JPH07105951A - Battery - Google Patents

Battery

Info

Publication number
JPH07105951A
JPH07105951A JP5246738A JP24673893A JPH07105951A JP H07105951 A JPH07105951 A JP H07105951A JP 5246738 A JP5246738 A JP 5246738A JP 24673893 A JP24673893 A JP 24673893A JP H07105951 A JPH07105951 A JP H07105951A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
sheet
electrolyte
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5246738A
Other languages
Japanese (ja)
Inventor
Yoshiko Miyamoto
佳子 宮本
Yasushi Uemachi
裕史 上町
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5246738A priority Critical patent/JPH07105951A/en
Publication of JPH07105951A publication Critical patent/JPH07105951A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a battery which US(65 a positive electrode active material including disulfide compound and which is equipped with a high quality and high safety. CONSTITUTION:A battery concerned uses a positive electrode active material which contains disulfide compound, in which stainless steel is used to the battery vessel in the part contacting the positive electrode and the electricity collector on the positive electrode side, and at least perchlorate is used as an electrolytic salt to be included in the electrolyte and the positive electrode. Thereby corrosive reactions can be prevented likely generated between the positive electrode and positive electrode collector and the battery vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジスルフィド化合物を
含む正極活物質を用いた電池に関するものである。
TECHNICAL FIELD The present invention relates to a battery using a positive electrode active material containing a disulfide compound.

【0002】[0002]

【従来の技術】電池の集電体および容器は、正極または
負極活物質と化学的または電気化学的に反応しない材質
で、かつ機械的強度も大きいという条件を満足すること
が必要とされている。無機化合物や導電性高分子を正極
活物質とするリチウム電池においては、集電体および電
池容器の材料として、耐腐食性のあるステンレス鋼が用
いられてきた。
2. Description of the Related Art It is necessary that a current collector and a container of a battery are made of a material which does not chemically or electrochemically react with a positive electrode or a negative electrode active material and have a large mechanical strength. . In a lithium battery using an inorganic compound or a conductive polymer as a positive electrode active material, stainless steel having corrosion resistance has been used as a material for a current collector and a battery container.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、正極に
ジスルフィド化合物を含む正極活物質を用いた電池にお
いて、ステンレス鋼からなる集電体および電池容器を用
いると、集電体および電池容器が破損し、電池の機密性
が損なわれるという欠点を有していた。この原因につい
て本発明者らが詳細に検討したところ、破損はステンレ
ス鋼の腐食によることが判明した。
However, when a current collector and a battery container made of stainless steel are used in a battery using a positive electrode active material containing a disulfide compound for the positive electrode, the current collector and the battery container are damaged, It has the drawback that the confidentiality of the battery is impaired. When the inventors of the present invention examined the cause of this in detail, it was found that the damage was due to corrosion of the stainless steel.

【0004】すなわち、図1の曲線Aは、1M濃度の四
フッ化ホウ酸リチウムをプロピレンカーボネートに溶解
した電解液にジスルフィド化合物である2,5−ジメル
カプト−1,3,4−チアジアゾール(化1)を5mM
濃度で溶解した溶液中において、代表的なステンレス鋼
であるSUS430を作用極とし、Liを参照電極とし
た場合のアノード分極曲線である。作用極の表面積は1
cm2である。Liに対して4.5Vの電位域におい
て、作用極に用いたステンレス鋼の溶解電流が流れてい
ることがわかる。ジスルフィド化合物を含む正極とリチ
ウム負極を組み合わせた電池の充電電圧が約3〜4.5
Vであることから、前記の電位域においてステンレス鋼
を用いた正極側集電体および電池容器が腐食されるのは
明らかである。同様の結果が、四フッ化ホウ酸リチウム
にかえて六フッ化リン酸リチウム、トリフルオロメタン
スルホン酸リチウムを電解質塩に用いた場合にも得られ
た。
That is, the curve A in FIG. 1 shows that a disulfide compound, 2,5-dimercapto-1,3,4-thiadiazole (chemical formula 1), is added to an electrolytic solution prepared by dissolving 1M lithium tetrafluoroborate in propylene carbonate. ) 5 mM
2 is an anodic polarization curve when SUS430, which is a typical stainless steel, is used as a working electrode and Li is used as a reference electrode in a solution dissolved at a concentration. Surface area of working electrode is 1
cm 2 . It can be seen that the melting current of the stainless steel used for the working electrode flows in the potential range of 4.5 V with respect to Li. The charging voltage of a battery in which a positive electrode containing a disulfide compound and a lithium negative electrode are combined is about 3 to 4.5.
Since it is V, it is apparent that the positive electrode side current collector and the battery container made of stainless steel are corroded in the above potential range. Similar results were obtained when lithium hexafluorophosphate and lithium trifluoromethanesulfonate were used as electrolyte salts instead of lithium tetrafluoroborate.

【0005】[0005]

【化1】 [Chemical 1]

【0006】本発明は、このような欠点に鑑みてなされ
たものであり、ジスルフィド化合物を含む正極活物質を
用いた電池を高品質で安全性が高いものとして提供する
ことを目的とする。
The present invention has been made in view of such drawbacks, and an object thereof is to provide a battery using a positive electrode active material containing a disulfide compound as a battery of high quality and high safety.

【0007】[0007]

【課題を解決するための手段】本発明は、ジスルフィド
化合物を含む正極活物質を用いた電池において、正極側
の集電体および正極に接する部分の電池容器の材質とし
てステンレス鋼を用いた場合に、電解質塩として少なく
とも過塩素酸塩を含む電解質を用いるものである。
The present invention provides a battery using a positive electrode active material containing a disulfide compound, in which stainless steel is used as a material for a current collector on the positive electrode side and a battery container in a portion in contact with the positive electrode. An electrolyte containing at least a perchlorate as an electrolyte salt is used.

【0008】ここに、ジスルフィド化合物は、電解還元
により硫黄−硫黄結合が開裂して、硫黄−金属イオン
(プロトンを含む)結合を生成し、電解酸化により硫黄
−金属イオン結合が元の硫黄−硫黄結合を再生する有機
イオウ化合物である。このジスルフィド化合物は、最も
簡単にはR−S−S−Rと表される。ここで、Rは脂肪
族あるいは芳香族の有機基、Sは硫黄である。S−S結
合は、電解還元により開裂(脱重合)し、電解浴中のカ
チオン(M+)とR−S-・M+で表される塩を生成す
る。この塩は、電解酸化(重合)により元のR−S−S
−Rに戻る。
Here, in the disulfide compound, the sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion (including proton) bond, and the sulfur-metal ion bond is the original sulfur-sulfur by electrolytic oxidation. Organic sulfur compounds that regenerate bonds. This disulfide compound is most simply designated as R-S-S-R. Here, R is an aliphatic or aromatic organic group, and S is sulfur. The S—S bond is cleaved (depolymerized) by electrolytic reduction to form a cation (M + ) in the electrolytic bath and a salt represented by R—S .M + . This salt is converted to the original R-S-S by electrolytic oxidation (polymerization).
-Return to R.

【0009】[0009]

【作用】ジスルフィド化合物を含む正極活物質を用いた
電池において、正極集電体および正極が接する部分の電
池容器にステンレス鋼を用いた場合に、過塩素酸塩、中
でも過塩素酸リチウムを含む電解質を用いることで、正
極と正極集電体および電池容器の間で腐食反応が起こる
ことを防ぐことができる。図1の曲線Bは、1M濃度で
過塩素酸リチウムをプロピレンカーボネートに溶解した
電解液に2,5−ジメルカプト−1,3,4−チアジア
ゾールを5mM濃度で溶解した溶液中において、SUS
430をアノード分極した結果である。曲線Bで示され
るように、電解質塩を過塩素酸リチウムにした場合は、
四フッ化ホウ酸リチウムを用いた場合のような溶解電流
が現れない。したがって、正極集電体および電池容器の
腐食による破損を防ぐことが可能となる。
[Function] In a battery using a positive electrode active material containing a disulfide compound, when stainless steel is used for a battery container in a portion where the positive electrode current collector and the positive electrode are in contact, an electrolyte containing a perchlorate, particularly lithium perchlorate. By using, it is possible to prevent a corrosion reaction from occurring between the positive electrode, the positive electrode current collector and the battery container. Curve B in FIG. 1 shows SUS in a solution prepared by dissolving 2,5-dimercapto-1,3,4-thiadiazole at a concentration of 5 mM in an electrolyte solution prepared by dissolving lithium perchlorate in propylene carbonate at a concentration of 1 M.
430 is the result of anodic polarization. As shown by the curve B, when the electrolyte salt is lithium perchlorate,
Dissolution current does not appear as in the case of using lithium tetrafluoroborate. Therefore, it is possible to prevent damage due to corrosion of the positive electrode current collector and the battery container.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。 [実施例1]ジスルフィド化合物の2,5−ジメルカプ
ト−1,3,4−チアジアゾールとカーボン導電材とポ
リマー電解質を含む厚さ0.2mmのシート状の正極を
作製する。また、厚さ0.1mmのポリマー電解質シー
トを作製し、先に作製した正極シートとポリマー電解質
シートとリチウム金属負極を用いて電池を構成する。こ
こで用いたポリマー電解質は、1M過塩素酸リチウムの
プロピレンカーボネート溶液にアクリロニトリルとアク
リル酸メチルの共重合体を20%濃度で混合し加熱溶解
したのち、その8gを直径8.5cmのガラスシャーレ
に流し込み、−20℃に冷却することによって得たもの
である。正極集電体兼電池容器および負極側集電体兼電
池容器としてそれぞれ厚さ0.05mmのステンレス鋼
(SUS430)を用いてシート型電池を作製する。
EXAMPLES Examples of the present invention will be described below. Example 1 A 0.2 mm-thick sheet-shaped positive electrode containing a disulfide compound 2,5-dimercapto-1,3,4-thiadiazole, a carbon conductive material, and a polymer electrolyte is prepared. Further, a polymer electrolyte sheet having a thickness of 0.1 mm is produced, and a battery is constructed using the positive electrode sheet, the polymer electrolyte sheet, and the lithium metal negative electrode produced in advance. The polymer electrolyte used here was prepared by mixing a copolymer of acrylonitrile and methyl acrylate at a concentration of 20% in a propylene carbonate solution of 1M lithium perchlorate, and heating and dissolving the mixture. It was obtained by pouring and cooling to -20 ° C. A sheet type battery is manufactured by using stainless steel (SUS430) having a thickness of 0.05 mm as the positive electrode current collector / battery container and the negative electrode side current collector / battery container, respectively.

【0011】作製した電池を室温において保存試験を行
ったところ、100日後においても正極集電体兼電池容
器の破損は発生せず、電池重量、厚み、内部インピーダ
ンス、開路電圧に全く変化がなかった。ここでのポリマ
ー電解質としては、有機溶媒にリチウム金属塩を溶解し
た電解液を保持する高分子ゲルよりなるゲル電解質を用
いたが、電解質として溶媒を含まない高分子固体電解質
を用いても同様の結果が得られる。
When the manufactured battery was subjected to a storage test at room temperature, the positive electrode current collector / battery container was not damaged even after 100 days, and the battery weight, thickness, internal impedance and open circuit voltage were not changed at all. . As the polymer electrolyte here, a gel electrolyte composed of a polymer gel holding an electrolytic solution in which a lithium metal salt is dissolved in an organic solvent was used, but the same is true even if a polymer solid electrolyte containing no solvent is used as the electrolyte. The result is obtained.

【0012】[実施例2]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を0.9Mの過塩素酸リチ
ウムと0.1Mの四フッ化ホウ酸リチウムからなる混合
塩にかえて、厚さ0.2mmのシート状の正極と、厚さ
0.1mmのポリマー電解質シートを作製する。これら
の正極シートと電解質シートとリチウム金属負極を用い
て電池を構する。正極集電体兼電池容器および負極側集
電体兼電池容器にそれぞれ厚さ0.05mmのステンレ
ス鋼(SUS304)を用いてシート形電池を構成す
る。作製した電池を室温において保存試験を行ったとこ
ろ、100日後においても正極集電体兼電池容器の破損
は発生せず、電池重量、厚み、内部インピーダンス、開
路電圧に全く変化がなかった。
Example 2 In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed to a mixed salt of 0.9M lithium perchlorate and 0.1M lithium tetrafluoroborate, A sheet-shaped positive electrode having a thickness of 0.2 mm and a polymer electrolyte sheet having a thickness of 0.1 mm are prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A sheet-type battery is constructed by using stainless steel (SUS304) having a thickness of 0.05 mm in each of the positive electrode current collector / battery container and the negative electrode side current collector / battery container. When the manufactured battery was subjected to a storage test at room temperature, the positive electrode current collector / battery container was not damaged even after 100 days, and the battery weight, thickness, internal impedance and open circuit voltage were not changed at all.

【0013】[実施例3]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を0.8Mの過塩素酸リチ
ウムと0.2Mの四フッ化ホウ酸リチウムからなる混合
塩にかえて、厚さ0.2mmのシート状の正極と、厚さ
0.1mmのポリマー電解質シートを作製する。これら
の正極シートと電解質シートとリチウム金属負極を用い
て電池を構成する。正極集電体兼電池容器および負極側
集電体兼電池容器に厚さ0.05mmのステンレス鋼
(SUS316)を用いてシート形電池を構成する。作
製した電池を室温において保存試験を行ったところ、1
00日後においても正極集電体兼電池容器の破損は発生
せず、電池重量、厚み、内部インピーダンス、開路電圧
に全く変化がなかった。
Example 3 In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed to a mixed salt of 0.8M lithium perchlorate and 0.2M lithium tetrafluoroborate, A sheet-shaped positive electrode having a thickness of 0.2 mm and a polymer electrolyte sheet having a thickness of 0.1 mm are prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A sheet type battery is constructed by using stainless steel (SUS316) having a thickness of 0.05 mm for the positive electrode collector / battery container and the negative electrode side collector / battery container. When the manufactured battery was subjected to a storage test at room temperature, 1
Even after 00 days, the cathode current collector / battery container was not damaged, and the battery weight, thickness, internal impedance, and open circuit voltage were not changed at all.

【0014】[実施例4]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を0.8Mの過塩素酸リチ
ウムと0.2Mの四フッ化ホウ酸リチウムからなる混合
塩にかえて、厚さ0.2mmのシート状の正極と、厚さ
0.1mmのポリマー電解質シートを作製する。これら
の正極シートと電解質シートとリチウム金属負極を用い
て電池を構成する。正極集電体兼電池容器および負極側
集電体兼電池容器に厚さ0.05mmのハイクロムモリ
ブデンステンレス鋼(昭和電工 SMAC−2)を用い
てシート形電池を構成する。作製した電池を室温におい
て保存試験を行ったところ、100日後においても正極
集電体兼電池容器の破損は発生せず、電池重量、厚み、
内部インピーダンス、開路電圧に全く変化がなかった。
Example 4 In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed to a mixed salt of 0.8M lithium perchlorate and 0.2M lithium tetrafluoroborate, A sheet-shaped positive electrode having a thickness of 0.2 mm and a polymer electrolyte sheet having a thickness of 0.1 mm are prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A sheet-type battery is constructed by using high-chromium molybdenum stainless steel (Showa Denko SMAC-2) with a thickness of 0.05 mm in the positive electrode current collector / battery container and the negative electrode side current collector / battery container. When the manufactured battery was subjected to a storage test at room temperature, damage to the positive electrode current collector / battery container did not occur even after 100 days, and the battery weight, thickness, and
There was no change in internal impedance or open circuit voltage.

【0015】[実施例5]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を0.7Mの過塩素酸リチ
ウムと0.3Mの四フッ化ホウ酸リチウムからなる混合
塩にかえて、厚さ0.2mmのシート状の正極と、厚さ
0.1mmのポリマー電解質シートを作製する。これら
の正極シートと電解質シートとリチウム金属負極を用い
て電池を構成する。正極集電体兼電池容器および負極側
集電体兼電池容器に厚さ0.05mmのハイクロムモリ
ブデンステンレス鋼(昭和電工 SMAC−2)を用い
てシート形電池を構成する。作製した電池を室温におい
て保存試験を行ったところ、100日後においても正極
集電体兼電池容器の破損は発生せず、電池重量、厚み、
内部インピーダンス、開路電圧に全く変化がなかった。
[Example 5] In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed to a mixed salt of 0.7M lithium perchlorate and 0.3M lithium tetrafluoroborate, A sheet-shaped positive electrode having a thickness of 0.2 mm and a polymer electrolyte sheet having a thickness of 0.1 mm are prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A sheet-type battery is constructed by using high-chromium molybdenum stainless steel (Showa Denko SMAC-2) with a thickness of 0.05 mm in the positive electrode current collector / battery container and the negative electrode side current collector / battery container. When the manufactured battery was subjected to a storage test at room temperature, damage to the positive electrode current collector / battery container did not occur even after 100 days, and the battery weight, thickness, and
There was no change in internal impedance or open circuit voltage.

【0016】[比較例1]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を過塩素酸リチウムから四
フッ化ホウ酸リチウムにかえて、厚さ0.2mmのシー
ト状の正極と、厚さ0.1mmのポリマー電解質シート
を作製する。これらの正極シートと電解質シートとリチ
ウム金属負極を用いて電池を構成する。正極集電体兼電
池容器および負極側集電体兼電池容器に厚さ0.05m
mのステンレス鋼(SUS430)を用いてシート形電
池を構成する。作製した電池を室温において保存試験を
行ったところ、10日後に正極側電池容器表面に変色が
みられ、孔が開くなどの破損が認められた。それに伴い
電池重量、厚み、内部インピーダンス、開路電圧が初期
値よりも大きく変化した。
Comparative Example 1 In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed from lithium perchlorate to lithium tetrafluoroborate, and a sheet-like positive electrode having a thickness of 0.2 mm was prepared. A polymer electrolyte sheet having a thickness of 0.1 mm is prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A thickness of 0.05 m for the positive electrode collector / battery container and the negative electrode side collector / battery container
A sheet-type battery is constructed using m stainless steel (SUS430). When the manufactured battery was subjected to a storage test at room temperature, discoloration was observed on the surface of the battery container on the positive electrode side after 10 days, and damage such as opening of holes was recognized. As a result, the battery weight, thickness, internal impedance, and open circuit voltage changed more than the initial values.

【0017】[比較例2]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を0.7Mの過塩素酸リチ
ウムと0.3Mの四フッ化ホウ酸リチウムからなる混合
塩にかえて、厚さ0.2mmのシート状の正極と、厚さ
0.1mmのポリマー電解質シートを作製する。これら
の正極シートと電解質シートとリチウム金属負極を用い
て電池を構成する。正極集電体兼電池容器および負極側
集電体兼電池容器に厚さ0.05mmのステンレス鋼
(SUS304)を用いてシート形電池を構成する。作
製した電池を室温において保存試験を行ったところ、1
0日後に正極側電池容器表面に変色がみられ、孔が開く
などの破損が認められた。それに伴い電池重量、厚み、
内部インピーダンス、開路電圧が初期値よりも大きく変
化した。
Comparative Example 2 In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed to a mixed salt of 0.7M lithium perchlorate and 0.3M lithium tetrafluoroborate, A sheet-shaped positive electrode having a thickness of 0.2 mm and a polymer electrolyte sheet having a thickness of 0.1 mm are prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A sheet-type battery is constructed by using stainless steel (SUS304) having a thickness of 0.05 mm for the positive electrode current collector / battery container and the negative electrode side current collector / battery container. When the manufactured battery was subjected to a storage test at room temperature, 1
After 0 days, discoloration was observed on the surface of the positive electrode-side battery container, and damage such as opening of holes was observed. Along with that, battery weight, thickness,
The internal impedance and open circuit voltage changed more than the initial values.

【0018】[比較例3]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を0.7Mの過塩素酸リチ
ウムと0.3Mの四フッ化ホウ酸リチウムからなる混合
塩にかえて、厚さ0.2mmのシート状の正極と、厚さ
0.1mmのポリマー電解質シートを作製する。これら
の正極シートと電解質シートとリチウム金属負極を用い
て電池を構成する。正極集電体兼電池容器および負極側
集電体兼電池容器に厚さ0.05mmのステンレス鋼
(SUS316)を用いてシート形電池を構成する。作
製した電池を室温において保存試験を行ったところ、1
0日後に正極側電池容器表面に変色がみられ、孔が開く
などの破損が認められた。それに伴い電池重量、厚み、
内部インピーダンス、開路電圧が初期値よりも大きく変
化した。
Comparative Example 3 In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed to a mixed salt of 0.7M lithium perchlorate and 0.3M lithium tetrafluoroborate, A sheet-shaped positive electrode having a thickness of 0.2 mm and a polymer electrolyte sheet having a thickness of 0.1 mm are prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A sheet type battery is constructed by using stainless steel (SUS316) having a thickness of 0.05 mm for the positive electrode collector / battery container and the negative electrode side collector / battery container. When the manufactured battery was subjected to a storage test at room temperature, 1
After 0 days, discoloration was observed on the surface of the positive electrode-side battery container, and damage such as opening of holes was observed. Along with that, battery weight, thickness,
The internal impedance and open circuit voltage changed more than the initial values.

【0019】[比較例4]実施例1と同じ方法でポリマ
ー電解質に含まれる電解質塩を0.5Mの過塩素酸リチ
ウムと0.5Mの四フッ化ホウ酸リチウムからなる混合
塩にかえて、厚さ0.2mmのシート状の正極と、厚さ
0.1mmのポリマー電解質シートを作製する。これら
の正極シートと電解質シートとリチウム金属負極を用い
て電池を構成する。正極集電体兼電池容器および負極側
集電体兼電池容器に厚さ0.05mmのハイクロムモリ
ブデンステンレス鋼(昭和電工 SMAC−2)を用い
てシート形電池を構成する。作製した電池を室温におい
て保存試験を行ったところ、10日後に正極側電池容器
表面に変色がみられ、孔が開くなどの破損が認められ
た。それに伴い電池重量、厚み、内部インピーダンス、
開路電圧が初期値よりも大きく変化した。
Comparative Example 4 In the same manner as in Example 1, the electrolyte salt contained in the polymer electrolyte was changed to a mixed salt of 0.5M lithium perchlorate and 0.5M lithium tetrafluoroborate, A sheet-shaped positive electrode having a thickness of 0.2 mm and a polymer electrolyte sheet having a thickness of 0.1 mm are prepared. A battery is constructed using these positive electrode sheet, electrolyte sheet, and lithium metal negative electrode. A sheet-type battery is constructed by using high-chromium molybdenum stainless steel (Showa Denko SMAC-2) with a thickness of 0.05 mm in the positive electrode current collector / battery container and the negative electrode side current collector / battery container. When the manufactured battery was subjected to a storage test at room temperature, discoloration was observed on the surface of the battery container on the positive electrode side after 10 days, and damage such as opening of holes was recognized. Along with that, battery weight, thickness, internal impedance,
The open circuit voltage changed more than the initial value.

【0020】以上のように4種類のステンレス鋼を用
い、電解質塩に占める過塩素酸リチウムの割合を50〜
100%にしたポリマー電解質を含むシート型電池の保
存試験の結果を表1に示した。
As described above, four types of stainless steel are used, and the proportion of lithium perchlorate in the electrolyte salt is 50 to 50%.
The results of the storage test of the sheet type battery containing 100% of the polymer electrolyte are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】この結果から、電解質に含まれる過塩素酸
リチウムの割合は、電解質塩の70%以上であることが
望ましい。実施例では、電池の構成をシート型で示した
が、電池の形状としてはその他、コイン型、円筒型や積
層型電池、さらには大面積のフィルム型電池についても
同様であり、正極の集電体としてステンレス鋼を用いる
場合の塩として過塩素酸リチウムを選択することが有効
である。また、電解液とセパレータを用いて構成するこ
ともできる。この場合に電解質に含まれる溶媒としてプ
ロピレンカーボネートを用いているが、プロピレンカー
ボネート、エチレンカーボネート、スルホラン、ジメト
キシエタン、テトラヒドロフラン、γ−ブチロラクト
ン、ジエチルカーボネート等から選ばれる少なくとも1
種類以上の単独溶媒及び混合溶媒を用いることもでき
る。これらの溶媒に溶解する塩として、過塩素酸リチウ
ムが腐食反応の抑制に有効である。また、正極活物質に
含まれるジスルフィド化合物としては、2,5−ジメル
カプト−1,3,4−チアジアゾールを用いているが、
チオシアヌル酸(化2)、エタンジチオール(化3)な
どの−SH基を有する化合物を含んだ正極に対しても有
効である。加えてポリアニリンなどのπ電子共役系導電
性高分子とジスルフィド化合物を複合化した正極に対し
ても有効である。
From these results, the proportion of lithium perchlorate contained in the electrolyte is preferably 70% or more of the electrolyte salt. In the examples, the configuration of the battery is shown as a sheet type, but the shape of the battery is also the same for coin type, cylindrical type and laminated type batteries, and also for large area film type batteries, and the positive electrode current collector is used. When stainless steel is used as the body, it is effective to select lithium perchlorate as the salt. It can also be configured by using an electrolytic solution and a separator. In this case, propylene carbonate is used as the solvent contained in the electrolyte, but at least 1 selected from propylene carbonate, ethylene carbonate, sulfolane, dimethoxyethane, tetrahydrofuran, γ-butyrolactone, diethyl carbonate and the like.
It is also possible to use one or more kinds of single solvents and mixed solvents. As a salt soluble in these solvents, lithium perchlorate is effective in suppressing the corrosion reaction. Further, 2,5-dimercapto-1,3,4-thiadiazole is used as the disulfide compound contained in the positive electrode active material,
It is also effective for a positive electrode containing a compound having a —SH group such as thiocyanuric acid (chemical formula 2) and ethanedithiol (chemical formula 3). In addition, it is also effective for a positive electrode in which a π-electron conjugated conductive polymer such as polyaniline is combined with a disulfide compound.

【0023】[0023]

【化2】 [Chemical 2]

【0024】[0024]

【化3】 [Chemical 3]

【0025】負極としては金属リチウムを用いる以外に
リチウムアルミニウム合金やリチウムイオンを吸蔵放出
可能な炭素材料なども用いることができる。ここではフ
ェライト系、オーステナイト系、ハイクロムモリブデン
ステンレス鋼などの中から代表的な4種類のステンレス
鋼について述べたが、フェライト系SUS405、SU
S434、マルテンサイト系SUS403、SUS41
0、オースティナイト系SUS303、SUS305、
SUS310S、析出硬化型SUS630、SUS63
1などのステンレス鋼についても同様である。
As the negative electrode, a lithium aluminum alloy, a carbon material capable of inserting and extracting lithium ions, or the like can be used instead of using metallic lithium. Although four types of typical stainless steels such as ferritic, austenitic, and high chromium molybdenum stainless steels have been described here, ferritic SUS405, SU
S434, Martensite SUS403, SUS41
0, austenite SUS303, SUS305,
SUS310S, precipitation hardening type SUS630, SUS63
The same applies to stainless steel such as 1.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
ジスルフィド化合物を含む正極活物質を用いた電池にお
いて、正極側容器の破損のない安定な電池を提供するこ
とができる。
As described above, according to the present invention,
In a battery using a positive electrode active material containing a disulfide compound, it is possible to provide a stable battery without damage to the positive electrode side container.

【図面の簡単な説明】[Brief description of drawings]

【図1】ジスルフィド化合物を含む異なる電解液中にお
けるステンレス鋼のアノード分極曲線を示す。
1 shows the anodic polarization curves of stainless steel in different electrolytes containing disulfide compounds.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくともジスルフィド化合物を含む正
極を備え、正極側の集電体および正極に接する部分の電
池容器をステンレス鋼で構成し、さらに正極および電解
質に含まれる電解質塩として少なくとも過塩素酸塩を含
むことを特徴とする電池。
1. A positive electrode containing at least a disulfide compound, a current collector on the positive electrode side and a battery container in a portion in contact with the positive electrode are made of stainless steel, and at least a perchlorate salt is used as an electrolyte salt contained in the positive electrode and the electrolyte. A battery comprising:
JP5246738A 1993-10-01 1993-10-01 Battery Pending JPH07105951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5246738A JPH07105951A (en) 1993-10-01 1993-10-01 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5246738A JPH07105951A (en) 1993-10-01 1993-10-01 Battery

Publications (1)

Publication Number Publication Date
JPH07105951A true JPH07105951A (en) 1995-04-21

Family

ID=17152919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5246738A Pending JPH07105951A (en) 1993-10-01 1993-10-01 Battery

Country Status (1)

Country Link
JP (1) JPH07105951A (en)

Similar Documents

Publication Publication Date Title
EP1527488B1 (en) Electrolyte additive for non-aqueous electrochemical cells
CA1307024C (en) Separator for lithium batteries and lithium batteries including the separator
ATE315834T1 (en) POTASSIUM ION ADDITIVES FOR VOLTAGE CONTROL AND PERFORMANCE IMPROVEMENT IN NON-AQUEOUS CELLS
CA1292203C (en) Electrolytic recovery of lead from scrap
KR970705189A (en) LITHIUM ION BATTERY WITH LITHIUM VANADIUM PENTOXIDE POSITIVE ELECTRODE WITH LITHIUM VANADIUM PENTOCIDE POSITIVE ELECTRODE
Behl Anodic oxidation of lithium bromide in tetrahydrofuran solutions
JPH09270273A (en) Polysulfide, carbon electrode material, and association method
JPH07105951A (en) Battery
JP3349368B2 (en) Lithium battery
DE69423455D1 (en) Use of a non-aqueous electrolyte with improved performance and stability
JP4462022B2 (en) Flat type non-aqueous electrolyte battery
KR870003586A (en) Electrolyte Additive for Lithium-Sulfur Dioxide Electrochemical Battery
JPH0729609A (en) Battery
USH829H (en) Rechargeable lithium-organic electrolyte battery having overcharge protection and method of providing overcharge protection for a lithium-organic electrolyte battery
JPH02236972A (en) Polyaniline battery
WO2005015676A3 (en) Electrochemical cell having 'in situ generated' component
KR860000726A (en) Non-aqueous electrochemical cell
KR830008419A (en) Rechargeable Non-Liquid Li / SO_2 Battery
JP2003253400A (en) Austenitic stainless steel for button-type lithium secondary battery case, and battery case using the same
JP2001143667A (en) Non-aqueous cell
JPH02239573A (en) Polyaniline battery
JPH02189866A (en) Nonaqueous electrolyte battery
Liu Novel electrodes for advanced energy storage systems
NL8101477A (en) HIGH POWER ELECTROCHEMIC CELL.
Pyun et al. An overview of interfacial reactions between lithium metal electrode/lithiated carbon electrode and non-aqueous organic solution