JPH07105924A - Heat insulated vacuum vessel - Google Patents

Heat insulated vacuum vessel

Info

Publication number
JPH07105924A
JPH07105924A JP5252691A JP25269193A JPH07105924A JP H07105924 A JPH07105924 A JP H07105924A JP 5252691 A JP5252691 A JP 5252691A JP 25269193 A JP25269193 A JP 25269193A JP H07105924 A JPH07105924 A JP H07105924A
Authority
JP
Japan
Prior art keywords
container
opening
heat insulating
vessel
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5252691A
Other languages
Japanese (ja)
Inventor
Mikio Sato
美喜雄 佐藤
Masayoshi Aoki
政義 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5252691A priority Critical patent/JPH07105924A/en
Publication of JPH07105924A publication Critical patent/JPH07105924A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Packages (AREA)
  • Casings For Electric Apparatus (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PURPOSE:To remove necessity for use of any complicated expansion mechanism as conventional by enhancing the heat insulating performance through lessening of thermal loss to be made from a membrane installed at the opening of a heat insulated vacuum vessel and also lessening of the internal surface area, shortening the depth of the inner vessel from its opening, and lessening the elongation due to thermal expansion of the inner vessel. CONSTITUTION:A vessel is formed in a rectangular parallelopiped in which an opening 5 is provided in the side face on that side of vessel where the depth becomes the shortest, wherein the opening 5 is formed with a smaller area at a part of that side face so that the thermal loss from a membrane 6 furnished at the opening 5 is lessened. Therein the accommodation of a group of storage batteries into the vessel body 3 is made through such procedures as dividing the group of batteries into minimum units, inserting each through the opening 5, and feeding it longitudinally and transversely within the vessel body 3, which should be done in cycles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温型の蓄電池群を収
納するための保温容器などに使用される真空断熱容器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulation container used as a heat insulation container for accommodating a high temperature type storage battery group.

【0002】[0002]

【従来の技術】高温型の蓄電池群を収納するための保温
容器などに使用される真空断熱容器は、高次の断熱性能
が要求される。そのため、断熱壁として、内外二重壁を
有し、この間に珪藻土などの無機質粉末断熱材あるいは
ガラス繊維などの無機質繊維断熱材などを充填し、さら
に、内部を真空化する構造が知られている。
2. Description of the Related Art A vacuum heat insulation container used as a heat insulation container for accommodating a high temperature type storage battery group is required to have high-order heat insulation performance. Therefore, as a heat insulating wall, there is known a structure having inner and outer double walls, in which inorganic powder heat insulating material such as diatomaceous earth or inorganic fiber heat insulating material such as glass fiber is filled, and further the inside is evacuated. .

【0003】また、容器内に蓄電池群を収納する場合、
収納する蓄電池群は重量物であるので収納を容易にする
ため容器の一面全体を開口部としており、開口面積が最
も小さくなるように容器形状を、開口部からの奥行き方
向の長さを長くした細長い直方体形状に設定するのが一
般的である。図9は前面全体の開口部を小さくし奥行き
方向の長さを長くした細長い直方体形状の従来の真空断
熱容器の構造を示し、(a)は全体を示す斜視図、
(b)はその縦断面図である。図9において、21は容
器本体で、一方が開口する外容器22と、この外容器2
2内に収容され外容器22と同じ側が開口する内容器2
3と、これら外容器22および内容器23の開口側端部
間にわたって設けられ内部に断熱空間を形成するメンブ
レン24とからなり、この断熱空間には無機質系断熱材
25が充填され真空化されるとともに、内外容器23,
22の開口側に容器本体21の開口部26が形成され
る。
Further, when accommodating a storage battery group in a container,
Since the storage battery group to be stored is a heavy item, the entire surface of the container has an opening to facilitate storage, and the shape of the container is set so that the opening area is minimized and the length in the depth direction from the opening is increased. Generally, it is set to an elongated rectangular parallelepiped shape. FIG. 9 shows the structure of a conventional vacuum heat insulating container having an elongated rectangular parallelepiped shape in which the opening of the entire front surface is made small and the length in the depth direction is made long, and (a) is a perspective view showing the whole.
(B) is the longitudinal cross-sectional view. In FIG. 9, reference numeral 21 is a container body, and an outer container 22 having one opening and an outer container 2
The inner container 2 housed in the second container 2 and opening on the same side as the outer container 22
3 and a membrane 24 provided between the opening-side ends of the outer container 22 and the inner container 23 to form a heat insulating space inside, and the heat insulating space is filled with an inorganic heat insulating material 25 and evacuated. Together with the inner and outer containers 23,
An opening 26 of the container body 21 is formed on the opening side of 22.

【0004】また、図9に示すような、開口部26を小
さくし奥行き方向の長さを長くした細長い直方体形状の
真空断熱容器の場合、これに収納される高温型の蓄電池
群が作動中、内容器が熱膨張してメンブレン24に過度
の力が加わり、繰り返し使用中に破損する問題が生ずる
ため、メンブレン24や内容器23に蛇腹などの伸縮機
構を設ける構造が知られている。図10はこのような伸
縮機構を設けた真空断熱容器の構造を示し、(a)はそ
の一例の要部断面図,(b)は他の例の要部断面図であ
る。図10(a)では、伸縮機構27はメンブレン24
に付設されており、図10(b)では、伸縮機構27は
内容器23に付設されている。
In the case of an elongated rectangular parallelepiped vacuum heat insulating container having a small opening 26 and a large length in the depth direction as shown in FIG. 9, a high temperature type storage battery group housed therein is in operation, Since the inner container is thermally expanded and an excessive force is applied to the membrane 24 to cause a problem of breakage during repeated use, a structure in which the membrane 24 and the inner container 23 are provided with a telescopic mechanism such as a bellows is known. 10A and 10B show the structure of a vacuum heat insulating container provided with such an expansion / contraction mechanism. FIG. 10A is a sectional view of a main part of an example thereof, and FIG. 10B is a sectional view of a main part of another example. In FIG. 10A, the expansion / contraction mechanism 27 is the membrane 24.
10 (b), the expansion / contraction mechanism 27 is attached to the inner container 23.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の前
面全体を開口部とした細長い直方体形状では、容器が大
型化した場合、伸縮機構が大型化、複雑化し、容器の信
頼性が低下し、コストが増大する。また、このような形
状は内容積に対する内表面積の割合が大きくなり、この
ことは、断熱壁を構成する金属材料および無機断熱材
を多く必要とするために重量増、コスト増が起こるこ
と、断熱壁を構成する空間が増大するための排気時間
が増大すること、金属材料の表面積が増大するため溶
接線が増加し、容器の信頼性が低下すること、断熱性
能が低下することなどの問題が大型化に従い大きくなっ
た。
In the conventional elongated rectangular parallelepiped shape having an opening on the entire front surface as described above, when the container becomes large, the expansion and contraction mechanism becomes large and complicated, and the reliability of the container decreases. , The cost will increase. In addition, such a shape has a large ratio of the inner surface area to the inner volume, which means that a large amount of metal material and inorganic heat insulating material that constitute the heat insulating wall are required, resulting in increase in weight and cost, and heat insulation. There are problems such as an increase in exhaust time due to an increase in the space forming the wall, an increase in the welding line due to an increase in the surface area of the metal material, a decrease in the reliability of the container, a decrease in the heat insulation performance, etc. It became larger as it became larger.

【0006】本発明は上記問題を解決するもので、従来
のような前面全体を開口部した細長い直方体形状にしな
くても、メンブレンから熱損失を小さくでき、かつ大型
で複雑な伸縮機構を必要としない真空断熱容器を提供す
ることを目的とするものである。
The present invention solves the above problem and requires a large and complicated expansion / contraction mechanism that can reduce the heat loss from the membrane without the conventional elongated rectangular parallelepiped shape having an opening on the entire front surface. It is an object of the present invention to provide a vacuum heat insulation container that does not.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の真空断熱容器は、容器形状を略立方体の形
状または容器の一面に設けられる開口部をこの開口部か
らの奥行き長さが最短になる側の一面に配設した形状と
するとともに、前記容器の一面に設けられる開口部の大
きさを前記容器の一面内で小さく構成したものであり、
さらに、前記容器の一面に設けたこの一面より小さい開
口部を通して送り込まれた収納物の最小ユニットを縦送
りおよび横送りする搬送機構を容器内に設けたものであ
る。
In order to solve the above-mentioned problems, the vacuum heat-insulating container of the present invention has a substantially cubical container shape or an opening provided on one surface of the container with a depth length from this opening. With a shape disposed on one surface of the shortest side, the size of the opening provided on the one surface of the container is configured to be small within the one surface of the container,
Further, the container is provided with a transport mechanism for vertically and horizontally feeding the minimum unit of the stored items fed through an opening smaller than the one surface provided on one surface of the container.

【0008】[0008]

【作用】上記構成により、容器形状を略立方体の形状ま
たは容器の一面に設けられる開口部をこの開口部からの
奥行き長さが最短になる側の一面に配設した形状とする
ので、容器の奥行き長さを短くできる。そのため、内容
器の奥行き方向の熱膨張による伸び量を小さくでき、従
来のような複雑な伸縮機構を必要としなくなる。また従
来のような前面全体を開口部とした細長い直方体形状に
比べて内表面積を小さくできるので、排気すべき断熱空
間が小さくなり、排気時間が短くなる。また容器の一面
に設けられる開口部の大きさを容器の一面内で小さくす
るので、この小さな開口部の内外二重壁間に設けるメン
ブレンからの熱損失を小さくでき、内表面積を小さくで
きることと相俟って断熱性能を向上することができる。
さらに容器内に収納物の最小ユニットを搬送する機構を
設けたので、蓄電池群のような重量物であっても、小さ
い開口部を通して最小ユニットを順次送り込みこれを縦
送りおよび横送りして集積することにより、容易に全体
を収納することができる。
With the above-described structure, the container has a substantially cubic shape, or the opening provided on one surface of the container is arranged on one surface on the side having the shortest depth from the opening. Depth length can be shortened. Therefore, the amount of expansion due to the thermal expansion of the inner container in the depth direction can be reduced, and the conventional complicated expansion and contraction mechanism is not required. Further, since the inner surface area can be made smaller than that of the conventional elongated rectangular parallelepiped shape having the entire front face as an opening, the heat insulating space to be evacuated becomes smaller and the evacuation time becomes shorter. Further, since the size of the opening provided on one surface of the container is reduced within the one surface of the container, heat loss from the membrane provided between the inner and outer double walls of the small opening can be reduced, and the inner surface area can be reduced. In addition, the heat insulation performance can be improved.
Furthermore, since a mechanism for transporting the smallest unit of the stored items is provided in the container, even for heavy objects such as storage battery groups, the smallest units are sequentially fed through the small openings and fed vertically and horizontally to accumulate. As a result, the whole can be easily stored.

【0009】[0009]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。図1(a)(b)は本発明の一実施例の真空断熱
容器の全体を示す斜視図およびその横断面図である。図
1において、1は外容器、2は内容器であり、これらで
奥行きl1 ,幅l2 ,高さl3 がほぼ等しい略立方体形
状の容器本体3(l1≒l2 ≒l3 )が構成され、この
内外容器2,1で形成される二重壁の間に無機質系断熱
材4が充填されている。また、開口部5は容器本体3の
一面の一部に小さい面積で形成されている。この開口部
5における二重壁の間はメンブレン6により密封され、
二重壁空間は真空化されて断熱壁が構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 (a) and 1 (b) are a perspective view and a cross-sectional view showing an entire vacuum heat insulating container according to an embodiment of the present invention. In Figure 1, 1 is an outer container, 2 is the inner container, these in depth l 1, width l 2, the height l 3 the container main body 3 of approximately equal substantially cubic shape (l 1 ≒ l 2 ≒ l 3) And the inorganic heat insulating material 4 is filled between the double walls formed by the inner and outer containers 2, 1. The opening 5 is formed in a small area on a part of one surface of the container body 3. The space between the double walls in the opening 5 is sealed by the membrane 6,
The double wall space is evacuated to form a heat insulating wall.

【0010】図2(a)(b)は本発明の他の実施例の
真空断熱容器の全体を示す斜視図およびその横断面図で
あり、図1と同様な部材で構成されている。ただ、図2
の場合、その容器形状は、その開口部5がこの開口部5
からの奥行き方向の長さl1が最短となる側の一面に配
設されるような幅方向に長い直方体形状の容器本体3
(l1 <l2 ,l3 )に構成されている。また開口部5
は図1の開口部と同等の小さい面積で直方体形状の容器
本体3の前記一面の一部に形成されている。
2 (a) and 2 (b) are a perspective view and a cross-sectional view showing the whole vacuum heat insulating container of another embodiment of the present invention, which is composed of the same members as in FIG. However, Figure 2
In the case of the container shape, the opening 5 is
Container body 3 having a rectangular parallelepiped shape that is long in the width direction and is arranged on one surface on which the length l 1 in the depth direction from is the shortest.
(L 1 <l 2 , l 3 ). Also the opening 5
Is formed on a part of the one surface of the rectangular parallelepiped container body 3 having a small area equivalent to the opening of FIG.

【0011】図3(a)(b)は本発明の真空断熱容器
における搬送機構を説明するための搬送装置の平面図お
よび正面図である。図3において、7は架台を示し、架
台7の表面には開口部(図1,2の5)から奥行き方向
の縦方向に延びる2本のガイドレール8が設けられ、こ
のガイドレール8に沿って送り込まれた収納物が容器内
に収まった位置で、この位置からガイドレール8に連結
して開口部より遠ざかる方向の横方向に延びるガイドレ
ール9が設けられている。また架台7は開口部から遠ざ
かる側の端部において、ベースフレーム10にピン機構
11を介して揺動自在に枢支され、架台7の開口部側の
端部はベースフレーム10に設けられたカム機構12に
より支承され、架台は、カム機構12の回動位置によ
り、水平姿勢と開口部側ほど高く傾く傾斜姿勢とに切換
えが可能である。
3 (a) and 3 (b) are a plan view and a front view of the transfer device for explaining the transfer mechanism in the vacuum heat insulating container of the present invention. In FIG. 3, reference numeral 7 denotes a gantry, and two guide rails 8 extending in the depth direction from the opening (5 in FIGS. 1 and 2) are provided on the surface of the gantry 7, and along the guide rails 8. A guide rail 9 is provided at a position where the stored contents sent in are accommodated in the container and is connected to the guide rail 8 from this position and extends laterally in a direction away from the opening. Further, the gantry 7 is pivotally supported on the base frame 10 via a pin mechanism 11 at the end on the side away from the opening, and the end of the gantry 7 on the opening side is a cam provided on the base frame 10. The pedestal supported by the mechanism 12 can be switched between a horizontal posture and an inclined posture in which the pedestal is inclined higher toward the opening depending on the rotational position of the cam mechanism 12.

【0012】図4(a)(b)は真空断熱容器に収納さ
れる収納物の一例である高温型の蓄電池群の最小ユニッ
トを説明する正面図および断面側面図である。図4にお
いて、13は真空断熱容器の開口部(図1,2の5)か
らの奥行き方向に長い形状に扁平に形成されたユニット
ケースであり、その扁平な方向の長辺長さは真空断熱容
器の開口部からの奥行き長さに対応してその中に収まる
程度の長さに構成され、扁平な方向と直交する短辺長さ
は真空断熱容器の開口部を通過できる程度の長さに構成
され、その内部は上下2段に分けられて蓄電池14が扁
平な方向に一列に配列されて収容されている。15はユ
ニットケース13の底部の4隅に設けられた自在ローラ
であり、ユニットケース13の扁平な方向に配置された
自在ローラ15間の間隔は架台7の表面に設けられた横
方向のガイドレール9間の間隔に等しく、ユニットケー
ス13の扁平な方向に直交する方向に配置された自在ロ
ーラ15間の間隔は同じく架台7の表面に設けられた縦
方向(奥行き方向)のガイドレール8間の間隔に等し
い。またユニットケース13の扁平な方向の端面には、
この扁平な方向の端面同志で隣接するユニットケース1
3内の蓄電池14と接続可能な電気的接続金具16がそ
れぞれ設けられている。
FIGS. 4 (a) and 4 (b) are a front view and a cross-sectional side view for explaining a minimum unit of a high temperature type storage battery group, which is an example of an item housed in a vacuum heat insulating container. In FIG. 4, 13 is a unit case that is flatly formed in a shape that is long in the depth direction from the opening (5 in FIGS. 1 and 2) of the vacuum heat insulating container, and the long side length in the flat direction is vacuum heat insulating. Corresponding to the depth from the opening of the container, it is configured to fit within it, and the short side length orthogonal to the flat direction is such that it can pass through the opening of the vacuum insulation container. The inside of the storage battery 14 is divided into upper and lower stages, and the storage batteries 14 are housed in a line in a flat direction. Numerals 15 are free rollers provided at the four corners of the bottom of the unit case 13, and the space between the free rollers 15 arranged in the flat direction of the unit case 13 is a guide rail in the lateral direction provided on the surface of the mount 7. The distance between the free rollers 15 arranged in the direction orthogonal to the flat direction of the unit case 13 is equal to the distance between the guide rails 8 in the vertical direction (depth direction) provided on the surface of the mount 7. Equal to the interval. Also, on the end face of the unit case 13 in the flat direction,
The unit case 1 which is adjacent to each other by the end faces in this flat direction
Electrical connection fittings 16 that can be connected to the storage battery 14 inside the battery 3 are provided.

【0013】ここで、蓄電池の真空断熱容器への収納は
次のようにして行われる。まず、蓄電池群の最小ユニッ
トであるユニットケース13の1つをその扁平な方向を
真空断熱容器の奥行き方向に合わせて容器の開口部(図
1,2の5)から送り込む。このとき、ユニットケース
13の自在ローラ15は縦方向のガイドレール8にの
り、全体が真空断熱容器に収まるまで挿入される。次に
ベースフレーム10のカム機構12を操作し、架台をピ
ン機構9を介して揺動させると、開口部側の架台端部が
上昇する。したがって、ユニットケース13の自在ロー
ラ15は自動的に横方向のガイドレール9にのり移り、
ユニットケース13は開口部とは反対側の架台端部に移
動する。この動作を繰り返すことにより、図5に示すよ
うな複数のユニットケース13からなる蓄電池群を真空
断熱容器1台当りに収納することができる。
Here, the storage of the storage battery in the vacuum heat insulating container is performed as follows. First, one of the unit cases 13, which is the smallest unit of the storage battery group, is fed through the opening (5 in FIGS. 1 and 2) of the container with its flat direction aligned with the depth direction of the vacuum heat insulating container. At this time, the free roller 15 of the unit case 13 is placed on the vertical guide rail 8 and is inserted until the whole is housed in the vacuum heat insulating container. Next, when the cam mechanism 12 of the base frame 10 is operated to swing the gantry via the pin mechanism 9, the gantry end portion on the opening side rises. Therefore, the free roller 15 of the unit case 13 automatically transfers to the lateral guide rail 9,
The unit case 13 moves to the end of the gantry on the side opposite to the opening. By repeating this operation, a storage battery group including a plurality of unit cases 13 as shown in FIG. 5 can be stored in one vacuum heat insulating container.

【0014】次に具体的な実施例について説明する。図
6(a)(b)は容器形状を略立方体形状に構成したと
きの実施例1の斜視図および横断面図を示し、奥行きl
1 =1.63m、幅l2 =1.48m、高さl3 =1.
48mとし、容器の奥行き方向側の一面の一部に小さい
面積で形成した開口部の大きさを0.5m×1.4mと
し、開口部の蓋17を含めて断熱厚を0.04mとし
た。
Next, specific examples will be described. 6 (a) and 6 (b) show a perspective view and a cross-sectional view of the first embodiment when the container shape is formed into a substantially cubic shape, and the depth l
1 = 1.63 m, a width l 2 = 1.48m, a height l 3 = 1.
48 m, the size of the opening formed in a small area on a part of the one surface on the depth direction side of the container was 0.5 m x 1.4 m, and the heat insulating thickness including the lid 17 of the opening was 0.04 m. .

【0015】図7(a)(b)は容器形状を容器の一面
に設けられる開口部を奥行き長さが最短となる側の一面
に配設した形状に構成したときの実施例2の斜視図およ
び横断面図を示し、奥行きl1 =1.28m、幅l2
1.88m、高さl3 =1.48mとし、容器の奥行き
方向側の一面の一部に小さい面積で形成した開口部の大
きさを0.5m×1.4mとし、開口部の蓋17を含め
て断熱厚を0.04mとした。
FIGS. 7 (a) and 7 (b) are perspective views of Embodiment 2 in which the container shape is such that the opening provided on one surface of the container is arranged on one surface on the side having the shortest depth length. And a cross-sectional view showing a depth l 1 = 1.28 m and a width l 2 =
The height of the opening is 1.88 m, the height is l 3 = 1.48 m, the size of the opening formed in a small area on one side of the container in the depth direction is 0.5 m × 1.4 m, and the opening lid 17 Including the above, the heat insulation thickness was set to 0.04 m.

【0016】図8(a)(b)は容器形状を従来例の細
長い直方体形状に構成したときの比較例1の斜視図およ
び横断面図を示し、奥行きl1 =3.08m、幅l2
1.08m、高さl3 =1.08mとし、容器の奥行き
方向側の一面全体に設けた開口部を1.0m×1.0m
とし、開口部の蓋17を含めて断熱厚を0.04mとし
た。
FIGS. 8 (a) and 8 (b) are a perspective view and a cross-sectional view of Comparative Example 1 in which the container shape is a slender rectangular parallelepiped shape of a conventional example, and depth l 1 = 3.08 m and width l 2 =
1.08 m, height l 3 = 1.08 m, and an opening provided on the entire one surface on the depth direction side of the container is 1.0 m × 1.0 m
The heat insulating thickness including the lid 17 of the opening was set to 0.04 m.

【0017】実施例1,2および比較例1は、形状以外
を全て同一仕様とした。すなわち、二重壁を構成する内
容器、外容器およびメンブレンはそれぞれ同一材質、同
一板厚のステンレス鋼とし、二重壁内の空間は所定の密
度まで圧密したロックウールを充填した後、所定の真空
度まで排気した。開口部を密閉するための蓋はセラミッ
クウールを心材とした常圧断熱壁とした。このときの実
施例1,2および比較例1の内容積、内表面積、奥行き
長さ、断熱空間およびメンブレンの周長はそれぞれ(表
1)に示すようなものであった。なお、実施例1,2に
は搬送機構として図3と同一のものを設けた。
In Examples 1 and 2, and Comparative Example 1, all specifications were the same except for the shape. That is, the inner container, the outer container, and the membrane that compose the double wall are made of the same material and have the same plate thickness of stainless steel, and the space inside the double wall is filled with rock wool compacted to a predetermined density Evacuated to vacuum. The lid for closing the opening was an atmospheric pressure insulating wall made of ceramic wool as a core material. At this time, the internal volume, the internal surface area, the depth length, the heat insulating space, and the perimeter of the membrane of Examples 1 and 2 and Comparative Example 1 were as shown in (Table 1). In Examples 1 and 2, the same transport mechanism as that shown in FIG. 3 was provided.

【0018】[0018]

【表1】 [Table 1]

【0019】上記のように構成した実施例1,2および
比較例1について、その作用、効果を確認するために所
定圧力まで排気するに要した時間、内部温度を350℃
にしたときの放散熱量およびそのときの内容器の熱膨張
によりメンブレンに生じた歪量を測定した結果を示す
と、(表2)のようであった。
With respect to Examples 1 and 2 and Comparative Example 1 configured as described above, the time required to exhaust to a predetermined pressure and the internal temperature were 350 ° C. in order to confirm the action and effect.
Table 2 shows the results of measurement of the amount of heat dissipated in the above case and the amount of strain generated in the membrane due to the thermal expansion of the inner container at that time.

【0020】[0020]

【表2】 [Table 2]

【0021】上記結果から次のことがわかる。 (1)実施例1,2は比較例1に対して排気時間が約4
0%減少した。これは断熱空間の減少の他、排気経路長
さの減少によるものである。
The following can be seen from the above results. (1) Exhaust time of Examples 1 and 2 is about 4 as compared with Comparative Example 1.
It decreased by 0%. This is due to the reduction of the heat insulating space and also the reduction of the exhaust path length.

【0022】(2)実施例1,2は比較例1に対して放
散熱量が約10%減少した。これは内表面積の減少とメ
ンブレンの周長が減少したことによるものである。 (3)実施例1,2の歪量の減少は奥行き長さの減少に
よるもので、このことから、比較例1には大型、複雑な
伸縮機構が必要であるが、実施例1,2は簡便な伸縮機
構でよいことがわかる。
(2) In Examples 1 and 2, the amount of heat radiated was reduced by about 10% as compared with Comparative Example 1. This is because the inner surface area was reduced and the perimeter of the membrane was reduced. (3) The reduction in the amount of strain in Examples 1 and 2 is due to the reduction in the depth length. Therefore, Comparative Example 1 requires a large and complicated expansion and contraction mechanism. It can be seen that a simple expansion mechanism is enough.

【0023】[0023]

【発明の効果】以上のように本発明によれば、容器形状
を略立方体形状または容器の一面に設けられる開口部を
奥行き長さが最短となる側の一面に配設した形状とする
ので、従来のような前面全体を開口部とした細長い直方
体形状のものと異なり、容器の奥行き方向の長さを短く
でき、そのため内容器の奥行き方向の熱膨張による伸び
量が小さくなり、複雑な伸縮機構を必要としない。ま
た、従来の細長い直方体形状のものと比べると、内表面
積を小さくできるので、排気すべき断熱空間が小さくな
り、排気時間が短くなる。しかも、開口部が小さくなる
ので、メンブレンからの熱損失を小さくでき、内表面積
を小さくできることを相俟って断熱性能を向上させるこ
とができる。
As described above, according to the present invention, since the container shape is a substantially cubic shape or the opening provided on one surface of the container is arranged on one surface on the side having the shortest depth length, Unlike the conventional elongated rectangular parallelepiped shape with the entire front surface as an opening, the length of the container in the depth direction can be shortened, so the amount of expansion due to thermal expansion of the inner container in the depth direction is reduced, and a complicated expansion and contraction mechanism. Does not need Further, as compared with the conventional elongated rectangular parallelepiped shape, the inner surface area can be made smaller, so that the heat insulating space to be evacuated becomes smaller and the evacuation time becomes shorter. Moreover, since the opening is small, the heat loss from the membrane can be reduced and the inner surface area can be reduced, so that the heat insulating performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の真空断熱容器の全体を示す
斜視図および横断面図である。
FIG. 1 is a perspective view and a cross-sectional view showing an entire vacuum heat insulating container according to an embodiment of the present invention.

【図2】本発明の他の実施例の真空断熱容器の全体を示
す斜視図および横断面図である。
FIG. 2 is a perspective view and a cross-sectional view showing an entire vacuum heat insulating container according to another embodiment of the present invention.

【図3】本発明の真空断熱容器における収納物搬送機構
の一例を説明するための搬送装置の平面図および正面図
である。
3A and 3B are a plan view and a front view of a transfer device for explaining an example of a stored item transfer mechanism in the vacuum heat insulating container of the present invention.

【図4】本発明の真空断熱容器における収納物の一例で
ある高温型蓄電池群の最小ユニットを示す正面図および
断面側面図である。
FIG. 4 is a front view and a cross-sectional side view showing a minimum unit of a high temperature type storage battery group, which is an example of a storage item in the vacuum heat insulating container of the present invention.

【図5】真空断熱容器1台当りの蓄電池群を説明する図
である。
FIG. 5 is a diagram illustrating a storage battery group per vacuum heat insulating container.

【図6】本発明の真空断熱容器の容器形状を略立方体形
状に構成したときの実施例1における斜視図および横断
面である。
6A and 6B are a perspective view and a cross-sectional view of the vacuum heat insulating container according to the first embodiment when the container has a substantially cubic shape.

【図7】本発明の真空断熱容器の容器形状を容器の一面
に設けられる開口部を奥行き長さが最短となる側の一面
に配設した形状に構成したときの実施例2における斜視
図および横断面図である。
FIG. 7 is a perspective view of the vacuum heat insulating container according to the second embodiment of the present invention in which the container shape of the vacuum heat insulating container is configured such that the opening provided on one surface of the container is arranged on one surface on the side having the shortest depth length; FIG.

【図8】真空断熱容器を従来の前面全体を開口部とした
細長い直方体形状に構成したときの比較例1における斜
視図および横断面図である。
8A and 8B are a perspective view and a cross-sectional view in Comparative Example 1 when the vacuum heat insulating container is formed in a conventional elongated rectangular parallelepiped shape having an opening on the entire front surface.

【図9】従来例の前面全体を開口部とし奥行きを長くし
た細長い直方体形状の真空断熱容器の斜視図および縦断
面図である。
9A and 9B are a perspective view and a vertical cross-sectional view of an elongated rectangular parallelepiped vacuum heat insulating container in which the entire front surface is an opening and the depth is long in a conventional example.

【図10】従来の真空断熱容器における伸縮機構の一例を
示す要部断面図および他の例を示す要部断面図である。
FIG. 10 is a cross-sectional view of a main part showing an example of a telescopic mechanism in a conventional vacuum heat insulating container and a cross-sectional view of the main part showing another example.

【符号の説明】[Explanation of symbols]

1 外容器 2 内容器 3 容器本体 4 無機質系断熱材 5 開口部 6 メンブレン 7 架台 8 ガイドレール 9 ガイドレール 10 ベースフレーム 11 ピン機構 12 カム機構 13 ユニットケース 14 蓄電池 15 自在ローラ 16 電気的接続金具 17 蓋 1 Outer Container 2 Inner Container 3 Container Main Body 4 Inorganic Heat Insulating Material 5 Opening 6 Membrane 7 Stand 8 Guide Rail 9 Guide Rail 10 Base Frame 11 Pin Mechanism 12 Cam Mechanism 13 Unit Case 14 Storage Battery 15 Flexible Roller 16 Electrical Connection Metal Fitting 17 lid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内外二重壁の間を真空化した断熱壁を有
する真空断熱容器であって、容器形状を略立方体形状ま
たは容器の一面に設けられる開口部を奥行き方向長さが
最短となる側の一面に配設した形状とするとともに、前
記容器の一面に設けられる開口部の大きさを前記容器の
一面内で小さく構成し、かつ容器内に収納物の最小ユニ
ットを縦送りおよび横送りするための搬送機構を設けた
ことを特徴とする真空断熱容器。
1. A vacuum heat insulating container having a heat insulating wall in which a space between inner and outer double walls is evacuated, wherein the container has a substantially cubic shape or an opening provided on one surface of the container has a minimum length in a depth direction. Side surface, the size of the opening provided on the one surface of the container is configured to be small within the one surface of the container, and the minimum unit of stored items in the container is vertically or horizontally fed. A vacuum heat insulation container provided with a transfer mechanism for
JP5252691A 1993-10-08 1993-10-08 Heat insulated vacuum vessel Pending JPH07105924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5252691A JPH07105924A (en) 1993-10-08 1993-10-08 Heat insulated vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252691A JPH07105924A (en) 1993-10-08 1993-10-08 Heat insulated vacuum vessel

Publications (1)

Publication Number Publication Date
JPH07105924A true JPH07105924A (en) 1995-04-21

Family

ID=17240908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252691A Pending JPH07105924A (en) 1993-10-08 1993-10-08 Heat insulated vacuum vessel

Country Status (1)

Country Link
JP (1) JPH07105924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105169A1 (en) 2011-02-02 2012-08-09 三恵技研工業株式会社 Vacuum insulation container and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105169A1 (en) 2011-02-02 2012-08-09 三恵技研工業株式会社 Vacuum insulation container and method for producing same

Similar Documents

Publication Publication Date Title
US3749159A (en) Heat transporting device
SE9303180L (en) Ways to fill and pack insulating powder into the walls of a cabinet body
CN209720453U (en) A kind of blood transportation box
JP2003042388A (en) Heat-insulating panel and container using it
JPH07105924A (en) Heat insulated vacuum vessel
JP2703483B2 (en) Insulated container for high temperature battery
CN215611749U (en) Test tube placement rack for chemical industry
GB2477330A (en) Packaging material for a panels edge, including internal tubes to reinforce a main tube
CN115043067A (en) Blood sample transfer box
CN209366790U (en) A kind of ampoule bottle transports box safely
CN218259570U (en) Medicine transfer device
TW546879B (en) Container for gas insulating switch device
CN110155466A (en) A kind of non-stackable transport storage bin of dismounting
CN219383313U (en) Packaging device and packaging box
CN220577308U (en) Ceramic product transfer device
JPH06339934A (en) Foaming device for heat insulated cabinet
CN218495456U (en) Reagent is stored and is used low temperature refrigerator with classified storage mechanism
CN210794201U (en) Pressure-resistant packaging box capable of safely loading fruit grain and pulp packaging bags
CN217228291U (en) Paper packing box with cushioning effect
CN212354806U (en) Circulation turnover box for low-temperature storage of medicines
CN217261889U (en) Vaccine transfer refrigerating box for immunization planning
CN219729110U (en) Integrated anti-shake and shockproof packaging box
CN211108766U (en) Shock insulation transfer box for cultural relics construction
CN109230019A (en) A kind of electric furnace storage freight house
CN216862128U (en) Packing box of I-shaped product

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080430

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110430

EXPY Cancellation because of completion of term