JPH07106141A - Small size inductor and manufacture thereof - Google Patents

Small size inductor and manufacture thereof

Info

Publication number
JPH07106141A
JPH07106141A JP5269737A JP26973793A JPH07106141A JP H07106141 A JPH07106141 A JP H07106141A JP 5269737 A JP5269737 A JP 5269737A JP 26973793 A JP26973793 A JP 26973793A JP H07106141 A JPH07106141 A JP H07106141A
Authority
JP
Japan
Prior art keywords
winding
winding groove
binder
terminal
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5269737A
Other languages
Japanese (ja)
Inventor
Wataru Tsuchiya
亙 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5269737A priority Critical patent/JPH07106141A/en
Publication of JPH07106141A publication Critical patent/JPH07106141A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances

Abstract

PURPOSE:To lessen the deterioration in relative magnetic permeability characteristics by a method wherein a molded body, having a one-winding or multi-winding helical winding groove and a stepprovided terminal forming recessed part, is sintered and a metal conductor, having good electricity conducting characteristics, is filled in the winding groove and the terminal forming recessed part. CONSTITUTION:Square-shaped semiconductor windin grooves 2, consisting of the oxide magnetic material such as a manganese zinc ferrite, a nickel zinc ferrite and the like and having the high relative magnetic permeability characteristics, are provided. A stepping A is provided at the four corners of the square-shaped magnetic core on the winding groove formed part linking to the edge of the winding groove, and a terminal molded recessed part 5 is provided at the four corners of the magnetic core. Then, a sintered body is formed by sintering at a high temperature after conducting a degreasing process with which a binder is removed without changing the projection-molded configuration. Molten metal, having good electricity conducting characteristics, is filled in the winding groove 2 of the sintered bodsy and the terminal molded recessed part 5, the molten metal is cooled and a conductor, which becomes a winding, is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子回路に用いるチョ
ークコイルやトランス等のインダクタにおいて、特に比
透磁率特性と材料固有抵抗の値が高い酸化物磁性材料を
用いて射出成形によりロの字形に成形し、焼結して得ら
れた閉磁路の環状磁芯に金属導体の巻線を施し形成した
小形インダクタ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductor such as a choke coil or a transformer used in an electronic circuit, and in particular, it is formed into a square shape by injection molding using an oxide magnetic material having a high relative permeability characteristic and a high material resistivity value. The present invention relates to a small-sized inductor formed by winding a metal conductor on an annular magnetic core of a closed magnetic circuit obtained by molding and sintering, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】チョークコイルやトランス等において小
形インダクタは、近年の電子機器の小形化にともない広
範囲で要求されている。現在実用化されつつある小形イ
ンダクタには、高い比透磁率特性を有する酸化物磁性材
料からなる薄い磁性層と、巻線を形成する導体層を印刷
により交互に積層した積層型インダクタと、環状で閉磁
路の磁芯に巻線を施した巻線型インダクタの2つの構造
のものがある。積層型インダクタは、巻線を形成する導
体が磁性材料の中に連続して渦巻き状に埋め込まれた構
造で、薄い磁性層と巻線の導体は印刷技術を応用して積
層する。すなわち導体と、酸化物磁性材の粉末にバイン
ダーを添加してペースト状にした磁性層を、巻線を形成
する導体の一部が互いに接続し連続するように交互に積
層して得た成形体を高温で焼結することによって作られ
ている。
2. Description of the Related Art Miniaturized inductors for choke coils, transformers, etc. have been required in a wide range with the recent miniaturization of electronic devices. Small inductors that are currently being put into practical use include a thin magnetic layer made of an oxide magnetic material having high relative magnetic permeability characteristics, a laminated inductor in which conductor layers forming windings are alternately laminated by printing, and a ring-shaped inductor. There are two types of wire-wound inductors in which a magnetic core of a closed magnetic circuit is wound. A laminated inductor has a structure in which a conductor forming a winding is continuously spirally embedded in a magnetic material, and a thin magnetic layer and a conductor of the winding are laminated by applying a printing technique. That is, a molded body obtained by alternately laminating a conductor and a magnetic layer formed into a paste by adding a binder to a powder of an oxide magnetic material so that some of the conductors forming the winding are connected to each other and are continuous. It is made by sintering at high temperature.

【0003】ところが、このような構成により得られた
小形インダクタは、高温に於ける焼結工程で導体と磁性
体との間で導体の金属元素が磁性体内に拡散することか
ら、巻線間の電気絶縁耐圧が低くなり、また、印刷した
導体による巻線であるため、巻線の許容電流の値の大き
さに限界があるという欠点があった。
However, in the small inductor obtained by such a structure, since the metal element of the conductor is diffused into the magnetic body between the conductor and the magnetic body during the sintering process at high temperature, the space between the windings is reduced. It has a drawback that the electric breakdown voltage becomes low and that the winding is made of a printed conductor, so that the value of the allowable current of the winding is limited.

【0004】環状の閉磁路磁芯に巻線を施したインダク
タにおいては、従来の巻線型のインダクタに用いられる
磁芯は一般に粉末冶金の手法を用いて製造される。すな
わち、酸化物磁性材料の粉末と少量のバインダーとを混
合した粉末に圧力を加えて圧縮成形し、所要の形状の成
形体を得て、これをガス雰囲気中、又は大気中で焼結す
ることにより得られている。
In an inductor in which a ring-shaped closed magnetic circuit core is provided with a winding, the magnetic core used in the conventional wound-type inductor is generally manufactured by a powder metallurgy method. That is, pressure is applied to a powder obtained by mixing a powder of an oxide magnetic material and a small amount of a binder, and compression molding is performed to obtain a molded product having a desired shape, and this is sintered in a gas atmosphere or in the air. Has been obtained by.

【0005】酸化物磁性材の粉末に圧力を加えて得られ
た磁芯に巻線を施したインダクタは、電気絶縁耐圧は樹
脂製ケースやコイルボビンを用い巻線を巻回したり、又
巻線の線径を太くすることにより許容電流値を大きくす
ることができる。しかし、インダクタの小形化に伴い、
一体成形により作られた環状の閉磁路磁芯は巻線の自動
化が難しく、たとえ自動化しても複雑な機械を必要と
し、また巻線に時間もかかり、コスト高になる要因とな
っている。一方、上記問題点を解決するためには、磁芯
の形状は分割磁芯を組み合わせて閉磁路磁芯にせざるを
得ず、小形化した時磁路中に形成される空隙のためイン
ダクタとしての特性が劣化してしまうという問題が生ず
る。
An inductor having a winding wound around a magnetic core obtained by applying a pressure to powder of an oxide magnetic material has an electric withstand voltage that is wound by using a resin case or a coil bobbin, or The allowable current value can be increased by increasing the wire diameter. However, with the miniaturization of inductors,
The ring-shaped closed magnetic circuit magnetic core formed by integral molding is difficult to automate the winding, and even if it is automated, it requires a complicated machine, and the winding takes time, which is a factor of increasing cost. On the other hand, in order to solve the above problems, the shape of the magnetic core has to be a closed magnetic circuit magnetic core by combining divided magnetic cores, and as an inductor due to the air gap formed in the magnetic circuit when miniaturized. There is a problem that the characteristics are deteriorated.

【0006】また、磁芯は酸化物磁性材料を高い圧力を
加えて圧縮成形して成形されるため、閉磁路磁芯の周囲
に巻線を形成する導体を埋め込むための巾の狭い巻溝を
設けたものは、圧縮成形の際、巻溝を形成している凹凸
部分が磁性材で目づまりを生じ、成形が困難であるとい
う問題がある。
Further, since the magnetic core is formed by compression molding an oxide magnetic material under high pressure, a narrow winding groove for embedding a conductor forming a winding around the closed magnetic circuit magnetic core is formed. The provided one has a problem in that, during compression molding, the concavo-convex portion forming the winding groove is clogged with a magnetic material, which makes molding difficult.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題点を
解決するため、軟磁性材で高い固有抵抗を有する酸化物
磁性材料の微粉末にバインダーを添加した成形原料を用
い、射出成形によって従来の圧粉焼結体で得られた磁芯
に比べても比透磁率特性の劣化が少なく、又環状の閉磁
路で磁路に空隙がない巻線を形成する巾の細い巻溝付き
でロの字形の環状の成形体を得、バインダーを除去した
後、高温で焼結して巻溝及び端子形成凹部に金属導体を
うめ込んで、寸法精度が高く、比透磁率特性に優れた特
徴を有する小形インダクタ及びその製造方法を提供する
ことにある。
In order to solve the above problems, the present invention uses a molding raw material obtained by adding a binder to a fine powder of an oxide magnetic material having a high specific resistance in a soft magnetic material, and is conventionally subjected to injection molding. Compared to the magnetic core obtained from the powder compact of the above, the relative magnetic permeability characteristics are less deteriorated, and with a narrow winding groove that forms a winding with no void in the magnetic path in an annular closed magnetic circuit. After obtaining a ring-shaped annular shaped body, removing the binder, sintering at high temperature and filling the metal conductor into the winding groove and the terminal formation recess, it has high dimensional accuracy and excellent relative magnetic permeability characteristics. It is to provide a small inductor having the same and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明は粒径が10μm
以下0.1μm程の粒度分布で、平均粒径がほぼ1.2
μmの高い固有抵抗と高い比透磁率特性を有する例えば
ニッケル(Ni)亜鉛(Zn)フェライト等の酸化物磁
性材を用い、酸化物磁性材に添加するバインダーに、メ
ルトフロレート3.0g/10分で密度0.93g/c
3の低密度ポリエチレンを重量比で40%ないし45
%、平均分子量400のパラフィンワックスを重量比で
40%ないし45%、ジオクチルフタレートを重量比で
10%ないし20%の範囲で合計100%になるように
夫々を混合したバインダーを、酸化物磁性材料に重量比
で7.5重量%ないし22重量%添加し、80℃ないし
130℃で混練し解砕し成形用原料にして、成形温度が
130℃ないし160℃で射出成形により外周をら線状
に周回する細い巻溝と、4隅に端子形成凹部を形成した
閉磁路のロの字形の射出成形体を得る。射出成形体はバ
インダーを除去するためほぼ1時間当り50℃で昇温し
350℃ないし500℃に保持してバインダーを除去し
た後、1200℃で2時間程大気中で焼結して外周に巻
溝と端子形成凹部を有する焼結体を得る。ついで巻溝部
分と端子形成凹部に無電解ニッケルメッキ膜を形成し、
ニッケル膜上に銅膜を形成して後、半田を被覆し小形イ
ンダクタを形成する。
The present invention has a particle size of 10 μm.
The average particle size is about 1.2 with a particle size distribution of about 0.1 μm.
An oxide magnetic material such as nickel (Ni) zinc (Zn) ferrite having a high specific resistance of μm and a high relative magnetic permeability characteristic is used, and a melt florate of 3.0 g / 10 is used as a binder added to the oxide magnetic material. Density 0.93 g / c in minutes
40% to 45% by weight of m 3 low density polyethylene
%, Paraffin wax having an average molecular weight of 400, in a weight ratio of 40% to 45%, and dioctyl phthalate in a ratio of 10% to 20% in a total amount of 100% in a total of 100%, respectively, and a binder is used as an oxide magnetic material. 7.5 wt% to 22 wt% in a weight ratio to, and kneaded at 80 ° C to 130 ° C and crushed to form a raw material for molding, and the outer periphery is formed into a linear shape by injection molding at a molding temperature of 130 ° C to 160 ° C. A square-shaped injection molded body having a closed magnetic circuit having thin winding grooves that circulate around and a terminal forming recess at four corners is obtained. In order to remove the binder, the injection-molded body is heated at about 50 ° C. for about 1 hour and kept at 350 ° C. to 500 ° C. to remove the binder, then sintered at 1200 ° C. for about 2 hours in the air and wound around the outer periphery. A sintered body having a groove and a recess for forming a terminal is obtained. Next, an electroless nickel plating film is formed on the winding groove and the terminal formation recess,
After forming a copper film on the nickel film, solder is coated to form a small inductor.

【0009】即ち本発明は、1.軟磁性で固有抵抗値の
高い酸化物磁性材料に有機バインダーを添加し射出成形
により得たロの字形で閉磁路の磁芯の外周に形成した1
回巻ないし複数回巻きのら線状の巻溝と、該巻溝の両端
に基板導体に接続する巻溝形成部に対し段差を設けた端
子形成凹部とを有する成形体を焼結して、得られた焼結
体の前記巻溝と端子形成凹部とに電気良伝導特性を有す
る金属導体が充填されてなることを特徴とする小形イン
ダクタである。
That is, the present invention is as follows. It was formed on the outer circumference of the magnetic core of the closed magnetic circuit in a square shape obtained by injection molding by adding an organic binder to an oxide magnetic material having a soft magnetic property and a high specific resistance value.
Sintering a molded body having a spiral winding groove of a winding or a plurality of windings, and a terminal forming concave portion provided with a step on the winding groove forming portion connected to the substrate conductor at both ends of the winding groove, A small inductor, characterized in that the winding groove and the terminal forming recess of the obtained sintered body are filled with a metal conductor having good electric conductivity.

【0010】2.粒径が0.1μmないし10μmの粒
度分布を有する軟磁性で固有抵抗値の高い酸化物磁性材
料粉末と、低密度ポリエチレンを重量比で40%ないし
45%、パラフィンワックスを重量比で40%ないし4
5%、ジオクチルフタレートを重量比で10%ないし2
0%の間で合計100%になるように混合したバインダ
ーを、前記酸化物磁性材料粉末に重量比で7.5%ない
し22.0%添加し、80℃ないし130℃で混練、解
砕した後、成形温度が130℃ないし160℃で巻溝と
端子形成凹部を設けたロの字形の成形体に射出成形した
後、1時間当りほぼ50℃程の割合で昇温し350℃な
いし500℃でバインダーが完全に除去する時間保持し
てバインダーを除去した脱脂体を、1100℃ないし1
250℃で30分ないし2時間焼結して焼結体を得、該
焼結体の射出成形時に形成した巻溝及び端子形成凹部
に、電気良伝導材の金属導体を充填し巻線と端子とを形
成してなることを特徴とする小形インダクタの製造方法
である。
2. Soft magnetic and high specific resistance oxide magnetic material powder having a particle size distribution of 0.1 μm to 10 μm, low density polyethylene in a weight ratio of 40% to 45%, and paraffin wax in a weight ratio of 40% to 40%. Four
5%, dioctyl phthalate 10% to 2 by weight
A binder mixed so that the total amount becomes 0% to 100% is added to the oxide magnetic material powder in a weight ratio of 7.5% to 22.0%, and the mixture is kneaded and crushed at 80 ° C to 130 ° C. After that, at a molding temperature of 130 ° C to 160 ° C, injection molding is performed into a square-shaped molded body provided with a winding groove and a terminal forming recess, and then the temperature is raised at a rate of about 50 ° C per hour to 350 ° C to 500 ° C. The degreased body from which the binder was removed by holding for 1 hour at 1100 ° C to 1
A sintered body is obtained by sintering at 250 ° C. for 30 minutes to 2 hours, and the winding groove and the terminal forming recess formed at the time of injection molding of the sintered body are filled with a metal conductor of an electrically conductive material to form a winding and a terminal. Is a method for manufacturing a small-sized inductor.

【0011】[0011]

【作用】本発明者は、酸化物磁性材の微粉末を用いて磁
芯を形成するとき、磁芯の成形及び磁芯の表面に形成す
る巻溝の巻線密度を高めるため、いかに細い巻溝を形成
し得るかについて鋭意検討の結果、射出成形法により酸
化物磁性材料の微粉末の粒度分布と、微粉末に添加する
バインダーの種類の選択と添加する重量比を選ぶことに
より、溝巾が0.1mmRで巻溝の間隔を0.1mm幅
とした巻溝を持つ小形インダクタを射出成形法を用い得
られたことと、射出成形法により得られた閉磁路の環状
磁芯では比透磁率の値は従来の焼結法によって得られた
磁芯に比べて、比透磁率の値が2000の材料でも数%
程の劣化であり、充分実用し得る特性値であることか
ら、本発明の小形インダクタが得られる見通しが得られ
たことによる。
The present inventor, when forming a magnetic core using fine powder of an oxide magnetic material, has an advantage of improving the winding density of the winding core formed on the surface of the magnetic core and the magnetic core. As a result of diligent studies on whether a groove can be formed, the groove width can be determined by the injection molding method by selecting the particle size distribution of the fine powder of the oxide magnetic material, the type of binder added to the fine powder, and the weight ratio to be added. Was 0.1 mmR and the interval between the winding grooves was 0.1 mm, and a small inductor having winding grooves was obtained by injection molding, and the relative magnetic permeability of the closed magnetic circuit annular magnetic core obtained by injection molding was high. The value of magnetic susceptibility is several% compared with the magnetic core obtained by the conventional sintering method, even with the material having the relative magnetic permeability of 2000.
This is due to the fact that the small inductor of the present invention is expected to be obtained because the deterioration is moderate and the characteristic value is sufficiently practical.

【0012】樹脂や可塑剤等からなるバインダーを加え
混練した後、射出成形を行い成形体を得、ついで室温か
ら1時間でほぼ50℃と低い昇温速度で加熱することに
より、射出成形した形状を変形することなくバインダー
を除去することが出来て脱脂工程を行い脱脂体を得、後
高温焼結して必要とする形状を持つ酸化物磁性材料の焼
結体を得る。これは、一般的に従来用いられていた酸化
物磁性材料に少量のバインダーを添加し圧縮成形した圧
粉成形体では得ることが困難な複雑な形状の製品が高い
寸法精度で量産性良く得られるという利点があることを
示す。粉末射出成形法を用いることにより、通常の粉末
冶金法では得ることが難しい巻線を形成する導体用の細
い巻溝を、小形のロの字形の磁芯の外周に形成出来、ロ
の字形で磁路に空隙のない閉磁路を有する酸化物磁性材
料からなる小形インダクタが容易に得られる特徴を有す
る。
A binder made of a resin, a plasticizer or the like is added and kneaded, and then injection molding is carried out to obtain a molded product, which is then heated at a low temperature rising rate of about 50 ° C. for 1 hour from room temperature to obtain an injection molded shape. The binder can be removed without deformation and a degreasing step is performed to obtain a degreased body, which is then sintered at high temperature to obtain a sintered body of an oxide magnetic material having a required shape. This is because it is possible to obtain a product with a complicated shape, which is difficult to obtain with a compacted product obtained by adding a small amount of a binder to a conventionally used oxide magnetic material and compression-molding, with high dimensional accuracy and mass productivity. It shows that there is an advantage. By using the powder injection molding method, it is possible to form a thin winding groove for a conductor that forms a winding, which is difficult to obtain by ordinary powder metallurgy, on the outer circumference of a small square-shaped magnetic core. A small inductor made of an oxide magnetic material having a closed magnetic circuit with no voids in the magnetic circuit can be easily obtained.

【0013】前記の方法で得られた酸化物磁性材料の磁
芯の巻溝部分を溶融金属で充填し冷却して巻線となる導
体を形成することによりインダクタが得られる。この場
合必要に応じて、巻溝形成部分の上下面、内外周面を研
磨することが行われることもある。また、導体を形成す
る方法としては、巻溝部分に金属粉を充填して溶解する
ことにより導体を形成する方法や、巻溝部分に無電解ニ
ッケルメッキによりニッケル膜を形成し、その上に銅膜
をメッキ等で形成して後、半田メッキして形成してもよ
い。本発明によるインダクタは、極めて小形に作ること
が出来ると共に磁路に空隙のない閉磁路であるので、面
方向に開磁路となる積層型のインダクタに比べて、同じ
体積の磁芯で大きいインダクタンスが得られるので、同
じインダクタンスのインダクタでは小型化が可能とな
る。また、磁芯の形状を角形など射出成形を行う金型に
より如何様な形状にも成形することが出来、磁芯の形状
を決める自由度が大きく、使用目的により適宜形状を変
えることが出来る。
The inductor is obtained by filling the winding groove portion of the magnetic core of the oxide magnetic material obtained by the above method with the molten metal and cooling it to form the conductor to be the winding. In this case, the upper and lower surfaces and the inner and outer peripheral surfaces of the winding groove forming portion may be polished as needed. In addition, as a method of forming the conductor, a method of forming a conductor by filling the melting groove portion with metal powder and melting it, or forming a nickel film by electroless nickel plating on the winding groove portion, and forming a copper film on it The film may be formed by plating or the like and then solder-plated. Since the inductor according to the present invention can be made extremely small and has a closed magnetic circuit with no air gap in the magnetic path, it has a large inductance with the same volume of magnetic core as compared with a laminated inductor having an open magnetic circuit in the surface direction. Therefore, an inductor having the same inductance can be downsized. Further, the shape of the magnetic core can be molded into any shape by using a metal mold for injection molding such as a square shape, the flexibility of determining the shape of the magnetic core is large, and the shape can be appropriately changed depending on the purpose of use.

【0014】酸化物磁性材料を製造する際に、酸化物磁
性材の粉末に添加される有機高分子化合物を主成分とす
るバインダーの量は、添加量が7.5重量%以下である
と、射出成形時に金型に充填するための流動性が不足
し、又磁芯表面に細い巻溝を形成することが困難とな
り、添加量が22重量%以上であると、脱脂時に円滑に
成形体からバインダーを除くのが困難となり、脱脂体に
割れや欠けを生ずるようになる。従って酸化物磁性粉末
に添加するバインダーの量としては、重量比で7.5重
量%ないし22重量%の範囲にあり、0.1mmRの細
い溝を形成するための好ましい添加量は重量比で9重量
%ないし18重量%が適当である。
When the oxide magnetic material is produced, the amount of the binder containing an organic polymer compound as a main component, which is added to the powder of the oxide magnetic material, is not more than 7.5% by weight. The fluidity for filling the mold during injection molding is insufficient, and it becomes difficult to form a thin winding groove on the surface of the magnetic core. If the added amount is 22% by weight or more, the molded body can be smoothly removed during degreasing. It becomes difficult to remove the binder, and the degreased body becomes cracked or chipped. Therefore, the amount of the binder added to the oxide magnetic powder is in the range of 7.5% by weight to 22% by weight, and the preferable amount of addition for forming a fine groove of 0.1 mmR is 9% by weight. % To 18% by weight is suitable.

【0015】なお、酸化物磁性材料粉末の粒径は、0.
1μm以下の割合がふえると同量のバインダーの添加量
の時には流れが悪くなり、粒径が10μm以上の粉末で
は巻溝の面が粗くなり、又バインダーとの混練温度は1
30℃以上ではバインダーの流れが大きくなり混練しに
くくなり、又、80℃以下ではバインダーが酸化物磁性
材料粉末になじみにくく、100℃付近で混練するのが
最も適当である。射出成形温度は160℃以上では金型
に焼きつきやすく、130℃以下では流れが悪く、細い
巻溝の形状を正確に形成するのが困難になる。脱脂体を
形成する時の温度の上昇速度は遅い程よいが実用上は1
時間当り50℃程がよく、昇温速度を速くすると脱脂体
の細い部分に欠けを発生させ好ましくない。又バインダ
ーを除去する保持温度は350℃以下ではバインダーが
完全に分解されれず、500℃以上では粉体の一部に焼
結が始まり、脱脂体の形状が一様でなくなり一部に欠け
等を発生し好ましくない。
The particle size of the oxide magnetic material powder is 0.
If the ratio is less than 1 μm, the flow becomes poor when the same amount of binder is added, and the surface of the winding groove becomes rough with powder having a particle size of 10 μm or more, and the kneading temperature with the binder is 1
When the temperature is 30 ° C. or higher, the binder flow becomes large and it becomes difficult to knead, and when the temperature is 80 ° C. or lower, the binder is hard to adapt to the oxide magnetic material powder, and it is most suitable to knead at around 100 ° C. If the injection molding temperature is 160 ° C. or higher, the mold is likely to be seized, and if the injection molding temperature is 130 ° C. or lower, the flow is poor and it becomes difficult to accurately form the shape of the thin winding groove. The slower the temperature rise rate when forming the defatted body, the better, but in practice it is 1
About 50 ° C. per hour is preferable, and if the temperature rising rate is increased, chipping may occur in the thin portion of the degreased body, which is not preferable. If the holding temperature for removing the binder is 350 ° C. or less, the binder is not completely decomposed, and if the holding temperature is 500 ° C. or more, sintering starts in a part of the powder, and the shape of the degreased body is not uniform, so that the part is chipped. It is not desirable because it occurs.

【0016】[0016]

【実施例】本発明の小形インダクタ及びその製造方法に
ついてその実施例について説明する。 (実施例1)図1は、本発明の小形インダクタで1層巻
きの巻線を有するもので、巻線を形成する金属導体4を
うめ込む巻溝2を持つロの字形に閉磁路を形成する環状
の酸化物磁性材料の磁芯からなる小形インダクタの斜視
図である。磁芯1はマンガン亜鉛フェライト(Mn−Z
nフェライト)、又はニッケル亜鉛フェライト(Ni−
Znフェライト)等の高い比透磁率特性を有する酸化物
磁性材料からなり、ロの字形の形状の磁路に導体形成用
の例えば半径0.1mmの断面が半円状の巻溝2が設け
られ、外部導体へ接続するリード線(図示せず)につな
げるため、巻線形成用の巻溝の端に接続して、巻溝形成
部分に対しロの字形の磁芯の4隅に段差Aを有するよう
にし、磁芯の4隅に端子成形凹部5が設けられている。
EXAMPLE A small inductor and a method of manufacturing the same according to the present invention will be described with reference to examples. (Embodiment 1) FIG. 1 is a small inductor of the present invention having a single-layer winding, and a closed magnetic circuit is formed in a square shape having a winding groove 2 into which a metal conductor 4 forming the winding is inserted. FIG. 3 is a perspective view of a small inductor including a magnetic core made of a ring-shaped oxide magnetic material. The magnetic core 1 is a manganese zinc ferrite (Mn-Z
n ferrite) or nickel zinc ferrite (Ni-
(Zn ferrite) or other oxide magnetic material having high relative permeability characteristics, and a winding groove 2 having a semicircular cross section with a radius of 0.1 mm for forming a conductor is provided in a square-shaped magnetic path. , To connect to a lead wire (not shown) that connects to an external conductor, connect to the end of the winding groove for forming the winding, and form steps A at the four corners of the square-shaped magnetic core with respect to the winding groove forming portion. Thus, the terminal molding recesses 5 are provided at the four corners of the magnetic core.

【0017】酸化物磁性材料粉末として粒径が0.1μ
mないし10μmの粒度分布を持ち平均粒径がほぼ1.
2μmのNi−Znフェライト予焼粉末を調整し、Ni
−Znフェライト予焼粉末に対し、バインダーを形成す
る3種類の有機物の混合割合は、メルトフローレート
3.0g/10分で密度0.93g/cm3の低密度ポ
リエチレンを重量比で3、平均分子量400のパラフィ
ンワックスを重量比で3、ジオクチルフタレートを重量
比で1にし、フェライト予焼粉末に対し重量比で添加量
が7.0重量%、7.5重量%、9.0重量%、11.
0重量%、18.0重量%、22.0重量%、24.0
重量%の7種の添加量の異なる原料を作り、100℃で
混練、解砕し、成形用原料を得た。この成形用原料を用
い、図1に示す導体形成用の直径が0.1mmR、0.
2mmR、0.3mmRの巻溝を有する酸化物磁性材料
の成形体を得るため射出成形用金型に130℃で射出成
形を行い、夫々のバインダー混合比の成形体を各条件1
00個ずつ得た。
The particle size of the oxide magnetic material powder is 0.1 μm.
The average particle size is approximately 1.
Prepare a Ni-Zn ferrite pre-calcined powder of 2 μm
-The mixing ratio of the three kinds of organic materials forming the binder to the Zn ferrite pre-calcined powder is 3 , low-density polyethylene having a melt flow rate of 3.0 g / 10 min and a density of 0.93 g / cm 3 in a weight ratio of 3, the average. Paraffin wax having a molecular weight of 400 was added in a weight ratio of 3, dioctyl phthalate was added in a weight ratio of 1, and the addition amount was 7.0% by weight, 7.5% by weight, 9.0% by weight with respect to the ferrite pre-calcined powder. 11.
0% by weight, 18.0% by weight, 22.0% by weight, 24.0
Seven types of raw materials having different addition amounts of 7% by weight were made, kneaded at 100 ° C. and crushed to obtain a raw material for molding. Using this forming raw material, the conductor forming diameter shown in FIG.
In order to obtain a molded body of an oxide magnetic material having winding grooves of 2 mmR and 0.3 mmR, injection molding was performed at 130 ° C. in a mold for injection molding, and molded bodies having respective binder mixing ratios were prepared under each condition 1
I got 00 each.

【0018】ついで、この成形体を50℃/時の昇温速
度で500℃まで昇温して脱脂が完了するまで保持し、
脱脂を行った。射出成形時の成形体の溝の完成度、及び
500度に保持し、脱脂後の脱脂体に生ずる割れ、及び
欠けのない良品率についての値を表1に示す。得られた
脱脂体を1200℃で2時間大気中にて高温焼結を行
い、図1に示す導体形成用の巻溝を有する酸化物磁性材
料の磁芯1を得た。これを用い、導体形成用の巻溝2に
溶融半田を流し込み、冷却し、環状インダクタを得た。
Then, the molded body is heated to 500 ° C. at a heating rate of 50 ° C./hour and held until degreasing is completed,
Degreasing was performed. Table 1 shows the degree of completion of the groove of the molded body at the time of injection molding, and the value of the non-defective product rate without cracking and chipping occurring in the degreased body after degreasing while keeping the groove at 500 degrees. The obtained degreased body was subjected to high temperature sintering in the air at 1200 ° C. for 2 hours to obtain a magnetic core 1 of an oxide magnetic material having a winding groove for forming a conductor shown in FIG. Using this, molten solder was poured into the winding groove 2 for forming a conductor and cooled to obtain an annular inductor.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例2)実施例2は、実施例1で用い
たと同じ原料及び材料の酸化物磁性材料粉末、及び酸化
物磁性材料粉末に添加するバインダーを用い、但しバイ
ンダーは重量比で低密度ポリエチレンを4.5、パラフ
ィンワックスを4.5、ジオクチルフタレートを1の割
合で混合した。前記の値に配合したバインダー原料を酸
化物磁性材料粉末に対し、夫々7.0重量%、7.5重
量%、9.0重量%、11重量%、18重量%、22重
量%、24重量%添加し、100℃で混練、解砕し、成
形用原料を得た。この成形用原料を用い、実施例1と同
様な手順で図1に示す成形体を得た。実施例2における
射出成形後の射出成形体の巻溝の完成度を500℃で脱
脂した後の脱脂体の割れ、欠けの発生とバインダー添加
量との関係により求め結果を表2に示す。
Example 2 In Example 2, an oxide magnetic material powder of the same raw material and material as used in Example 1 and a binder added to the oxide magnetic material powder were used, but the binder was low in weight ratio. Density polyethylene was mixed at a ratio of 4.5, paraffin wax at a ratio of 4.5, and dioctyl phthalate at a ratio of 1. The binder raw materials blended in the above values are 7.0% by weight, 7.5% by weight, 9.0% by weight, 11% by weight, 18% by weight, 22% by weight, and 24% by weight with respect to the oxide magnetic material powder. %, And kneaded and crushed at 100 ° C. to obtain a raw material for molding. Using this molding raw material, the molded body shown in FIG. 1 was obtained in the same procedure as in Example 1. Table 2 shows the results of the completion of the winding grooves of the injection-molded body after injection molding in Example 2 determined by the relationship between the occurrence of cracking and chipping of the degreased body after degreasing at 500 ° C. and the binder addition amount.

【0021】[0021]

【表2】 [Table 2]

【0022】(実施例3)実施例3は、実施例1で用い
た酸化物磁性材料粉末、及び酸化物磁性材料粉末に添加
するバインダーとして同じ原料及び材料を用い、但しバ
インダーは重量比で低密度ポリエチレン4、パラフィン
ワックスを4、ジオクチルフタレートを2としたバイン
ダー原料を、酸化物磁性材料粉末に対し、7.0重量
%、7.5重量%、9.0重量%、11重量%、18重
量%、22重量%、24重量%添加し、100℃で混
練、解砕し、成形用原料を得た。この成形用原料を用
い、実施例1と同様な手順で図1に示す成形体を得た。
実施例3における射出成形体の成形体の巻溝の完成度を
500℃で脱脂した後の脱脂体のバインダー添加量と脱
脂体に生じた割れ、欠けの発生とを求め、バインダー添
加量との関係を表3に示す。
Example 3 In Example 3, the same raw materials and materials were used as the oxide magnetic material powder used in Example 1 and the binder added to the oxide magnetic material powder, except that the binder was low in weight ratio. Binder raw material having density polyethylene 4, paraffin wax 4 and dioctyl phthalate 2 was 7.0% by weight, 7.5% by weight, 9.0% by weight, 11% by weight with respect to the oxide magnetic material powder. %, 22% and 24% by weight were added, and the mixture was kneaded and crushed at 100 ° C. to obtain a raw material for molding. Using this molding raw material, the molded body shown in FIG. 1 was obtained in the same procedure as in Example 1.
The degree of completion of the winding groove of the molded body of the injection molded body in Example 3 was determined by determining the binder addition amount of the degreased body after degreasing at 500 ° C. and the occurrence of cracks and chips in the degreased body, and The relationship is shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例1ないし実施例3により得られた1
200℃焼結後の磁芯の巻溝には、ペースト状の半田を
直接塗布し、焼付けるか、導電ペイントによる導体を形
成して小形インダクタとするか、無電解ニッケルメッキ
を行いその上に銅膜を形成し半田メッキを施して巻線を
形成してもよい。図2は、本発明による方法によるロの
字形の磁芯1の2つの磁脚に、同一方向に同じ巻線数を
持つコモンチョークコイルを形成した例を示す。なお、
図1、図2において、端子3を形成する部分の面は巻線
部分の面に対し段差Aを設けてあり、巻線となる巻溝に
形成した導体表面に樹脂による塗膜を被覆することによ
り表面実装型に容易になし得る。なお射出成形による小
形インダクタの外径はロの字の一辺が5mmないし3m
m程でも成形は可能である。又本発明の実施例では、材
料固有抵抗と、比透磁率特性の高いNi−Znフェライ
トを用いた例を示したが、材料固有抵抗が高く比透磁率
特性の高い他の酸化物磁性材料を用いても、本発明と同
様な小形インダクタが得られることは明かである。
1 obtained according to Examples 1 to 3
To the winding groove of the magnetic core after sintering at 200 ° C, paste-like solder is directly applied and baked, or a conductor is formed by conductive paint to form a small inductor, or electroless nickel plating is performed on it. The winding may be formed by forming a copper film and applying solder plating. FIG. 2 shows an example in which a common choke coil having the same number of turns in the same direction is formed on two magnetic legs of a square-shaped magnetic core 1 according to the method of the present invention. In addition,
1 and 2, the surface of the portion forming the terminal 3 is provided with a step A with respect to the surface of the winding portion, and the conductor surface formed in the winding groove to be the winding should be coated with a resin coating film. Thus, the surface mount type can be easily obtained. In addition, the outer diameter of a small inductor manufactured by injection molding is 5 mm to 3 m on one side of the square shape.
Molding is possible even with a length of about m. Further, in the examples of the present invention, an example using Ni-Zn ferrite having a high material resistivity and high relative magnetic permeability characteristics was shown, but another oxide magnetic material having a high material resistivity and high relative magnetic permeability characteristics was used. Even if it is used, it is obvious that a small inductor similar to the present invention can be obtained.

【0025】本発明の実施例における、比透磁率の値が
2000のNi−Znフェライト粉末を用い、外径が
3.4mm、高さ1.5mm、磁芯の幅が0.7mmの
磁芯に0.1mmRの巻溝を0.1mm間隔に磁脚の全
周に28回巻の巻溝を形成し、巻溝に導体を形成した小
形インダクタのインダクタンスの値は170μHであっ
た。
In the embodiment of the present invention, a Ni-Zn ferrite powder having a relative magnetic permeability of 2000 is used, and the outer diameter is 3.4 mm, the height is 1.5 mm, and the width of the magnetic core is 0.7 mm. In the small inductor in which the winding groove of 0.1 mmR was formed at 0.1 mm intervals and the winding groove of 28 turns was formed all around the magnetic leg, and the conductor was formed in the winding groove, the inductance value was 170 μH.

【0026】また、本発明の実施例においては、磁芯に
1つの巻線或いは2つの巻線を有する例を述べたが、本
発明を適用することにより一つの磁芯に複数の巻線を巻
回したトランス等も構成し得ることは当然である。
Further, in the embodiment of the present invention, the example in which the magnetic core has one winding or two windings is described, but by applying the present invention, a plurality of windings can be provided in one magnetic core. It goes without saying that a wound transformer or the like can also be configured.

【0027】[0027]

【発明の効果】本発明による複数の有機材を組合せたバ
インダーを酸化物磁性材料の微粉末に適当量添加し、射
出成形により、成形体を得、低温で焼成してバインダー
を除去した脱脂体を高温で焼結した焼結体は低コストで
かつ細い巻溝と端子形成凹部に段差を設けた小形インダ
クタを提供出来る。本発明による射出成形による小形イ
ンダクタ及びその製造方法は、従来の方法と比較して巻
溝の溝幅を大きくすることも容易で、放熱も良い構造で
あるので、比較的電流容量が大きな、小形インダクタを
安価に提供出来るという工業上有用な効果も有する。
EFFECTS OF THE INVENTION A degreased body obtained by adding a proper amount of a binder combining a plurality of organic materials according to the present invention to a fine powder of an oxide magnetic material to obtain a molded body by injection molding and firing at low temperature to remove the binder. The sintered body obtained by sintering at a high temperature can provide a small inductor at a low cost with a step formed in the thin winding groove and the terminal forming recess. The small-sized inductor and the manufacturing method thereof by injection molding according to the present invention have a structure in which the groove width of the winding groove can be easily increased and heat dissipation is good as compared with the conventional method, so that the small-sized inductor having a relatively large current capacity can be obtained. It also has an industrially useful effect that the inductor can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による小形インダクタで巻線が一層巻の
例を示す外観斜視図。
FIG. 1 is an external perspective view showing an example of a single-layer winding of a small inductor according to the present invention.

【図2】本発明による小形インダクタで2巻線を同相に
巻回してコモンチョークコイルを形成した例を示す小形
インダクタの外観斜視図。
FIG. 2 is an external perspective view of a small inductor according to the present invention, showing an example in which two windings are wound in the same phase to form a common choke coil.

【符号の説明】[Explanation of symbols]

1 磁芯 2 巻溝 3 端子 4 金属導体 5 端子形成凹部 A 段差 1 magnetic core 2 winding groove 3 terminal 4 metal conductor 5 terminal forming recess A step

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性で固有抵抗値の高い酸化物磁性材
料に有機バインダーを添加し射出成形により得たロの字
形で閉磁路の磁芯の外周に形成した1回巻ないし複数回
巻きのら線状の巻溝と、該巻溝の両端に基板導体に接続
する巻溝形成部に対し段差を設けた端子形成凹部とを有
する成形体を焼結して、得られた焼結体の前記巻溝と端
子形成凹部とに、電気良伝導特性を有する金属導体が充
填されてなることを特徴とする小形インダクタ。
1. A single- or multi-turn winding formed on the outer periphery of a closed magnetic circuit magnetic core in a square shape obtained by injection-molding an oxide magnetic material having soft magnetic properties and a high specific resistance value. A molded body having a spiral winding groove and terminal-formed recessed portions provided at both ends of the winding groove with step differences with respect to the winding groove forming portion connected to the substrate conductor is sintered to obtain a sintered body. A small inductor characterized in that the winding groove and the terminal forming recess are filled with a metal conductor having a good electrical conductivity characteristic.
【請求項2】 粒径が0.1μmないし10μmの粒度
分布を有する軟磁性で固有抵抗値の高い酸化物磁性材料
粉末と、低密度ポリエチレンを重量比で40%ないし4
5%、パラフィンワックスを重量比で40%ないし45
%、ジオクチルフタレートを重量比で10%ないし20
%の間で合計100%になるように混合したバインダー
を、前記酸化物磁性材料粉末に重量比で7.5%ないし
22.0%添加し、80℃ないし130℃で混練、解砕
した後、成形温度が130℃ないし160℃で巻溝と端
子形成凹部を設けたロの字形の成形体に射出成形した
後、1時間当りほぼ50℃程の割合で昇温し350℃な
いし500℃でバインダーが完全に除去する時間保持し
てバインダーを除去した脱脂体を、1100℃ないし1
250℃で30分ないし2時間焼結して焼結体を得、該
焼結体の射出成形時に形成した巻溝及び端子形成凹部
に、電気良伝導材の金属導体を充填し巻線と端子とを形
成してなることを特徴とする小形インダクタの製造方
法。
2. An oxide magnetic material powder having a particle size distribution of 0.1 μm to 10 μm and having a soft magnetic property and a high specific resistance value, and low-density polyethylene in a weight ratio of 40% to 4%.
5%, paraffin wax 40% to 45% by weight
%, Dioctyl phthalate in a weight ratio of 10% to 20
% Of the binder mixed in a total of 100% to the oxide magnetic material powder in a weight ratio of 7.5% to 22.0%, and the mixture is kneaded at 80 ° C. to 130 ° C. and crushed. After injection molding at a molding temperature of 130 ° C to 160 ° C into a square-shaped molded body provided with winding grooves and terminal forming recesses, the temperature is raised at a rate of about 50 ° C per hour at 350 ° C to 500 ° C. The degreased body from which the binder has been removed is kept at a temperature of 1100 ° C to 1 for 1 hour.
A sintered body is obtained by sintering at 250 ° C. for 30 minutes to 2 hours, and the winding groove and the terminal forming recess formed at the time of injection molding of the sintered body are filled with a metal conductor of an electrically conductive material to form a winding and a terminal. A method for manufacturing a small inductor, comprising:
JP5269737A 1993-09-30 1993-09-30 Small size inductor and manufacture thereof Pending JPH07106141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5269737A JPH07106141A (en) 1993-09-30 1993-09-30 Small size inductor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5269737A JPH07106141A (en) 1993-09-30 1993-09-30 Small size inductor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07106141A true JPH07106141A (en) 1995-04-21

Family

ID=17476463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5269737A Pending JPH07106141A (en) 1993-09-30 1993-09-30 Small size inductor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07106141A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338812A (en) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd Coil and its manufacturing method
US6335483B1 (en) 1997-07-29 2002-01-01 Murata Manufacturing Co., Ltd. Noise-suppressing component
JP2009033106A (en) * 2007-07-27 2009-02-12 Taida Electronic Ind Co Ltd Method of manufacturing magnetic device, and magnetic device
WO2014030774A1 (en) 2012-08-24 2014-02-27 国立大学法人山口大学 Medium for yeasts
JP2019169553A (en) * 2018-03-22 2019-10-03 ホシデン株式会社 Coil, non-contact power feeding unit and manufacturing method for coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335483B1 (en) 1997-07-29 2002-01-01 Murata Manufacturing Co., Ltd. Noise-suppressing component
JP2001338812A (en) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd Coil and its manufacturing method
JP2009033106A (en) * 2007-07-27 2009-02-12 Taida Electronic Ind Co Ltd Method of manufacturing magnetic device, and magnetic device
WO2014030774A1 (en) 2012-08-24 2014-02-27 国立大学法人山口大学 Medium for yeasts
JP2019169553A (en) * 2018-03-22 2019-10-03 ホシデン株式会社 Coil, non-contact power feeding unit and manufacturing method for coil

Similar Documents

Publication Publication Date Title
CN1627457B (en) Magnetic component and its making method
EP1744329B1 (en) Method of manufacturing a magnetic element comprising a composite magnetic body
CN107799260B (en) Magnetic powder and inductor containing the same
US9767950B2 (en) Multilayer electronic component
US20080012674A1 (en) Magnetic device
US20060038653A1 (en) High current inductor and the manufacturing method
KR101981615B1 (en) Coil component
EP2584574A1 (en) Reactor
CN111243814A (en) Copper sheet embedded soft magnetic powder core inductor and preparation method and application thereof
JP2002313632A (en) Magnetic element and its manufacturing method
KR102098623B1 (en) Molded Inductor and manufacturing method thereof
JP2001052946A (en) Manufacture of chip inductor
US6918173B2 (en) Method for fabricating surface mountable chip inductor
JPH07106141A (en) Small size inductor and manufacture thereof
JPH06310334A (en) Inductor and manufacture thereof
JP2019201155A (en) Powder magnetic core and inductor element
CN101354947A (en) Magnetic element and manufacturing method thereof
JPS6349890B2 (en)
JP2007254814A (en) Fe-Ni-BASED SOFT MAGNETIC ALLOY POWDER, GREEN COMPACT, AND COIL-SEALED DUST CORE
KR101872601B1 (en) Magnetic powder and inductor comprising the same
JPH0547563A (en) Inductor and manufacture thereof
KR100433188B1 (en) A surface mounted power inductor and manufacturing method therefof
JP2003007551A (en) Coil component and method of manufacturing the same
JP2003282342A (en) Coil sealed dust core
JP7355065B2 (en) Alpha wound coils and coil parts