flux, and the first light shielding plate 15 is also arranged in the parallel light flux. As described above, the projection system of the first light shield plate 15 by the irradiation optical system 10 is telecentric on both the object side and the image side. Similarly, in the condensing optical system 20, the surface of the glass substrate 3 and the second light shielding plate 24.
The projection system that conjugates and is also telecentric on both sides. Therefore, even if the first light shielding plate 15 and the second light shielding plate 24 are arranged so as to be inclined with respect to the optical axes 10a and 20a of the respective optical systems, and the so-called tilted arrangement based on the Scheimpflug's principle is adopted, the respective light shielding is There is no partial difference in magnification between the projected images of the plates 15 and 24 on the surface of the glass substrate 3. That is, the constant pitch of the slit-shaped openings of the first light-shielding plate 15 is set on the surface of the glass substrate 3 as well.
Strictly maintained on the second light shielding plate 24, respectively.

【0030】シャインプルフの原理に基づく所謂アオリ
の配置においては、共役面間にて物体距離と像距離とが
異なるため、結像倍率が位置によって異なることが避け
られないが、物体面或いは像面を所定の傾きに合わせる
ことにより、像面の全面に亘って物体の鮮明な像を形成
することができる。このようにシャインプルフの原理に
基づくことによって、ガラス基板3の表面上の共役領
域、即ち投影対物光学系1によってレチクル2上のパタ
ーンが投影されるガラス基板3上の領域が大きい場合に
も、その全面に亘って各スリット状開口群の像を鮮明に
結像することが可能となっている。ここで、本実施例の
第1遮光板15及び第2遮光板24の作用につき図3及
び図4を参照して説明する。
In the so-called tilting arrangement based on the Scheimpflug's principle, the object distance and the image distance are different between the conjugate planes, so that it is inevitable that the imaging magnification differs depending on the position. By adjusting to a predetermined inclination, a clear image of the object can be formed over the entire image plane. By using the Scheimpflug's principle in this way, even when the conjugate area on the surface of the glass substrate 3, that is, the area on the glass substrate 3 onto which the pattern on the reticle 2 is projected by the projection objective optical system 1, is large, It is possible to form an image of each slit-shaped opening group clearly over the entire surface. Here, the operation of the first light shielding plate 15 and the second light shielding plate 24 of this embodiment will be described with reference to FIGS. 3 and 4.

【0031】上述したごとく、照射光学系10により図
2に示した第1遮光板15の第1のスリット状開口群1
7が被検物体としてのガラス基板3の表面上に投影さ
れ、集光光学系20内の第2遮光板24の第1のスリッ
ト状開口群17Aもガラス基板3の表面と共役に配置さ
れる。ここで、ガラス基板3は透明な基板であるため、
裏面からの反射光の発生は避けられない。更に、このガ
ラス基板3の裏面にアルミニウム等の反射率の高い膜が
ある場合、裏面からの反射光がガラス基板3の表面で裏
面側に反射し、裏面で2回目の反射をする。この裏面で
の反射は2回目以降も同じように続くが、その裏面で3
回以上反射された反射光は強度が小さいため、ここでは
水平位置検出に影響を与えないものとする。
As described above, the irradiation optical system 10 allows the first slit-shaped aperture group 1 of the first light shielding plate 15 shown in FIG.
7 is projected onto the surface of the glass substrate 3 as the object to be inspected, and the first slit-shaped opening group 17A of the second light-shielding plate 24 in the condensing optical system 20 is also arranged conjugate with the surface of the glass substrate 3. . Here, since the glass substrate 3 is a transparent substrate,
The generation of reflected light from the back surface is inevitable. Further, when a film having a high reflectance such as aluminum is provided on the back surface of the glass substrate 3, the reflected light from the back surface is reflected on the back surface side by the front surface of the glass substrate 3 and is reflected on the back surface for the second time. The reflection on this back surface continues in the same way from the second time onward, but 3
Since the reflected light that is reflected more than once has a low intensity, it is assumed here that the horizontal position detection is not affected.

【0032】上記のような第1遮光板15と第2遮光板
24との共役関係によって、その1回目及び2回目にガ
ラス基板3の裏面で反射された反射光を除去することが
できる。このためには、第1遮光板15の第1のスリッ
ト状開口群17及び第2遮光板24に設けられた第1の
スリット状開口群17Aをそれぞれガラス基板3の表面
上に投影して得られたスリット状開口群の像のピッチ
p、開口部の像の幅wは、以下のような関係において決
定されることが必要である。図3は、被検物体としての
ガラス基板3の表面3a上に投影される第1遮光板15
の第1のスリット状開口群17の像25及びガラス基板
3の表面3a上に到達する平行光束が表面3a及び裏面
3bで反射される様子を示す光路図である。図3中にお
いて、ガラス基板3の表面3aで外側に反射される光の
光路を実線で、ガラス基板3の裏面3bで反射される光
の光路を破線でそれぞれ示し、第1のスリット状開口群
17の像25は、図3の紙面に平行な方向(X方向)に
ピッチpで暗部26A及び幅wの明部26Bを配列した
ものである。また、図3においては、図1の集光光学系
20内に設けられている第2遮光板24内の第1のスリ
ット状開口群17A(図2(b)参照)のガラス基板3
の表面3aでの共役像はその像25とほぼ合致してい
る。
Due to the conjugate relationship between the first light shielding plate 15 and the second light shielding plate 24 as described above, the reflected light reflected by the back surface of the glass substrate 3 at the first and second times can be removed. To this end, the first slit-shaped opening group 17 of the first light-shielding plate 15 and the first slit-shaped opening group 17A provided in the second light-shielding plate 24 are obtained by projecting them on the surface of the glass substrate 3, respectively. The pitch p of the images of the slit-shaped aperture group and the width w of the images of the apertures need to be determined in the following relationship. FIG. 3 shows a first light shielding plate 15 projected on the surface 3a of the glass substrate 3 as an object to be inspected.
6 is an optical path diagram showing a state in which an image 25 of the first slit-shaped aperture group 17 and a parallel light flux reaching the front surface 3a of the glass substrate 3 are reflected by the front surface 3a and the back surface 3b. In FIG. 3, the optical path of the light reflected to the outside by the front surface 3a of the glass substrate 3 is shown by a solid line, and the optical path of the light reflected by the back surface 3b of the glass substrate 3 is shown by a broken line. The image 25 of 17 is obtained by arranging dark portions 26A and bright portions 26B having a width w at a pitch p in a direction (X direction) parallel to the paper surface of FIG. Further, in FIG. 3, the glass substrate 3 of the first slit-shaped opening group 17A (see FIG. 2B) in the second light shielding plate 24 provided in the condensing optical system 20 of FIG.
The conjugate image on the surface 3a of the is almost coincident with the image 25.

【0033】図4は、図3でガラス基板3の表面3a上
に投影されている像25の平面図であり、この図4に示
すように、像25は図1の投影対物光学系1の露光フィ
ールドとほぼ合致する円形の領域に形成されている。図
3に戻り、本例では照射光学系10により投影される第
1のスリット状開口群17の像25の結像光束の内、ガ
ラス基板3の表面3aでの反射光のみが集光光学系20
内に配置された第2遮光板24の第1のスリット状開口
群17Aの開口を通過するように構成されている。具体
的には、図3において、像25の明部26Bは図2の第
1のスリット状開口群17の開口部17a及び第1のス
リット状開口群17Aの開口部17Aaに対応し、像2
5の暗部26Aは図2の第1のスリット状開口17の遮
光部及び第1のスリット状開口17Aの遮光部に対応し
ている。そして、図3に示すとおり、ガラス基板3の裏
面3bにて反射される光(破線で示されている)が、暗
部26A、即ち第2遮光板24の第1のスリット状開口
17Aの遮光部によって遮光されるように構成されてい
る。
FIG. 4 is a plan view of the image 25 projected on the surface 3a of the glass substrate 3 in FIG. 3. As shown in FIG. 4, the image 25 is the image of the projection objective optical system 1 of FIG. It is formed in a circular area that substantially matches the exposure field. Returning to FIG. 3, in this example, only the reflected light on the surface 3a of the glass substrate 3 of the image-forming light flux of the image 25 of the first slit-shaped aperture group 17 projected by the irradiation optical system 10 is a condensing optical system. 20
It is configured to pass through the openings of the first slit-shaped opening group 17A of the second light shielding plate 24 arranged inside. Specifically, in FIG. 3, the bright portion 26B of the image 25 corresponds to the opening 17a of the first slit-shaped opening group 17 and the opening 17Aa of the first slit-shaped opening group 17A of FIG.
The dark portion 26A of 5 corresponds to the light shielding portion of the first slit-shaped opening 17 and the light shielding portion of the first slit-shaped opening 17A of FIG. Then, as shown in FIG. 3, the light reflected by the back surface 3b of the glass substrate 3 (indicated by the broken line) is the dark portion 26A, that is, the light shielding portion of the first slit-shaped opening 17A of the second light shielding plate 24. It is configured to be shielded from light.

【0034】ここで、図3において、図1の照射光学系
10によりガラス基板3の表面3aに供給される光L0
の入射角をθ1 、その光L0 のガラス基板3内での屈折
角をθ2 、ガラス基板3の厚さをd、ガラス基板3の屈
折率をnとするとき、周知の屈折の法則により、次式が
成り立つ。 sin θ1 =nsin θ2 (1) そして、ガラス基板3の表面3aでの反射光と裏面3b
での反射光とのX方向での横ずれ量、即ち裏面反射光の
ガラス基板3内での裏面反射による偏位量xは、次のよ
うになる。
Here, in FIG. 3, the light L 0 supplied to the surface 3a of the glass substrate 3 by the irradiation optical system 10 of FIG.
Where θ 1 is the incident angle of light, θ 2 is the refraction angle of the light L 0 in the glass substrate 3, d is the thickness of the glass substrate 3, and n is the refractive index of the glass substrate 3, the well-known refraction law is known. Therefore, the following equation is established. sin θ 1 = n sin θ 2 (1) Then, the reflected light on the front surface 3 a of the glass substrate 3 and the back surface 3 b
The amount of lateral deviation from the reflected light in the X direction in the X direction, that is, the deviation amount x of the back surface reflected light due to the back surface reflection in the glass substrate 3 is as follows.

【0035】x=2dtan θ2 (2) そして、1回目の裏面3bでの反射によって生じる反射
光L1 の横ずれ量をx 1 、2回目の裏面3bでの反射に
よって生じる反射光L2 の横ずれ量をx2 とすると、ガ
ラス基板3の厚さdが一定であるので、次の関係が成り
立つ。 x1 =x2 (=x) (3) 図3より明かなように、スリット状の開口群のガラス基
板3上での像25の明部26Bの幅w及びピッチpにつ
いては、次の関係を満たす必要がある。
X = 2 dtan θ2 (2) Then, the reflection caused by the first reflection on the back surface 3b
Light L1 Lateral shift amount of x 1 For the second reflection on the back surface 3b
Reflected light L generated by2 Lateral shift amount of x2 Then,
Since the thickness d of the lath substrate 3 is constant, the following relation holds.
stand. x1 = X2 (= X) (3) As is clear from FIG. 3, the glass substrate of the slit-shaped opening group.
The width w and the pitch p of the bright portions 26B of the image 25 on the plate 3
Therefore, the following relationships must be satisfied.

【0036】2x+w<p (4) 及び、 w<x (5) (4)式及び(5)式の関係を合成すれば、次の関係が
得られる。 w<x<(p−w)/2 (6) 従って、スリット状の開口群のガラス基板3上での像2
5の明部26Bの幅w及びピッチpはこの関係を満足す
ることが必要である。
2x + w <p (4) and w <x (5) By combining the expressions (4) and (5), the following relationship is obtained. w <x <(p−w) / 2 (6) Therefore, the image 2 of the slit-shaped opening group on the glass substrate 3
It is necessary that the width w and the pitch p of the bright portion 26B of No. 5 satisfy this relationship.

【0037】ところで、ガラス基板3の表面3a上での
像15のピッチp及び明部26Bの幅wには上記の
(6)式の関係を満たす範囲で任意性があるが、ガラス
基板3の厚さdの変動幅等の関係から適切な値に選定す
ることが望ましい。しかるに、上記の関係より明部26
Bの幅wは、ピッチpの1/3を越えてはならないこと
は明白である。その明部26Bは第1のスリット状開口
群17の開口部17aに対応するため、明部の幅wとピ
ッチpとの比の値(w/p)を、スリット状開口群の
「開口率」と呼ぶ。ところが、その開口率(w/p)を
最大とするために、w=p/3とすると、上記(6)式
の関係を満たすガラス基板3の厚さdは、次の唯1つの
値に限定されてしまう。
By the way, the pitch p of the image 15 and the width w of the bright portion 26B on the surface 3a of the glass substrate 3 are arbitrary within a range satisfying the relationship of the above expression (6). It is desirable to select an appropriate value in consideration of the fluctuation range of the thickness d. However, from the above relationship, the bright part 26
It is clear that the width w of B must not exceed 1/3 of the pitch p. Since the bright portion 26B corresponds to the opening portion 17a of the first slit-shaped opening group 17, the value (w / p) of the ratio of the width w of the bright portion and the pitch p is defined as the "opening ratio" of the slit-shaped opening group. ". However, in order to maximize the aperture ratio (w / p), if w = p / 3, the thickness d of the glass substrate 3 satisfying the relationship of the above formula (6) becomes the following single value. It will be limited.

【0038】d=p/(6tan θ2) (7) これではガラス基板3の厚さの変動、或いは異なる厚さ
の基板に対応する場合に不都合が生ずるので、開口率を
1/3より小さくすることが必要となる。開口率を1/
3より小さくすると、ある範囲の厚さdの基板に対応す
ることができるが、光量等の問題より、開口率(w/
p)は20%〜30%の間に設定することが望ましい。
例えば、ガラス基板3の屈折率nを1.50、照射光学系1
0によりガラス基板3に照射される平行光束の入射角θ
1 を60°、ガラス基板3上でのスリット状開口群の像2
5のピッチpを4mmとし、開口部の像である明部26B
の幅wを1mmとすると、上記(5)式より、次のように
なる。
D = p / (6 tan θ 2 ) (7) This causes inconvenience when the thickness of the glass substrate 3 varies or when substrates having different thicknesses are dealt with, so the aperture ratio is smaller than 1/3. Will be required. Aperture ratio 1 /
If it is smaller than 3, a substrate having a thickness d in a certain range can be dealt with, but the aperture ratio (w /
It is desirable to set p) between 20% and 30%.
For example, the refractive index n of the glass substrate 3 is 1.50, the irradiation optical system 1
The incident angle θ of the parallel light flux irradiated onto the glass substrate 3 by 0
1 at 60 °, image 2 of slit-shaped aperture group on glass substrate 3
The pitch p of 5 is 4 mm, and the bright portion 26B which is the image of the opening
Assuming that the width w of 1 is 1 mm, the following is obtained from the above equation (5).

【0039】1mm <x<1.5mm これを上記(2)式に代入することにより、ガラス基板
3の厚さdの範囲は、次のようになる。 0.7mm <d<1.4mm 従って、この範囲で上記の条件を満足することが可能で
ある。このようにガラス基板3の表面3a上でのスリッ
ト状開口群の像25についてのピッチp及び明部の幅w
の値から、照射光学系10中の第1遮光板15の第1の
スリット状開口群17についての、ピッチp1 及び開口
部17aの幅w1 並びに集光光学系20中の第2遮光板
24の第1のスリット状開口群17Aについての、ピッ
チp2 及び開口幅の幅w2 が決定される。即ち、第1遮
光板15及び第2遮光板24におけるスリット状開口群
のピッチ及び開口部の幅の値は、それぞれガラス基板3
上の投影像25に関する値とガラス基板3の表面3aへ
の投影倍率の逆数との積により与えられる。このため、
第1遮光板15と第2遮光板24とがガラス基板3の表
面3aでの反射を介して等倍の共役関係になる場合に
は、両遮光板は同一の形状を有し、同一のスリット状開
口群をそれぞれ複数個有することになり、ピッチ及び開
口幅は次のように等しくなる。
1 mm <x <1.5 mm By substituting this into the above equation (2), the range of the thickness d of the glass substrate 3 is as follows. 0.7 mm <d <1.4 mm Therefore, the above condition can be satisfied in this range. Thus, the pitch p and the width w of the bright portion of the image 25 of the slit-shaped aperture group on the surface 3a of the glass substrate 3 are as follows.
From the value of, the pitch p 1 and the width w 1 of the opening 17a for the first slit-shaped aperture group 17 of the first light-shielding plate 15 in the irradiation optical system 10 and the second light-shielding plate in the condensing optical system 20. The pitch p 2 and the width w 2 of the opening width of the 24 first slit-shaped opening groups 17A are determined. That is, the values of the pitch of the slit-shaped opening groups and the width of the openings in the first light shielding plate 15 and the second light shielding plate 24 are the glass substrate 3 respectively.
It is given by the product of the value relating to the upper projected image 25 and the reciprocal of the projection magnification on the surface 3a of the glass substrate 3. For this reason,
When the first light-shielding plate 15 and the second light-shielding plate 24 are in a conjugate relationship of equal magnification through reflection on the surface 3a of the glass substrate 3, both light-shielding plates have the same shape and the same slit. Since each of the plurality of aperture groups is provided, the pitch and the aperture width are equalized as follows.

【0040】p1 =p2, w1 =w2 しかしながら、第1遮光板15と第2遮光板24との共
役関係が等倍から外れる場合には、各スリット状開口群
は相似の形状となる。実用的な構成では、第1遮光板1
5が倍率1/2倍でガラス基板3の表面3aに投影さ
れ、第2遮光板24もガラス基板3の表面3aに対して
は1/2倍の共役関係となっており、この場合には、両
遮光板15,24上のスリット状開口群のピッチ及び開
口幅についての値は、共に上述のガラス基板3の表面3
a上での値の2倍の値を有することになる。即ち、次の
関係が成り立つ。
P 1 = p 2 , w 1 = w 2 However, when the conjugate relationship between the first light-shielding plate 15 and the second light-shielding plate 24 is out of the same size, each slit-shaped opening group has a similar shape. Become. In a practical configuration, the first light shield 1
5 is projected on the surface 3a of the glass substrate 3 at a magnification of 1/2, and the second light shielding plate 24 also has a conjugate relation of 1/2 to the surface 3a of the glass substrate 3. In this case, The values of the pitch and the opening width of the slit-shaped opening groups on both the light shielding plates 15 and 24 are the same as the above-mentioned surface 3 of the glass substrate 3.
It will have twice the value on a. That is, the following relationship holds.

【0041】p1 =p2 =2p, w1 =w2 =2w また、ガラス基板3の裏面3bに反射率の高い膜等が無
い場合、即ち2回目の裏面での反射光が水平検出に影響
がでない程度の低い強度のとき、第1遮光板15及び第
2遮光板24は1回目の裏面3bからの反射光L1 のみ
を除去すればよい。当然、上記のようなスリット状開口
群のピッチp及び開口像の幅wの関係によって、この1
回目の裏面での反射光は除去できるが、それでは図1の
4分割受光素子23上で集光される光量が少ない。スリ
ット状開口群の開口像の幅wはできるだけ大きくした方
が、より高精度な水平検出ができるため、第1遮光板1
5及び第2遮光板24は1回目の裏面からの反射光のみ
を除去するように、ピッチ及び開口幅を以下のような関
係にすることが望ましい。また、このようにガラス基板
3の裏面3bでの1回目の反射光のみを除去するために
使用するスリット状開口群として、第1遮光板15では
第2のスリット状開口群18(図2参照)を使用し、第
2遮光板24では第2のスリット状開口群18Aを使用
するものとする。
P 1 = p 2 = 2p, w 1 = w 2 = 2w If there is no film having a high reflectance on the back surface 3 b of the glass substrate 3, that is, the second reflected light on the back surface is detected horizontally. When the intensity is so low that there is no influence, the first light shielding plate 15 and the second light shielding plate 24 need only remove the reflected light L 1 from the first back surface 3b. As a matter of course, depending on the relationship between the pitch p of the slit-shaped aperture group and the width w of the aperture image as described above, this 1
Although the reflected light on the back surface of the second time can be removed, the amount of light condensed on the four-division light receiving element 23 in FIG. 1 is small. If the width w of the aperture image of the slit-shaped aperture group is made as large as possible, more accurate horizontal detection can be performed.
It is desirable that the pitch and the opening width of the fifth and second light shielding plates 24 have the following relationship so that only the reflected light from the back surface of the first time is removed. In addition, as the slit-shaped opening group used to remove only the first reflected light on the back surface 3b of the glass substrate 3 as described above, the second slit-shaped opening group 18 (see FIG. 2) is used in the first light shielding plate 15. ) Is used, and the second light shielding plate 24 uses the second slit-shaped opening group 18A.

【0042】図5は、被検物体としてのガラス基板3の
表面3a上に投影される第2のスリット状開口群18の
像27及びガラス基板3の表面3a上に到達する平行光
束がガラス基板3の表面及び裏面で反射される様子を示
す光路図であり、像27はX方向にピッチp′で暗部2
8A及び幅w′の明部28Bを配列したものである。図
5では、ガラス基板3の表面3aで反射される光を実線
で、裏面3bで反射される光を破線で示した。また、ガ
ラス基板3に入射する光L0 の入射角θ1 、屈折角θ
2 、ガラス基板3の厚さd及びガラス基板3の屈折率n
については、上記(1)式及び(2)式の関係が成り立
つ。そして、裏面3bでの1回目の反射光L1 の横ずれ
量をx′とすると、ガラス基板3上の像27の明部の幅
w′及びピッチp′については、次の関係を満たす必要
がある。
FIG. 5 shows an image 27 of the second slit-shaped aperture group 18 projected on the surface 3a of the glass substrate 3 as an object to be inspected and a parallel light flux reaching the surface 3a of the glass substrate 3 on the glass substrate. 3 is an optical path diagram showing a state of being reflected on the front surface and the back surface of FIG. 3, and the image 27 has a dark portion 2 at a pitch p ′ in the X direction.
8A and bright portions 28B having a width w'are arrayed. In FIG. 5, the light reflected by the front surface 3a of the glass substrate 3 is shown by a solid line, and the light reflected by the back surface 3b is shown by a broken line. Further, the incident angle θ 1 and the refraction angle θ of the light L 0 incident on the glass substrate 3 are
2 , the thickness d of the glass substrate 3 and the refractive index n of the glass substrate 3
For, the relationship of the above equations (1) and (2) is established. When the lateral deviation amount of the first reflected light L 1 on the back surface 3b is x ′, the width w ′ and the pitch p ′ of the bright portion of the image 27 on the glass substrate 3 need to satisfy the following relationships. is there.

【0043】x′+w′<p′ (8) 及び、 w′<x′ (9) これらの関係を合成すれば、次の条件が得られる。 w′<x′<(p′−w′) (10) 従って、像27の明部28Bの幅w′及びピッチp′は
この関係を満足することが必要である。
X '+ w'<p'(8) and w'<x'(9) By combining these relationships, the following condition is obtained. w '<x'<(p'-w') (10) Therefore, the width w'and the pitch p'of the bright portion 28B of the image 27 need to satisfy this relationship.

【0044】ところで、ガラス基板3の表面3a上での
ピッチp′及び明部28Bの幅w′には上記の関係を満
たす範囲で任意性があるが、ガラス基板3の厚さの変動
幅等の関係から適切な値に選定することが望ましい。し
かるに、上記の関係より明部28Bの幅w′は、ピッチ
p′の1/2を越えてはならないことは明白である。と
ころが、開口率(w′/p′)を最大とするために、明
部28Bの幅w′をp′/2とすると、上記(5)式の
関係を満たす基板の厚さdは、次のように唯1つの値に
限定されてしまう。 d=p/(4tan θ2) (11) これではガラス基板3の厚さの変動、或いは異なる厚さ
の基板に対応する場合に不都合が生ずるので、開口率を
50%より小さくすることが必要となる。開口率を50%よ
り小さくすると、ある範囲の厚さdの基板に対応するこ
とができるが、光量等の問題より、開口率(w′/
p′)は10%〜50%の間に設定することが望ましい。
By the way, the pitch p'on the surface 3a of the glass substrate 3 and the width w'of the bright portion 28B are arbitrary within the range satisfying the above relationship, but the fluctuation range of the thickness of the glass substrate 3 or the like. It is desirable to select an appropriate value from the relationship of. However, from the above relationship, it is clear that the width w'of the bright portion 28B should not exceed 1/2 of the pitch p '. However, if the width w'of the bright portion 28B is p '/ 2 in order to maximize the aperture ratio (w' / p '), the thickness d of the substrate satisfying the relationship of the above formula (5) is It is limited to only one value like. d = p / (4 tan θ 2 ) (11) This causes inconvenience when the thickness of the glass substrate 3 is changed or when substrates having different thicknesses are dealt with.
It is necessary to make it smaller than 50%. If the aperture ratio is smaller than 50%, it is possible to deal with a substrate having a thickness d within a certain range, but the aperture ratio (w ′ /
It is desirable to set p ') between 10% and 50%.

【0045】例えば、ガラス基板3の屈折率nを1.50、
照射光学系10によりガラス基板3に照射される平行光
束の入射角θ1 を60°、ガラス基板3上でのスリット状
開口群の像27のピッチp′を3mm、明部の像28Bの
幅w′を1mmとすると、上記(5)式より、次のように
なる。 1mm<x<2mm また、上記(2)式の関係からガラス基板3の厚さdの
範囲は次のようになる。
For example, the refractive index n of the glass substrate 3 is 1.50,
The incident angle θ 1 of the parallel light flux irradiated onto the glass substrate 3 by the irradiation optical system 10 is 60 °, the pitch p ′ of the image 27 of the slit-shaped aperture group on the glass substrate 3 is 3 mm, and the width of the image 28B of the bright portion. When w'is 1 mm, the following is obtained from the above equation (5). 1 mm <x <2 mm Further, the range of the thickness d of the glass substrate 3 is as follows from the relationship of the above formula (2).

【0046】0.7mm <d<1.4mm この範囲で上記の条件を満足することが可能である。本
例では、図1の第1遮光板15及び第2遮光板24を回
転するだけで、図3の投影像25に対応する第1のスリ
ット状開口群17,17Aと図4の投影像27に対応す
る第2のスリット状開口群18,18Aとをそれぞれ簡
単に交換できるようになっている。従って、ガラス基板
3の裏面3aの反射率等の状態に応じた高精度な水平位
置検出が可能である。これに加えて、図1の第1遮光板
15及び第2遮光板24を回転するだけで、照射光学系
10と集光光学系20の各々に全く遮光部のない光透過
板16及び光透過板16Aを配置することができる。こ
れにより、1回目及び2回目の裏面3bでの反射光が水
平位置検出へ及ぼす影響の大きさを求めることができ、
最適なスリット状開口群又は光透過板を選択することが
できる。以下、これらの複数のスリット状開口群及び光
透過板の選択方法について説明する。
0.7 mm <d <1.4 mm Within this range, the above conditions can be satisfied. In this example, by simply rotating the first light shielding plate 15 and the second light shielding plate 24 in FIG. 1, the first slit-shaped aperture groups 17 and 17A corresponding to the projection image 25 in FIG. 3 and the projection image 27 in FIG. The second slit-shaped opening groups 18 and 18A corresponding to can be easily exchanged. Therefore, it is possible to detect the horizontal position with high accuracy according to the state of the reflectance or the like of the back surface 3a of the glass substrate 3. In addition to this, by simply rotating the first light shielding plate 15 and the second light shielding plate 24 of FIG. 1, the light transmitting plate 16 and the light transmitting plate 16 having no light shielding portion in each of the irradiation optical system 10 and the condensing optical system 20 are transmitted. A plate 16A can be placed. This makes it possible to determine the magnitude of the influence of the reflected light on the back surface 3b of the first and second times on the horizontal position detection,
The optimum slit-shaped aperture group or light transmission plate can be selected. Hereinafter, a method of selecting the plurality of slit-shaped aperture groups and the light transmission plate will be described.

【0047】先ず、図2(a)の第1遮光板15の光透
過板16、1回目の裏面反射光のみを遮光する場合に使
用される第2のスリット状開口群18、及び2回目の裏
面反射光をも遮光する場合に使用される第1のスリット
状開口群17の各々を透過する光量をそれぞれ1、a及
びbとおく。これらの光量は、ガラス基板3の代わりに
内部への屈折が無いシリコンウエハ又は基準マーク板等
を配置することにより、正確に計測することができる。
また、各々の場合において4分割受光素子23上に届く
光量をそれぞれA0 、A1 及びA2 とする。実際の規格
化された光量B 0 、B1 及びB2 は、それぞれ次のよう
になる。
First, the light transmission of the first light shielding plate 15 of FIG.
Over plate 16, used to block only the back surface reflected light for the first time
The second slit-shaped opening group 18 used and the back of the second time
First slit used for blocking surface reflection light
The amount of light passing through each of the aperture groups 17 is 1, a and
And b. Instead of the glass substrate 3,
Silicon wafer with no internal refraction or fiducial mark plate, etc.
By arranging, it is possible to measure accurately.
Further, in each case, the light reaches the four-division light receiving element 23.
The light intensity is A0 , A1 And A2And Actual standard
Light quantity B 0 , B1 And B2Respectively as follows
become.

【0048】B0 =A0 (12) B1 =A1 /a (13) B2 =A2 /b (14) この際に、光量B0 は表面反射光、1回目の裏面反射光
及び2回目の裏面反射光の和となる。同様に、光量B1
は表面反射光及び2回目の裏面反射光の和、光量B2
表面反射光のみの光量である。従って、1回目の裏面反
射光の光量C1、2回目の裏面反射光の光量C2 の大き
さは、それぞれ次のようになる。
B 0 = A 0 (12) B 1 = A 1 / a (13) B 2 = A 2 / b (14) At this time, the light quantity B 0 is the front surface reflected light, the first back surface reflected light and It is the sum of the second back surface reflected light. Similarly, the amount of light B 1
Is the sum of the front surface reflected light and the second back surface reflected light, and the light quantity B 2 is the light quantity of only the front surface reflected light. Therefore, the size of the light quantity C 2 of first light quantity C 1 of the light reflected by the lower surface, the second light reflected by the lower surface, respectively as follows.

【0049】C1 =B0 −B1 (15) C2 =B1 −B2 (16) この1回目の裏面反射光の光量C1 及び2回目の裏面反
射光の光量C2 を表面反射光の光量B0 と比較したとき
の割合の大きさによって、各々の水平位置検出への影響
を調べることができる。例えば、光量C1 及びC2 の各
々の値が光量B 0 の10%を越えると水平位置検出に影響
を及ぼすとすると、(C1+C2)/B0 <0.1(10%)なら
ば光透過板16,16A、C1/B0 >0.1 かつC2/B0
<0.1 ならば1回目の裏面反射光を遮光する第2のスリ
ット状開口群18,18A、C2/B0 >0.1 ならば2回
目までの裏面反射光を遮光する第1のスリット状開口群
17,17Aをそれぞれ選択するように制御する。
C1= B0-B1 (15) C2= B1-B2 (16) Light amount C of the back surface reflected light of the first time1 And second reverse side
Light intensity C2Is the amount of surface reflected light B0When compared with
The influence on the horizontal position detection of each depending on the size of
You can look up. For example, the light amount C1 And C2Each of
Each value is the light intensity B 0If it exceeds 10%, the horizontal position detection will be affected.
Is given, (C1+ C2) / B0 <0.1 (10%)
For example, light transmission plates 16, 16A, C1/ B0 > 0.1 and C2/ B0 
If <0.1, the second pickpocket that blocks the first back reflection light.
Group of apertures 18, 18A, C2/ B0 > 0.1 twice
First slit-shaped opening group for blocking back-side reflected light up to eyes
Control is performed so as to select 17, 17A respectively.

【0050】以上の如き図3及び図5に示すような構成
により、被検物体がガラス基板3のように透明な場合に
避けることのできない裏面からの反射光を良好に除去す
ることが可能となる。そして、投影対物光学系1の光軸
1aに対して、照射光学系10の光軸10aと集光光学
系20の光軸20aとが対称に配置されているため、投
影対物光学系の光軸1aに対してガラス基板3の表面3
aの露光領域が光軸1aに対して垂直であるならば、照
射光学系10からの光束は4分割受光素子23の中心位
置に集光される。また、ガラス基板3の表面3aの露光
領域が光軸1aに垂直な状態から角度αだけ傾いている
ならば、ガラス基板3で反射される照射光学系10から
の平行光束は集光光学系20の光軸20aに対して2α
だけ傾くため、その光束は4分割受光素子23上で中心
から外れた位置に集光される。従って、4分割受光素子
23上での集光点の位置からガラス基板3の露光領域の
傾き方向が検出され、制御手段31は4分割受光素子上
の集光点の変位方向及び変位量に対応する制御信号を発
生し、駆動装置32によりウエハステージ33を駆動し
て、ウエハホルダー34がガラス基板3の露光面の傾き
を補正するように移動される。
With the configuration shown in FIGS. 3 and 5 as described above, it is possible to satisfactorily remove the reflected light from the back surface, which cannot be avoided when the object to be inspected is transparent like the glass substrate 3. Become. Since the optical axis 10a of the irradiation optical system 10 and the optical axis 20a of the condensing optical system 20 are symmetrically arranged with respect to the optical axis 1a of the projection objective optical system 1, the optical axis of the projection objective optical system is arranged. The surface 3 of the glass substrate 3 with respect to 1a
If the exposure area of a is perpendicular to the optical axis 1a, the light beam from the irradiation optical system 10 is condensed at the central position of the four-division light receiving element 23. Further, if the exposure area of the surface 3 a of the glass substrate 3 is tilted by an angle α from the state perpendicular to the optical axis 1 a, the parallel light flux from the irradiation optical system 10 reflected by the glass substrate 3 is condensed by the focusing optical system 20. 2α with respect to the optical axis 20a of
Therefore, the light beam is condensed on the four-division light receiving element 23 at a position off the center. Therefore, the tilt direction of the exposure area of the glass substrate 3 is detected from the position of the condensing point on the four-division light receiving element 23, and the control means 31 corresponds to the displacement direction and the amount of the condensing point on the four-division light receiving element. Then, the drive device 32 drives the wafer stage 33 to move the wafer holder 34 so as to correct the inclination of the exposure surface of the glass substrate 3.

【0051】そして、照射光学系10によって照射され
る範囲のガラス基板3の露光面について部分的な傾き検
出がなされ、ガラス基板3上への照射領域を投影対物光
学系1による露光領域とほぼ同じ大きさとすることによ
って、その露光領域の平均的な面を投影対物光学系1の
光軸1aに対して正確に垂直な状態に自動的に設定する
ことができる。このように受光素子上に形成される集光
スポット位置により被検面の表面の傾き検出を行うこと
については、前述した特開昭58−113706号公報
にも詳細に開示されている。図1に示した実施例の構成
においては、上述した如く、照射光学系10により投影
される第1遮光板15及び集光光学系20に配置された
第2遮光板24が、それぞれの結像に関して両側におい
てテレセントリックであり、このためにアオリの配置に
おいても部分的倍率差を生ずることなく、一定ピッチの
スリット像を正確に投影することが可能である。しかし
ながら、ガラス基板3の表面上でのスリット状開口群の
像のピッチや明部の幅等の関係において述べたとおり、
実用上はある程度の許容範囲があるため、第1遮光板1
5及び第2遮光板24についての両側でのテレセントリ
ック性は必ずしも必要ではない。但し、ガラス基板3側
においては平行光束とすることが必要であるため、ガラ
ス基板3側でのテレセントリック性は必要である。
Then, partial inclination detection is performed on the exposed surface of the glass substrate 3 in the range irradiated by the irradiation optical system 10, and the irradiation area on the glass substrate 3 is almost the same as the exposure area by the projection objective optical system 1. By setting the size, the average surface of the exposure area can be automatically set to be in a state of being accurately perpendicular to the optical axis 1a of the projection objective optical system 1. The detection of the inclination of the surface of the surface to be detected by the position of the focused spot formed on the light receiving element is also disclosed in detail in the above-mentioned Japanese Patent Laid-Open No. 58-113706. In the configuration of the embodiment shown in FIG. 1, as described above, the first light-shielding plate 15 projected by the irradiation optical system 10 and the second light-shielding plate 24 arranged in the condensing optical system 20 form respective images. Is telecentric on both sides with respect to each other, so that it is possible to accurately project a slit image with a constant pitch without causing a partial magnification difference even in the tilted arrangement. However, as described in relation to the pitch of the image of the slit-shaped aperture group on the surface of the glass substrate 3 and the width of the bright portion,
Since there is a certain allowable range in practical use, the first light shield 1
The telecentricity on both sides of the fifth and second light shields 24 is not always necessary. However, since it is necessary to make parallel light flux on the glass substrate 3 side, telecentricity on the glass substrate 3 side is required.

【0052】また、第1及び第2遮光板15,24を共
にシャインプルフの原理に基づく所謂アオリの配置とし
たが、光源11の大きさが十分小さく焦点深度が大きい
場合には、各遮光板15,24を光軸10a,20aに
対してそれぞれ垂直に配置することも可能である。この
場合には、ガラス基板3の表面上において各遮光板1
5,24の像はその周辺部においてややボケを生ずるも
のの、遮光板側(物体側)がテレセントリックでなくて
も、像の周辺と中心との間で倍率の差を生ずることがな
い。従って、各遮光板を投影すべきガラス基板3の表面
上での領域の大きさ、即ち投影対物光学系1によりレチ
クル2の像が縮小投影される領域の大きさに依存する周
辺部でのボケ量が許容できるならば、各遮光板15,2
4のスリット状開口群の像のピッチの変化を、アオリの
配置による場合よりも小さくすることが可能である。
Further, both the first and second shading plates 15 and 24 are arranged in a so-called tilting manner based on the Scheimpflug's principle, but when the size of the light source 11 is sufficiently small and the depth of focus is large, each shading plate is arranged. It is also possible to arrange 15 and 24 perpendicular to the optical axes 10a and 20a, respectively. In this case, each shading plate 1 is provided on the surface of the glass substrate 3.
Although the images of Nos. 5 and 24 are slightly blurred at their peripheral portions, even if the light-shielding plate side (object side) is not telecentric, there is no difference in magnification between the periphery and the center of the images. Therefore, the blurring in the peripheral portion depends on the size of the area on the surface of the glass substrate 3 on which each shading plate is to be projected, that is, the size of the area on which the image of the reticle 2 is reduced and projected by the projection objective optical system 1. If the amount is acceptable, each shading plate 15, 2
It is possible to make the change in the pitch of the image of the slit-shaped aperture group of No. 4 smaller than in the case of the tilt arrangement.

【0053】なお、図2の第1遮光板15中の第3のス
リット状開口群19及び第2遮光板24中の第3のスリ
ット状開口群19Aは、例えば被検物が裏面反射の無い
半導体ウエハ等の場合で、且つ表面に所定の回路パター
ン等が形成されている場合等に、その表面の傾斜角を検
出するための使用することができる。
The third slit-shaped opening group 19 in the first light-shielding plate 15 and the third slit-shaped opening group 19A in the second light-shielding plate 24 shown in FIG. It can be used to detect the inclination angle of the surface of a semiconductor wafer or the like and when a predetermined circuit pattern or the like is formed on the surface.

【0054】次に、本発明の第2実施例につき図6を参
照して説明する。本実施例は、図1の実施例の第1遮光
板15及び第2遮光板24をそれぞれ液晶パネル式の遮
光板で置き換えると共に、各遮光板の配置方法を変えた
ものであり、図6において図1に対応する部分には同一
符号を付してその詳細説明を省略する。図6(a)は、
本実施例の縮小投影型露光装置の概略光路図であり、こ
の図6(a)において、照射光学系10中でコリメータ
レンズ12aと集光レンズ12bとの間で光軸10aに
垂直に液晶パネル式の第1遮光板29が配置されてい
る。また、集光光学系20中でコリメータレンズ22a
と集光レンズ22bとの間で光軸20aに垂直に液晶パ
ネル式の第2の遮光板30が配置されている。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the first light shielding plate 15 and the second light shielding plate 24 of the embodiment of FIG. 1 are replaced with liquid crystal panel type light shielding plates, and the arrangement method of each light shielding plate is changed. Portions corresponding to those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. FIG. 6A shows
FIG. 7 is a schematic optical path diagram of the reduction projection type exposure apparatus of the present embodiment, and in FIG. 6A, a liquid crystal panel in the irradiation optical system 10 between the collimator lens 12 a and the condenser lens 12 b is perpendicular to the optical axis 10 a. A first light blocking plate 29 of the formula is arranged. Further, in the condensing optical system 20, the collimator lens 22a
A second light-shielding plate 30 of a liquid crystal panel type is arranged between the light collecting lens 22b and the condenser lens 22b perpendicularly to the optical axis 20a.

【0055】図6(b)は液晶パネル式の第1遮光板2
9を示し、この図6(b)において、第1遮光板29に
は、図6(a)のガラス基板3の表面のX方向と共役な
方向にピッチp1 で暗部41Bと幅w1 の明部41Aと
を複数組配列した形のスリット状開口パターン群40が
表示されている。その明部41Aは図2(a)の第1遮
光板15の開口部17a,18a,19aに対応するも
のである。その明部41Aの長手方向が、図6(a)の
紙面に垂直な方向(Y方向)となっている。そのスリッ
ト状開口パターン群40の照明領域42内のパターンが
ガラス基板3の表面に結像投影される。そして、本例の
主制御系31Aは、駆動装置32Aを介してその第1遮
光板29に表示されているスリット状開口パターン群4
0のピッチp1 と明部41Aの幅w1 とを任意の値に設
定することができる。この際に、駆動装置32Aから第
1遮光板29に供給する電圧に応じて、その明部41A
の幅w1 を変えることができるように構成しても良い。
FIG. 6B shows a liquid crystal panel type first light shielding plate 2.
9B, in the first light-shielding plate 29, the dark portion 41B and the width w 1 are formed on the first light-shielding plate 29 at a pitch p 1 in a direction conjugate with the X direction of the surface of the glass substrate 3 of FIG. 6A. A slit-shaped opening pattern group 40 in which a plurality of bright portions 41A are arranged is displayed. The bright portion 41A corresponds to the openings 17a, 18a, 19a of the first light shielding plate 15 of FIG. The longitudinal direction of the bright portion 41A is the direction (Y direction) perpendicular to the paper surface of FIG. The pattern in the illumination area 42 of the slit-shaped opening pattern group 40 is image-projected on the surface of the glass substrate 3. Then, the main control system 31A of this example includes the slit-shaped opening pattern group 4 displayed on the first light-shielding plate 29 via the driving device 32A.
The pitch p 1 of 0 and the width w 1 of the bright portion 41A can be set to arbitrary values. At this time, depending on the voltage supplied from the driving device 32A to the first light shielding plate 29, the bright portion 41A
The width w 1 may be changed.

【0056】液晶パネル式の第2の遮光板30にも、第
1遮光板29と同様に図6(a)のガラス基板3の表面
のX方向と共役な方向にピッチp2 で暗部と幅w2 の明
部とを複数組配列した形のスリット状開口パターン群が
表示されている。本例の主制御系31Aは、駆動装置3
2Aを介してそのピッチp2 と明部の幅w2 とをそれぞ
れ第1遮光板29のピッチp1 と明部の幅w1 とに対応
する値に設定する。なお、液晶パネルの他にエレクトロ
クロミック素子等の表示パネルを使用できることは言う
までもない。図6(a)に戻り、照射光学系10及び集
光光学系20にそれぞれ配置された第1遮光板29及び
第2遮光板30の結像関係において、ガラス基板3側の
みをテレセントリックに構成し、各遮光板側をテレセン
トリックではない構成とし、しかも各遮光板29,30
はそれぞれ光軸10a,20aに対して垂直に配置され
ている。従って、第1遮光板29の配置面とガラス基板
3の表面とは実質的に共役であり、ガラス基板3の表面
と第2遮光板30の配置面とは実質的に共役である。そ
の他の構成は図1の実施例の構成と実質的に同一であ
る。
Similarly to the first light-shielding plate 29, the second light-shielding plate 30 of the liquid crystal panel type has a dark portion and a width at a pitch p 2 in a direction conjugate with the X-direction on the surface of the glass substrate 3 of FIG. 6A. A slit-shaped opening pattern group in which a plurality of bright portions of w 2 are arranged is displayed. The main control system 31A in this example is the drive unit 3
2A, the pitch p 2 and the width w 2 of the bright portion are set to values corresponding to the pitch p 1 of the first light-shielding plate 29 and the width w 1 of the bright portion, respectively. It goes without saying that a display panel such as an electrochromic device can be used in addition to the liquid crystal panel. Returning to FIG. 6A, in the image forming relationship between the first light shielding plate 29 and the second light shielding plate 30 respectively arranged in the irradiation optical system 10 and the condensing optical system 20, only the glass substrate 3 side is telecentric. The light-shielding plate side is not telecentric, and the light-shielding plates 29, 30 are
Are arranged perpendicular to the optical axes 10a and 20a, respectively. Therefore, the arrangement surface of the first light shielding plate 29 and the surface of the glass substrate 3 are substantially conjugated, and the surface of the glass substrate 3 and the arrangement surface of the second light shielding plate 30 are substantially conjugated. The other structure is substantially the same as that of the embodiment of FIG.

【0057】このような構成において、液晶パネル式の
第1遮光板29及び第2遮光板30は各光軸に対して垂
直であるため、ガラス基板3の表面との各共役関係にお
いては、一定ピッチのスリット状開口パターン群のガラ
ス基板3の表面上での像は一定ピッチがほぼ維持され、
投影像の周辺部でのボケは光源11を小さくすることに
より、実質的に無視することが可能である。そして、こ
の実施例においても図3を参照して説明したのと同様
に、被検物体(ガラス基板3)が透明であることに起因
する裏面からの反射光を良好に除去することが可能とな
る。厳密には、各遮光板29,30のガラス基板3上で
の像は光軸に垂直となり、図3に示した如くガラス基板
3の表面と平行にはならないが、上述のとおり光源11
が小さく焦点深度が大きくできる場合には、実質的に図
3と同様の構成をなすものとみることができる。また、
4分割受光素子23の出力に応じて、主制御系31Aに
より、駆動装置32Aを介して、ガラス基板3の表面が
最適位置に設定されることも前記の実施例と同様であ
る。
In such a structure, since the liquid crystal panel type first light blocking plate 29 and the second light blocking plate 30 are perpendicular to the respective optical axes, the respective conjugate relations with the surface of the glass substrate 3 are constant. An image on the surface of the glass substrate 3 of the slit-shaped opening pattern group of the pitch is maintained at a constant pitch,
Blurring in the peripheral portion of the projected image can be substantially ignored by reducing the size of the light source 11. Then, also in this embodiment, as described with reference to FIG. 3, it is possible to satisfactorily remove the reflected light from the back surface due to the fact that the test object (glass substrate 3) is transparent. Become. Strictly speaking, the images of the respective shading plates 29 and 30 on the glass substrate 3 are perpendicular to the optical axis and are not parallel to the surface of the glass substrate 3 as shown in FIG.
It can be considered that the configuration is substantially the same as that of FIG. Also,
According to the output of the four-division light receiving element 23, the surface of the glass substrate 3 is set to the optimum position by the main control system 31A via the driving device 32A, as in the above-described embodiment.

【0058】次に、本発明の第3実施例につき図7を参
照して説明する。図7において図1に対応する部分には
同一符号を付してその詳細説明を省略する。図7(a)
は本実施例の縮小投影型露光装置を示し、この図7
(a)において、照射光学系10中のミラーM1 と集光
レンズ12bとの間に、照射光学系10の光軸と光軸1
aとを含む入射面内にある軸51aを中心として回動自
在に第1遮光板51を配する。また、集光光学系20中
のコリメータレンズ22aとミラーM2 との間にその入
射面内にある軸52aを中心として回動自在に第2の遮
光板52を配し、軸51a及び52aをそれぞれ駆動モ
ータMT1 及びMT2 により任意の角度だけ回動できる
ようにする。
Next, a third embodiment of the present invention will be described with reference to FIG. 7, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. Figure 7 (a)
Shows the reduction projection type exposure apparatus of the present embodiment.
In (a), the optical axis of the irradiation optical system 10 and the optical axis 1 are arranged between the mirror M 1 and the condenser lens 12b in the irradiation optical system 10.
The first light shielding plate 51 is arranged rotatably around an axis 51a in the incident surface including a and. Further, a second light shielding plate 52 is arranged between the collimator lens 22a in the condensing optical system 20 and the mirror M 2 so as to be rotatable about an axis 52a in the incident surface thereof, and the axes 51a and 52a are connected to each other. The drive motors MT 1 and MT 2 can be rotated by an arbitrary angle.

【0059】遮光板51上には所定ピッチでスリット状
開口群が形成され、ガラス基板3の表面を介してそのス
リット状開口群と共役になるように、遮光板52上にも
スリット状開口群が形成されている。即ち、第1遮光板
51はガラス基板3の表面とシャインプルフの条件を満
たす位置関係にあり、ガラス基板3の表面と第2遮光板
52とはシャインプルフの条件を満たす関係にある。こ
の場合、第1遮光板51のスリット状開口群のガラス基
板3の表面への投影像は、図7(b)に示すように、入
射面(照射光学系10及び集光光学系20の光軸を含む
面)とその表面との交線に沿った入射方向55に対して
角度θx で交差する格子パターン像53となり、格子パ
ターン像53は暗部54A及び明部54Bを長手方向に
垂直な方向にピッチpで配列したものである。
Slit-shaped opening groups are formed on the light-shielding plate 51 at a predetermined pitch, and the slit-shaped opening groups are also formed on the light-shielding plate 52 so as to be conjugated with the slit-shaped opening groups through the surface of the glass substrate 3. Are formed. That is, the first light shielding plate 51 is in a positional relationship with the surface of the glass substrate 3 and the Scheimpflug condition is satisfied, and the surface of the glass substrate 3 and the second light shielding plate 52 is in a relationship with the Scheimpflug condition. In this case, the projected image of the slit-shaped opening group of the first light shielding plate 51 on the surface of the glass substrate 3 is, as shown in FIG. 7B, an incident surface (light of the irradiation optical system 10 and the condensing optical system 20). (A plane including the axis) and an incident direction 55 along the line of intersection of the surface and the surface, the lattice pattern image 53 intersects at an angle θ x , and the lattice pattern image 53 has dark portions 54A and bright portions 54B perpendicular to the longitudinal direction. It is arranged at a pitch p in the direction.

【0060】その入射方向55への格子パターン像53
のピッチはpxであり、ピッチpxは角度θx により変
化する。本実施例では、軸51a,52aを中心として
遮光板51,52を回転することにより、ガラス基板3
の厚さに応じてピッチpxを設定することができる。こ
のピッチpxは、図7(b)の格子パターン像53の明
部54Bを透過したガラス基板3の裏面に向かった光
が、その裏面で反射されてから暗部54Aに達するよう
に設定される。
The lattice pattern image 53 in the incident direction 55
Is px, and the pitch px changes depending on the angle θ x . In this embodiment, the glass substrate 3 is rotated by rotating the light shielding plates 51 and 52 about the shafts 51a and 52a.
The pitch px can be set according to the thickness of the. The pitch px is set so that the light, which has passed through the bright portion 54B of the lattice pattern image 53 of FIG. 7B and is directed to the back surface of the glass substrate 3, reaches the dark portion 54A after being reflected by the back surface.

【0061】なお、光源11の大きさが小さい場合は、
遮光板51,52上のスリット状開口群を照明する光線
が略平行なので、第1遮光板51とガラス基板3の表面
と、及びガラス基板3の表面と第2遮光板52とは、そ
れぞれ必ずしもシャインプルフの条件を満たしていなく
ても良い。その場合、図6の実施例と同様に遮光板5
1,52の面の法線方向をそれぞれ照射光学系10及び
集光光学系20の光軸と平行にしてよい。
When the size of the light source 11 is small,
Since the light rays that illuminate the slit-shaped aperture groups on the light blocking plates 51 and 52 are substantially parallel to each other, the first light blocking plate 51 and the surface of the glass substrate 3, and the surface of the glass substrate 3 and the second light blocking plate 52 are not always required. It does not need to meet the conditions of the Scheimpulf. In that case, as in the embodiment of FIG.
The normal directions of the surfaces 1, 52 may be parallel to the optical axes of the irradiation optical system 10 and the condensing optical system 20, respectively.

【0062】図7(b)において、被検面上で入射方向
55(X軸に平行な方向)と格子パターン像53とがな
す角度θx と、格子パターン像53の入射方向55のピ
ッチpxとの間には次の関係がある。 px=p/|sin θx | (17) この式より、角度θx を調整することにより、ピッチp
xはpから無限大まで連続的に変化させることができる
ことが分かる。従って、あらゆる厚さのガラス基板3に
対応できる。具体的に、図3と同様に屈折率nのガラス
基板3に対する照射光学系10からの照射光の入射角を
θ1 として、ガラス基板3の予め入力された厚さd、又
は厚みセンサで測った厚さdを用いて、入射方向55の
ピッチpxの条件は次のようになる。
In FIG. 7B, the angle θ x formed by the incident direction 55 (direction parallel to the X axis) and the lattice pattern image 53 on the surface to be inspected, and the pitch px of the lattice pattern image 53 in the incident direction 55. Has the following relationship. px = p / | sin θ x | (17) From this expression, the pitch p can be adjusted by adjusting the angle θ x.
It can be seen that x can be varied continuously from p to infinity. Therefore, the glass substrate 3 having any thickness can be used. Specifically, as in FIG. 3, the incident angle of the irradiation light from the irradiation optical system 10 with respect to the glass substrate 3 having the refractive index n is set to θ 1 , and the thickness d of the glass substrate 3 which is input in advance or the thickness sensor measures it. The condition of the pitch px in the incident direction 55 is as follows using the different thickness d.

【0063】 px≧2d/(n2/sin2θ1-1) (18) この条件を満たすことにより、格子パターン像53のデ
ューティ比(開口率)は最大値である50%に近づける
できる。従って、検出光量が大きくなり、検出信号のS
N比が高くなる。次に、本発明の第4実施例につき図8
を参照して説明する。図8において図1に対応する部分
には同一符号を付してその詳細説明を省略する。図8は
本実施例の縮小投影型露光装置を示し、この図8におい
て、照射光学系10中のミラーM1 と集光レンズ12b
との間に、照射光学系10の光軸と光軸1aとを含む入
射面に垂直な軸56aを中心として回動自在に第1遮光
板56を配する。また、集光光学系20中のコリメータ
レンズ22aとミラーM2 との間にその入射面内に垂直
な軸57aを中心として回動自在に第2の遮光板57を
配し、軸56a及び57aをそれぞれ不図示の駆動モー
タMT1 及びMT2 により任意の角度だけ回動できるよ
うにする。
Px ≧ 2d / (n 2 / sin 2 θ 1 −1) (18) By satisfying this condition, the duty ratio (aperture ratio) of the lattice pattern image 53 can be brought close to the maximum value of 50%. Therefore, the amount of detected light increases, and the S of the detection signal is increased.
The N ratio becomes high. Next, a fourth embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. 8, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. FIG. 8 shows a reduction projection type exposure apparatus of this embodiment. In FIG. 8, the mirror M 1 and the condenser lens 12b in the irradiation optical system 10 are shown.
The first light-shielding plate 56 is rotatably provided between the first light-shielding plate 56 and the optical axis of the irradiation optical system 10 and the optical axis 1a. Further, a second light shielding plate 57 is arranged between the collimator lens 22a and the mirror M 2 in the condensing optical system 20 so as to be rotatable about a vertical axis 57a in the plane of incidence thereof, and the axes 56a and 57a. Can be rotated by arbitrary angles by drive motors MT 1 and MT 2 ( not shown).

【0064】遮光板56上には所定ピッチでスリット状
開口群が形成され、ガラス基板3の表面を介してそのス
リット状開口群とほぼ共役になるように、遮光板57上
にもスリット状開口群が形成されている。また、遮光板
56及び57上のスリット状開口群のスリット状の開口
部の長手方向はそれぞれ軸56a及び57a(入射面に
垂直な方向)に設定されている。この場合、第1遮光板
51はガラス基板3の表面とシャインプルフの条件を満
たしておらず、ガラス基板3の表面と第2遮光板52と
もシャインプルフの条件を満たしていない。しかしなが
ら、光源11が小さく、遮光板56はほぼ平行光束によ
り照明されるため、ガラス基板3の表面での投影像の倍
率むらは無視できる程度である。
Slit-shaped openings are formed on the light-shielding plate 56 at a predetermined pitch, and slit-shaped openings are also formed on the light-shielding plate 57 so as to be substantially conjugate with the slit-shaped openings through the surface of the glass substrate 3. A group is formed. The longitudinal directions of the slit-shaped openings of the slit-shaped opening group on the light shielding plates 56 and 57 are set to axes 56a and 57a (directions perpendicular to the incident surface), respectively. In this case, the first light-shielding plate 51 does not satisfy the surface of the glass substrate 3 and the condition of Scheimpflug, and the surface of the glass substrate 3 and the second light-shielding plate 52 do not satisfy the condition of Scheimpflug. However, since the light source 11 is small and the light shielding plate 56 is illuminated by the substantially parallel light flux, the unevenness in magnification of the projected image on the surface of the glass substrate 3 is negligible.

【0065】本実施例においては、遮光板56及び57
をそれぞれ軸56a及び57aを中心として回動するこ
とにより、ガラス基板3の表面に投影される格子状パタ
ーン像の入射方向のピッチが連続的に変化する。そこ
で、ガラス基板3の厚さに応じてそのピッチを調整する
ことにより、ガラス基板3の裏面反射の影響を小さくす
ることができる。
In this embodiment, the light shielding plates 56 and 57 are used.
By rotating each of them about axes 56a and 57a, respectively, the pitch in the incident direction of the lattice pattern image projected on the surface of the glass substrate 3 is continuously changed. Therefore, the influence of the back surface reflection of the glass substrate 3 can be reduced by adjusting the pitch according to the thickness of the glass substrate 3.

【0066】なお、上述の図7の第3実施例において
は、遮光板51及び52上に例えば市松模様のパターン
を形成してもよい。図9は、その市松模様のガラス基板
3の表面への投影像を示し、この図9において、市松パ
ターン像58は第1方向60にピッチpx、且つ第1方
向60に直交する第2方向61にピッチpyで暗部59
A及び明部59Bを市松状に配列して構成されている。
この場合、図7の遮光板51及び52を軸51a及び5
2aを中心として回転させると、図9において市松パタ
ーン像58はφ方向に回転する。そこで、その市松格子
パターン像58をφ方向に回転して、第1方向60又は
第2方向61を入射面の方向(X軸に平行な方向)に設
定することにより、ガラス基板3の2種類の厚さに対応
することができる。
In the third embodiment shown in FIG. 7, the checkerboard pattern may be formed on the light shielding plates 51 and 52. FIG. 9 shows a projected image of the checkered pattern on the surface of the glass substrate 3. In FIG. 9, the checkered pattern image 58 has a pitch px in the first direction 60 and a second direction 61 orthogonal to the first direction 60. Dark pitch 59 with pitch py
A and bright portions 59B are arranged in a checkered pattern.
In this case, the shading plates 51 and 52 of FIG.
When rotated around 2a, the checkered pattern image 58 rotates in the φ direction in FIG. Therefore, the checkered grid pattern image 58 is rotated in the φ direction, and the first direction 60 or the second direction 61 is set to the direction of the incident surface (the direction parallel to the X axis). The thickness can be accommodated.

【0067】ところで、上記の説明においては、投影対
物光学系1によるガラス基板3の表面上の露光領域であ
る部分領域が、投影対物光学系1の光軸1aに対して垂
直であるか否かの検出を可能とするものとした。しかし
ながら、投影対物光学系1によりガラス基板3上に投影
されるレチクル像は、ガラス基板3上に既に露光転写さ
れているパターンとの重ね合わせのために、ガラス基板
3を故意に光軸1aに対して垂直な面から微小角度傾け
て露光する場合もある。このような場合、検出すべきは
被検物体面としてのガラス基板3の表面が投影対物光学
系1による像面に対して平行であるかどうかであること
は言うまでもない。しかしながら、ガラス基板3の表面
は投影対物光学系1の光軸に対して垂直に配置されるの
が基本であるため、上述実施例においては、構成の明確
化及び簡単化のために、上記のような場合も含めてガラ
ス基板3の表面が投影対物光学系1の光軸に対して垂直
であるか否かを検出するものとしている。
By the way, in the above description, it is determined whether or not the partial area which is the exposure area on the surface of the glass substrate 3 by the projection objective optical system 1 is perpendicular to the optical axis 1a of the projection objective optical system 1. It was made possible to detect. However, the reticle image projected onto the glass substrate 3 by the projection objective optical system 1 intentionally moves the glass substrate 3 onto the optical axis 1a because of the superposition with the pattern already exposed and transferred onto the glass substrate 3. On the other hand, there is also a case where the exposure is performed with a slight angle tilted from a vertical surface. In such a case, it goes without saying that what should be detected is whether or not the surface of the glass substrate 3 as the object surface to be inspected is parallel to the image plane of the projection objective optical system 1. However, since the surface of the glass substrate 3 is basically arranged to be perpendicular to the optical axis of the projection objective optical system 1, in the above-mentioned embodiment, the above-mentioned structure is used for the sake of clarity and simplification of the configuration. In such a case, whether or not the surface of the glass substrate 3 is perpendicular to the optical axis of the projection objective optical system 1 is detected.

【0068】なお、本発明による水平位置検出装置は、
実施例に示した縮小投影型露光装置に限らず、例えば顕
微鏡により被検物体を検査する場合にも用いることがで
きる。この場合、被検物体の観察面上で顕微鏡による観
察領域に傾き検出用の光束が照射されることは言うまで
もない。このように、本発明は上述実施例に限定され
ず、本発明の要旨を逸脱しない範囲で種々の構成を取り
得る。
The horizontal position detecting device according to the present invention is
The present invention is not limited to the reduction projection type exposure apparatus shown in the embodiments, but can be used, for example, when inspecting an object to be inspected with a microscope. In this case, it goes without saying that the observation area of the microscope is irradiated with the light beam for tilt detection on the observation surface of the object to be inspected. As described above, the present invention is not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

【0069】[0069]

【発明の効果】本発明の第1の水平位置検出装置によれ
ば、第1遮光部材及び第2遮光部材の組み合せにより、
被検物体の裏面で生ずる反射光を良好に除去することが
できるため、被検物体が透明基板、特に裏面に高反射率
の膜がある透明基板からなる場合にも、その被検物の所
定の被検面の所定の基準面(例えば投影対物光学系の結
像面)に対する傾斜角を正確に検出することができる利
点がある。
According to the first horizontal position detecting device of the present invention, by the combination of the first light shielding member and the second light shielding member,
Since it is possible to satisfactorily remove the reflected light generated on the back surface of the object to be inspected, even if the object to be inspected is formed of a transparent substrate, particularly a transparent substrate having a film of high reflectance on the back surface, There is an advantage that the inclination angle of the surface to be inspected with respect to a predetermined reference plane (for example, the image plane of the projection objective optical system) can be accurately detected.

【0070】更に、調整手段によりスリット状開口群の
遮光部の幅を変化させることができるため、被検物体と
しての透明基板の裏面に反射率の高い膜がある場合や、
裏面での反射が生じない場合等に対してそれぞれ最適な
遮光部の幅を選択することができ、更に高精度に水平位
置検出ができる。また、調整手段が、第1遮光部材のス
リット状開口群の遮光部の幅及び第2遮光部材のスリッ
ト状開口群の遮光部の幅を、それぞれ対応するスリット
状開口群の開口部の幅の2倍程度以上に定めた場合に
は、被検物体としての透明基板の裏面で2回反射した反
射光を除去することができる。
Further, since the width of the light-shielding portion of the slit-shaped opening group can be changed by the adjusting means, when there is a film having a high reflectance on the back surface of the transparent substrate as the object to be inspected,
The optimum width of the light-shielding portion can be selected when reflection on the back surface does not occur, and the horizontal position can be detected with high accuracy. Further, the adjusting means sets the width of the light shielding portion of the slit-shaped opening group of the first light shielding member and the width of the light shielding portion of the slit-shaped opening group of the second light shielding member to the width of the opening portion of the corresponding slit-shaped opening group. When it is set to about twice or more, the reflected light reflected twice on the back surface of the transparent substrate as the test object can be removed.

【0071】また、第1遮光部材及び前記第2遮光部材
が、それぞれ遮光部の幅が互いに異なる複数組のスリッ
ト状開口群を有し、その調整手段は、それら複数組のス
リット状開口群の各々を交換可能に対応する照射光学系
及び集光光学系の光路中に配置する交換手段を有する場
合には、機械的に容易にスリット状開口群の遮光部の幅
を変えることができる。
The first light-shielding member and the second light-shielding member each have a plurality of sets of slit-shaped opening groups each having a width of the light-shielding portion different from each other, and the adjusting means adjusts the slit-shaped opening group of the plurality of sets. When the exchanging means is arranged in the optical path of the corresponding irradiation optical system and condensing optical system so as to be exchangeable, the width of the light shielding portion of the slit-shaped opening group can be easily changed mechanically.

【0072】また、第1遮光部材と第2遮光部材とが、
液晶表示素子、又はエレクトロクロミック素子で構成さ
れ、その調整手段が、第1遮光部材と第2遮光部材との
各々に与える電圧を制御する電圧制御器を有する場合に
は、電子的に簡単な制御でスリット状開口(パターン)
群の遮光部の幅をほぼ連続的に変えることができる。ま
た、その調整手段が、第1遮光部材のスリット状開口群
及び第2遮光部材のスリット状開口群のそれぞれの遮光
部の幅を連続的、又は段階的に変化させたときに受光素
子から出力される出力信号の変化に基づいて、その遮光
部の幅を被検物体に最適な値に設定する場合には、その
被検物体の被検面の傾斜角をより正確に検出できる。
Further, the first light shielding member and the second light shielding member are
When the liquid crystal display element or the electrochromic element is used and the adjusting means has a voltage controller that controls the voltage applied to each of the first light shielding member and the second light shielding member, electronically simple control is possible. With slit-shaped opening (pattern)
The width of the light blocking portions of the group can be changed almost continuously. Further, when the adjusting means continuously or stepwise changes the widths of the light shielding portions of the slit-shaped opening group of the first light-shielding member and the slit-shaped opening group of the second light-shielding member, the output from the light-receiving element is performed. When the width of the light shielding portion is set to an optimum value for the object to be inspected based on the change in the output signal, the inclination angle of the surface to be inspected of the object to be inspected can be detected more accurately.

【0073】次に、本発明の第2の水平位置検出装置に
よれば、第1遮光部材及び第2遮光部材を入射面内にあ
る軸を中心として回転させることにより、被検面上での
スリット状開口群像の入射方向でのピッチを調整でき
る。また、本発明の第3の水平位置検出装置によれば、
第1遮光部材及び第2遮光部材を入射面に垂直な軸を中
心として回転させることにより、被検面上でのスリット
状開口群像の入射方向でのピッチを調整できる。従っ
て、これら第2及び第3の水平位置検出装置によれば、
被検物体の裏面で生ずる反射光を良好に除去できるた
め、被検物体が透明基板、特に裏面に高反射率の膜があ
る透明基板からなる場合にも、その被検物の所定の被検
面の所定の基準面(例えば投影対物光学系の結像面)に
対する傾斜角を正確に検出できる利点がある。この場
合、スリット状開口群の開口率を50%程度にできるた
め、検出信号のSNが良好である。
Next, according to the second horizontal position detecting device of the present invention, the first light-shielding member and the second light-shielding member are rotated about an axis in the incident plane, so that the surface to be inspected is rotated. The pitch of the slit-shaped aperture group image in the incident direction can be adjusted. According to the third horizontal position detecting device of the present invention,
By rotating the first light shielding member and the second light shielding member about an axis perpendicular to the incident surface, the pitch in the incident direction of the slit-shaped aperture group image on the test surface can be adjusted. Therefore, according to these second and third horizontal position detecting devices,
Since the reflected light generated on the back surface of the object to be inspected can be removed well, even if the object to be inspected is made of a transparent substrate, particularly a transparent substrate having a high-reflectance film on the back surface, a predetermined object to be inspected There is an advantage that the tilt angle of the surface with respect to a predetermined reference plane (for example, the image plane of the projection objective optical system) can be accurately detected. In this case, since the aperture ratio of the slit-shaped aperture group can be set to about 50%, the SN of the detection signal is good.

【0074】また、その第3の水平位置検出装置におい
て、第1遮光部材のスリット状の開口群、及び第2遮光
部材のスリット状の開口群の形状をそれぞれ市松模様と
し、この市松模様の第1の周期方向及び第2の周期方向
のピッチを互いに異ならしめた場合には、簡単な構成で
2種類の厚さの透明な被検物体に対応できる。
Further, in the third horizontal position detecting device, the slit-shaped opening group of the first light-shielding member and the slit-shaped opening group of the second light-shielding member each have a checkered pattern, and the checkered pattern When the pitches in the first periodic direction and the second periodic direction are made different from each other, it is possible to deal with transparent inspected objects having two types of thicknesses with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水平位置検出装置の第1実施例が
適用された縮小投影型露光装置の概略構成を示す光路図
である。
FIG. 1 is an optical path diagram showing a schematic configuration of a reduction projection type exposure apparatus to which a first embodiment of a horizontal position detecting apparatus according to the present invention is applied.

【図2】(a)は図1中の第1遮光板の構成を示す正面
図、(b)は図1中の第2遮光板の構成を示す平面図で
ある。
2A is a front view showing a configuration of a first light shielding plate in FIG. 1, and FIG. 2B is a plan view showing a configuration of a second light shielding plate in FIG.

【図3】ガラス基板3の裏面で1回又は2回反射した光
を除去する場合のスリット状開口群の投影像及び照射さ
れる光の光路を示す断面図である。
FIG. 3 is a cross-sectional view showing a projected image of a slit-shaped opening group and an optical path of irradiated light when the light reflected once or twice by the back surface of the glass substrate 3 is removed.

【図4】図3におけるスリット状開口群の投影像を示す
平面図である。
FIG. 4 is a plan view showing a projected image of a slit-shaped opening group in FIG.

【図5】ガラス基板3の裏面で1回反射した光を除去す
る場合のスリット状開口群の投影像及び照射される光の
光路を示す断面図である。
FIG. 5 is a cross-sectional view showing a projected image of a slit-shaped opening group and an optical path of irradiated light when the light once reflected on the back surface of the glass substrate 3 is removed.

【図6】(a)は本発明の第2実施例を縮小投影型露光
装置に適用した場合の概略構成を示す光路図、(b)は
図6(a)中の液晶パネル式の第1遮光板29の表示パ
ターンを示す図である。
6A is an optical path diagram showing a schematic configuration when a second embodiment of the present invention is applied to a reduction projection type exposure apparatus, and FIG. 6B is a first liquid crystal panel type in FIG. 6A. It is a figure which shows the display pattern of the light-shielding plate 29.

【図7】(a)は本発明の第3実施例を縮小投影型露光
装置に適用した場合の概略構成を示す光路図、(b)は
図7(a)のガラス基板3上の投影像を示す図である。
7A is an optical path diagram showing a schematic configuration when a third embodiment of the present invention is applied to a reduction projection type exposure apparatus, and FIG. 7B is a projected image on the glass substrate 3 of FIG. 7A. FIG.

【図8】本発明の第4実施例を縮小投影型露光装置に適
用した場合の概略構成を示す光路図である。
FIG. 8 is an optical path diagram showing a schematic configuration when a fourth embodiment of the present invention is applied to a reduction projection type exposure apparatus.

【図9】図7の第3実施例で使用されるガラス基板3上
への投影像の他の例を示す拡大平面図である。
9 is an enlarged plan view showing another example of the projected image on the glass substrate 3 used in the third embodiment of FIG.

【符号の説明】[Explanation of symbols]

1 投影対物光学系 2 レチクル 3 ガラス基板 10 照射光学系 12b コリメータレンズ 13 絞り 14 照射対物レンズ 15 第1遮光板 17,18,19 スリット状開口群 17A,18A,19A スリット状開口群 20 集光光学系 23 4分割受光素子 24 第2遮光板 51 第1遮光板 52 第2遮光板 55 入射方向 1 Projection Objective Optical System 2 Reticle 3 Glass Substrate 10 Irradiation Optical System 12b Collimator Lens 13 Aperture 14 Irradiation Objective Lens 15 First Light-Shielding Plate 17, 18, 19 Slit-Shaped Aperture Group 17A, 18A, 19A Slit-Shaped Aperture Group 20 Focusing Optics System 23 4-division light receiving element 24 Second light-shielding plate 51 First light-shielding plate 52 Second light-shielding plate 55 Incident direction

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 照射対物レンズを介して被検物体の被検
面へ斜め方向から平行光束を照射する照射光学系と、前
記被検面で反射される光束を集光する集光対物レンズ及
び該集光された光束を受光する受光素子を有する集光光
学系とを備え、前記受光素子の検出信号に基づいて前記
被検面の所定の基準面に対する傾きを検出する水平位置
検出装置において、 前記照射光学系中に、前記被検面上に投影されるスリッ
ト状開口群を有する第1遮光部材を設け、 前記集光光学系中に、前記第1遮光部材中のスリット状
開口群と同一、又は相似形状のスリット状開口群を有す
る第2遮光部材を前記被検面と共役な位置に設け、 前記第1遮光部材と前記第2遮光部材とを前記被検面で
の反射を介して共役な位置に配置し、且つ前記第1遮光
部材のスリット状開口群及び前記第2遮光部材のスリッ
ト状開口群のそれぞれのスリット状開口の長手方向を前
記照射光学系及び集光光学系の光軸を含む入射面に対し
て垂直に設置し、更に、 前記第1遮光部材のスリット状開口群及び前記第2遮光
部材のスリット状開口群のそれぞれの配列方向における
遮光部の幅を変化させる調整手段を設けたことを特徴と
する水平位置検出装置。
1. An irradiation optical system for irradiating a test surface of a test object with a parallel light flux from an oblique direction through the irradiation objective lens, and a condenser objective lens for condensing the light flux reflected by the test surface. In a horizontal position detecting device, comprising: a light collecting optical system having a light receiving element for receiving the collected light flux, and detecting an inclination of the surface to be inspected with respect to a predetermined reference surface based on a detection signal of the light receiving element, A first light blocking member having a slit-shaped opening group projected on the surface to be inspected is provided in the irradiation optical system, and is the same as the slit-shaped opening group in the first light blocking member in the condensing optical system. Alternatively, a second light-shielding member having a similar slit-shaped opening group is provided at a position conjugate with the surface to be inspected, and the first light-shielding member and the second light-shielding member are reflected by the surface to be inspected. The slit of the first light shielding member is arranged at a conjugate position The slit-shaped openings of the slit-shaped opening group and the slit-shaped opening group of the second light-shielding member, the longitudinal direction of which is set perpendicularly to the incident surface including the optical axes of the irradiation optical system and the condensing optical system, and A horizontal position detecting device comprising: an adjusting unit that changes a width of a light shielding portion in each array direction of the slit-shaped opening group of the first light shielding member and the slit-shaped opening group of the second light shielding member.
【請求項2】 前記被検物体は所定のパターンが転写さ
れる透明基板であり、前記照射光学系による前記透明基
板上への平行光束の照射領域は前記所定のパターンの転
写領域の大きさとほぼ同じ大きさに定められていること
を特徴とする請求項1に記載の水平位置検出装置。
2. The object to be inspected is a transparent substrate onto which a predetermined pattern is transferred, and the irradiation area of the parallel light flux onto the transparent substrate by the irradiation optical system is approximately the size of the transfer area of the predetermined pattern. The horizontal position detecting device according to claim 1, wherein the horizontal position detecting devices have the same size.
【請求項3】 前記調整手段は、前記第1遮光部材のス
リット状開口群の遮光部の幅及び前記第2遮光部材のス
リット状開口群の遮光部の幅を、それぞれ対応する前記
スリット状開口群の開口部の幅の2倍程度以上に定める
ことを特徴とする請求項1又は2に記載の水平位置検出
装置。
3. The slit-shaped opening corresponding to the width of the light-shielding portion of the slit-shaped opening group of the first light-shielding member and the width of the light-shielding portion of the slit-shaped opening group of the second light-shielding member, respectively. 3. The horizontal position detecting device according to claim 1, wherein the horizontal position detecting device is set to have a width of at least twice the width of the opening of the group.
【請求項4】 前記第1遮光部材及び前記第2遮光部材
は、それぞれ前記遮光部の幅が互いに異なる複数組のス
リット状開口群を有し、前記調整手段は、前記複数組の
スリット状開口群の各々を交換可能に対応する前記照射
光学系及び前記集光光学系の光路中に配置する交換手段
を有することを特徴とする請求項1又は2に記載の水平
位置検出装置。
4. The first light-shielding member and the second light-shielding member each have a plurality of sets of slit-shaped openings each having a different width of the light-shielding portion, and the adjusting means has a plurality of sets of slit-shaped openings. The horizontal position detecting device according to claim 1 or 2, further comprising an exchanging unit for arranging each of the groups in an exchangeable manner in the optical paths of the irradiation optical system and the condensing optical system.
【請求項5】 前記第1遮光部材と前記第2遮光部材と
は共に、液晶表示素子、又はエレクトロクロミック素子
で構成され、前記調整手段は、前記第1遮光部材と前記
第2遮光部材との各々に与える電圧を制御する電圧制御
器を有することを特徴とする請求項1に記載の水平位置
検出装置。
5. The first light-shielding member and the second light-shielding member are both composed of a liquid crystal display element or an electrochromic element, and the adjusting means includes the first light-shielding member and the second light-shielding member. The horizontal position detecting device according to claim 1, further comprising a voltage controller that controls a voltage applied to each of them.
【請求項6】 前記調整手段は、前記第1遮光部材のス
リット状開口群及び前記第2遮光部材のスリット状開口
群のそれぞれの遮光部の幅を連続的、又は段階的に変化
させたときに前記受光素子から出力される出力信号の変
化に基づいて、前記遮光部の幅を前記被検物体に最適な
値に設定することを特徴とする請求項1又は5に記載の
水平位置検出装置。
6. The adjusting means continuously or stepwise changes the widths of the respective light shielding portions of the slit-shaped opening group of the first light-shielding member and the slit-shaped opening group of the second light-shielding member. The horizontal position detecting device according to claim 1 or 5, wherein the width of the light shielding portion is set to an optimum value for the object to be inspected, based on a change in the output signal output from the light receiving element. .
【請求項7】 照射対物レンズを介して被検物体の被検
面へ斜め方向から平行光束を照射する照射光学系と、前
記被検面で反射される光束を集光する集光対物レンズ及
び該集光された光束を受光する受光素子を有する集光光
学系とを備え、前記受光素子の検出信号に基づいて前記
被検面の所定の基準面に対する傾きを検出する水平位置
検出装置において、 前記照射光学系中に、前記被検面上に投影されるスリッ
ト状開口群を有する第1遮光部材を設け、 前記集光光学系中に、前記第1遮光部材中のスリット状
開口群と同一、又は相似形状のスリット状開口群を有す
る第2遮光部材を前記被検面と共役な位置に設け、 前記第1遮光部材と前記第2遮光部材とを前記被検面で
の反射を介して共役な位置関係に配置し、且つ前記第1
遮光部材及び前記第2遮光部材を、それぞれ前記照射光
学系、及び前記集光光学系の光軸を含む入射面内にある
軸を中心に回動する調整手段を設け、 該調整手段を介して前記第1遮光部材及び前記第2遮光
部材を回動することにより、前記照射光学系、及び前記
集光光学系の光軸を含む入射面に沿った前記被検面上で
の入射方向に対する、前記第1遮光部材のスリット状開
口群、及び前記第2遮光部材のスリット状開口群の前記
被検面上での共役像のピッチを変化させるようにしたこ
とを特徴とする水平位置検出装置。
7. An irradiation optical system for irradiating a test surface of a test object with a parallel light beam from an oblique direction through the irradiation objective lens, and a condenser objective lens for condensing the light beam reflected by the test surface. In a horizontal position detecting device, comprising: a light collecting optical system having a light receiving element for receiving the collected light flux, and detecting an inclination of the surface to be inspected with respect to a predetermined reference surface based on a detection signal of the light receiving element, A first light blocking member having a slit-shaped opening group projected on the surface to be inspected is provided in the irradiation optical system, and is the same as the slit-shaped opening group in the first light blocking member in the condensing optical system. Alternatively, a second light-shielding member having a similar slit-shaped opening group is provided at a position conjugate with the surface to be inspected, and the first light-shielding member and the second light-shielding member are reflected by the surface to be inspected. Are arranged in a conjugate positional relationship, and the first
Adjustment means for rotating the light-shielding member and the second light-shielding member around an axis in the incident plane including the optical axes of the irradiation optical system and the condensing optical system are provided, and through the adjusting means, By rotating the first light shielding member and the second light shielding member, with respect to the incident direction on the surface to be inspected along the incident surface including the irradiation optical system and the optical axis of the condensing optical system, A horizontal position detecting device, characterized in that the pitch of the conjugate image of the slit-shaped opening group of the first light-shielding member and the slit-shaped opening group of the second light-shielding member on the test surface is changed.
【請求項8】 照射対物レンズを介して被検物体の被検
面へ斜め方向から平行光束を照射する照射光学系と、前
記被検面で反射される光束を集光する集光対物レンズ及
び該集光された光束を受光する受光素子を有する集光光
学系とを備え、前記受光素子の検出信号に基づいて前記
被検面の所定の基準面に対する傾きを検出する水平位置
検出装置において、 前記照射光学系中に、前記被検面上に投影されるスリッ
ト状開口群を有する第1遮光部材を設け、 前記集光光学系中に、前記第1遮光部材中のスリット状
開口群と同一、又は相似形状のスリット状開口群を有す
る第2遮光部材を前記被検面とほぼ共役な位置に設け、 前記第1遮光部材と前記第2遮光部材とを前記被検面で
の反射を介して共役な位置関係に配置し、且つ前記第1
遮光部材のスリット状開口群及び前記第2遮光部材のス
リット状開口群のそれぞれのスリット状開口の長手方向
を前記照射光学系及び集光光学系の光軸を含む入射面に
対して垂直に設置し、更に、前記入射面に垂直な軸を中
心として前記第1及び第2遮光部材を回動する調整手段
を設け、 該調整手段を介して前記第1遮光部材及び前記第2遮光
部材を回動することにより、前記照射光学系、及び前記
集光光学系の光軸を含む入射面に沿った前記被検面上で
の入射方向に対する、前記第1遮光部材のスリット状開
口群、及び前記第2遮光部材のスリット状開口群の前記
被検面上での共役像のピッチを変化させるようにしたこ
とを特徴とする水平位置検出装置。
8. An irradiation optical system for irradiating a test surface of a test object with a parallel light beam from an oblique direction through the irradiation objective lens, and a condenser objective lens for condensing a light beam reflected by the test surface. In a horizontal position detecting device, comprising: a light collecting optical system having a light receiving element for receiving the collected light flux, and detecting an inclination of the surface to be inspected with respect to a predetermined reference surface based on a detection signal of the light receiving element, A first light blocking member having a slit-shaped opening group projected on the surface to be inspected is provided in the irradiation optical system, and is the same as the slit-shaped opening group in the first light blocking member in the condensing optical system. Alternatively, a second light blocking member having a slit-shaped opening group having a similar shape is provided at a position substantially conjugate with the test surface, and the first light blocking member and the second light blocking member are provided on the test surface via reflection. Are arranged in a conjugate positional relationship, and the first
The longitudinal direction of each slit-shaped opening of the slit-shaped opening group of the light-shielding member and the slit-shaped opening group of the second light-shielding member is set perpendicular to the incident surface including the optical axes of the irradiation optical system and the condensing optical system. Further, adjusting means for rotating the first and second light shielding members about an axis perpendicular to the incident surface is provided, and the first light shielding member and the second light shielding member are rotated through the adjusting means. By moving, the irradiation optical system, and the slit-shaped opening group of the first light shielding member with respect to the incident direction on the surface to be detected along the incident surface including the optical axis of the condensing optical system, and A horizontal position detecting device, wherein the pitch of the conjugate image of the slit-shaped opening group of the second light shielding member on the surface to be detected is changed.
【請求項9】 前記第1遮光部材の前記スリット状開口
群、及び前記第2遮光部材の前記スリット状開口群の形
状をそれぞれ市松模様とし、該市松模様の第1の周期方
向及び第2の周期方向のピッチを互いに異ならしめ、 前記第1遮光部材及び前記第2遮光部材をそれぞれ前記
照射光学系、及び前記集光光学系の光軸を含む入射面内
の軸を中心として回転することにより、前記市松模様の
前記第1の周期方向又は前記第2の周期方向と共役な前
記被検面上での方向を、前記照射光学系、及び前記集光
光学系の光軸を含む入射面に沿った方向に設定するよう
にしたことを特徴とする請求項7に記載の水平位置検出
装置。
9. The slit-shaped opening group of the first light-shielding member and the slit-shaped opening group of the second light-shielding member each have a checkered pattern, and the first checkerboard pattern has a first periodic direction and a second checkered pattern. By making the pitches in the periodic direction different from each other, and rotating the first light-shielding member and the second light-shielding member about axes in the incident plane including the optical axes of the irradiation optical system and the condensing optical system, respectively. , A direction on the surface to be inspected, which is conjugate with the first periodic direction or the second periodic direction of the checkerboard pattern, is defined as an incident surface including the optical axis of the irradiation optical system and the condensing optical system. The horizontal position detecting device according to claim 7, wherein the horizontal position detecting device is set in a direction along the horizontal direction.
JP5310510A 1993-03-15 1993-12-10 Horizontal position detector Withdrawn JPH07106243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5310510A JPH07106243A (en) 1993-03-15 1993-12-10 Horizontal position detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5345093 1993-03-15
JP5-53450 1993-03-15
JP5310510A JPH07106243A (en) 1993-03-15 1993-12-10 Horizontal position detector

Publications (1)

Publication Number Publication Date
JPH07106243A true JPH07106243A (en) 1995-04-21

Family

ID=26394163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5310510A Withdrawn JPH07106243A (en) 1993-03-15 1993-12-10 Horizontal position detector

Country Status (1)

Country Link
JP (1) JPH07106243A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192990A (en) * 2010-03-12 2011-09-29 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2012002670A (en) * 2010-06-17 2012-01-05 Toshiba Corp Height detection device
US8351024B2 (en) 2009-03-13 2013-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having a detection grating including three or more segments
US8488107B2 (en) 2009-03-13 2013-07-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having multiple projection units and detection units
US8675210B2 (en) 2009-03-13 2014-03-18 Asml Netherlands B.V. Level sensor, lithographic apparatus, and substrate surface positioning method
US8842293B2 (en) 2009-03-13 2014-09-23 Asml Netherlands B.V. Level sensor arrangement for lithographic apparatus and device manufacturing method
JP2017129629A (en) * 2016-01-18 2017-07-27 株式会社ニューフレアテクノロジー Pattern inspection apparatus
CN108723617A (en) * 2017-04-24 2018-11-02 株式会社迪思科 Laser processing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351024B2 (en) 2009-03-13 2013-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having a detection grating including three or more segments
US8488107B2 (en) 2009-03-13 2013-07-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having multiple projection units and detection units
US8675210B2 (en) 2009-03-13 2014-03-18 Asml Netherlands B.V. Level sensor, lithographic apparatus, and substrate surface positioning method
US8842293B2 (en) 2009-03-13 2014-09-23 Asml Netherlands B.V. Level sensor arrangement for lithographic apparatus and device manufacturing method
JP2011192990A (en) * 2010-03-12 2011-09-29 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8619235B2 (en) 2010-03-12 2013-12-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012002670A (en) * 2010-06-17 2012-01-05 Toshiba Corp Height detection device
JP2017129629A (en) * 2016-01-18 2017-07-27 株式会社ニューフレアテクノロジー Pattern inspection apparatus
CN108723617A (en) * 2017-04-24 2018-11-02 株式会社迪思科 Laser processing

Similar Documents

Publication Publication Date Title
US5510892A (en) Inclination detecting apparatus and method
KR100471524B1 (en) Exposure method
EP0867775B1 (en) Proximity exposure device with distance adjustment device
US5241188A (en) Apparatus for detecting a focussing position
KR20080065940A (en) Position detection apparatus and exposure apparatus
JPH0442601B2 (en)
TW200811609A (en) Surface location survey apparatus, exposure apparatus and fabricating method of device
JPH08167558A (en) Projection aligner
KR20110016400A (en) Measurement apparatus, exposure apparatus, and device fabrication method
US6130751A (en) Positioning method and apparatus
JPH0571916A (en) Position detecting apparatus
JPH09115807A (en) Plane position detector
JP3634558B2 (en) Exposure apparatus and device manufacturing method using the same
JPH07106243A (en) Horizontal position detector
JP3743576B2 (en) Projection exposure apparatus and method for manufacturing semiconductor element or liquid crystal display element using the same
US5726757A (en) Alignment method
JP3013463B2 (en) Focus position detecting device and projection exposure device
JP3448673B2 (en) Projection exposure equipment
JP4311713B2 (en) Exposure equipment
JPH05118957A (en) Method for inspecting projecting optical system
JP4055471B2 (en) Optical apparatus, position detection apparatus, exposure apparatus, and microdevice manufacturing method
JP2897085B2 (en) Horizontal position detecting apparatus and exposure apparatus having the same
JP3351051B2 (en) Horizontal detector and exposure apparatus using the same
JP2008177308A (en) Position detection apparatus, exposure apparatus, and device manufacturing method
JPH10172900A (en) Exposure apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306