JPH07105615B2 - Magnetic shield method using superconducting single crystal powder - Google Patents

Magnetic shield method using superconducting single crystal powder

Info

Publication number
JPH07105615B2
JPH07105615B2 JP3232220A JP23222091A JPH07105615B2 JP H07105615 B2 JPH07105615 B2 JP H07105615B2 JP 3232220 A JP3232220 A JP 3232220A JP 23222091 A JP23222091 A JP 23222091A JP H07105615 B2 JPH07105615 B2 JP H07105615B2
Authority
JP
Japan
Prior art keywords
magnetic shield
single crystal
crystal powder
magnetic
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3232220A
Other languages
Japanese (ja)
Other versions
JPH0548290A (en
Inventor
英吉 犬飼
光一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP3232220A priority Critical patent/JPH07105615B2/en
Publication of JPH0548290A publication Critical patent/JPH0548290A/en
Publication of JPH07105615B2 publication Critical patent/JPH07105615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部からの磁気を遮蔽
したり、あるいは内部で発生した磁気を外部に出さない
ための磁気シ−ルド方法に係り、詳しくは磁気シ−ルド
の必要な装置の磁気シ−ルド部に超電導単結晶粉体を用
いた磁気シ−ルド方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shield method for shielding an external magnetic field or for preventing an internally generated magnetic field from being emitted to the outside. The present invention relates to a magnetic shield method using a superconducting single crystal powder in the magnetic shield part of an apparatus.

【0002】[0002]

【従来の技術】従来、例えば生体を収容し、生体の発す
る心磁波、脳磁波、肺磁波などの微弱な生体磁気信号を
検出することによって、その生体の診断をするように構
成された部屋状の生体診断装置の場合は、外部からの磁
気をほぼ完全に遮断しなければ正確な生体診断を行うこ
とは困難である。そのため、鉄などの透磁率の高い金属
で生体診断装置を完全に囲むような磁気シ−ルド法が考
えられている。また、例えば磁気浮上式のリニア列車の
場合は、地上側コイル、及び車体側磁石から強力な磁場
が発生するため、人体に対する磁気の影響を低減しなけ
ればならないことから、各車両の車室の少なくとも床部
分は透磁率の高い金属で磁気シ−ルドする必要がある。
2. Description of the Related Art Conventionally, for example, a room-like structure for accommodating a living body and diagnosing the living body by detecting a weak biomagnetic signal such as a magnetocardiographic wave, a brain magnetic wave, and a pulmonary magnetic wave generated by the living body In the case of the bio-diagnosis device, it is difficult to perform accurate bio-diagnosis unless the external magnetism is almost completely cut off. Therefore, a magnetic shield method has been considered in which a metal having a high magnetic permeability such as iron is used to completely surround the biopsy device. Further, for example, in the case of a magnetic levitation type linear train, a strong magnetic field is generated from the coil on the ground side and the magnet on the vehicle body side. Therefore, the influence of magnetism on the human body must be reduced. At least the floor portion must be magnetically shielded with a metal having high magnetic permeability.

【0003】尚、上記従来の磁気シ−ルド法において、
高透磁率の金属に代えて超電導体のバルク、あるいは金
属基体の表面に酸化物超電導体をコ−ティングしたもの
を用いることもある。更に酸化物超電導体の粉末を有機
溶剤で練り、ドクタ−ブレ−ド法で膜板状にしたものを
用いることもある。
In the above conventional magnetic shield method,
In place of the high magnetic permeability metal, a bulk of a superconductor or a metal substrate having an oxide superconductor coated on the surface may be used. Further, the oxide superconductor powder may be kneaded with an organic solvent and formed into a film plate by the doctor blade method.

【0004】[0004]

【発明が解決しようとする課題】上記従来の磁気シ−ル
ド法によれば、鉄などの透磁率の高い金属を用いて磁気
シ−ルドする方法は、一般的に金属の重量が大きいた
め、装置自体の重量が大になり、且つコストも高くなる
という問題がある。特に、車両の重量を可能な限り軽減
しなければならない磁気浮上式のリニア列車の場合は致
命的である。また、超電導体のバルク、あるいは金属基
体の表面に酸化物超電導体をコ−ティングしたものを用
いて磁気シ−ルドする方法は、複雑な、あるいは大型の
形状の磁気シ−ルド体を作ることが困難であるため汎用
性が無く、且つ十分なシ−ルド効果を期待することがで
きないという問題がある。そこで本発明では、複雑な、
あるいは大型の形状の磁気シ−ルド体であってもそれを
軽量に、且つ容易に形成できるようにして十分なシ−ル
ド効果を安価に実現できるようにすることを解決すべき
技術的課題とするものである。
According to the above-mentioned conventional magnetic shield method, the magnetic shield method using a metal having a high magnetic permeability such as iron generally has a large weight of metal. There is a problem that the weight of the device itself becomes large and the cost becomes high. In particular, it is fatal in the case of a magnetic levitation type linear train in which the weight of the vehicle must be reduced as much as possible. The method of magnetic shielding using a bulk of a superconductor or an oxide superconductor coated on the surface of a metal substrate is to prepare a magnetic shield body having a complicated or large size. However, there is a problem that it is not versatile and that a sufficient shield effect cannot be expected. Therefore, in the present invention,
Or even if it is a large-sized magnetic shield body, it is a technical problem to be solved to make it lightweight and easily form a sufficient shield effect at low cost. To do.

【0005】[0005]

【課題を解決するための手段】上記課題解決のための技
術的手段は、真空空間から成る断熱層と、その断熱層に
隣接して液体窒素が充填された冷却層と、その冷却層に
より冷却される磁気シ−ルド層とを所要の形状に積層状
に一体化した磁気シ−ルド部の前記磁気シ−ルド層の中
空部に対して、ビスマス系混合物を溶融状態にしたあ
と、その溶融体を急冷して固体状態にし、その固体状態
になったビスマス系混合物を熱処理することによって単
結晶を析出させ、その単結晶を粉体にして得られた超電
導単結晶粉体を均一に圧密充填することにより、磁気シ
−ルドの必要な装置の外周部を前記磁気シ−ルド部で磁
気遮蔽することである。
[Means for Solving the Problems] The technical means for solving the above-mentioned problems is to provide a heat insulating layer composed of a vacuum space and the heat insulating layer.
Adjacent to the cooling layer filled with liquid nitrogen, and the cooling layer
Laminated magnetic shield layer that is cooled further to the required shape
In the magnetic shield layer of the magnetic shield part integrated into
The bismuth-based mixture was melted in the empty space.
And quenching the melt to a solid state,
The bismuth-based mixture that has become
Crystals were deposited and the single crystals were converted into powders to obtain supercurrent.
By uniformly compacting the conductive single crystal powder,
-The outer peripheral part of the device requiring the magnetic field is magnetized by the magnetic shield part.
It is to shield the air.

【0006】[0006]

【作用】上記の超電導単結晶粉体を用いた磁気シ−ルド
方法によれば、磁気シ−ルドの必要な装置の外周部に磁
気シ−ルド部を形成し、その磁気シ−ルド部の磁気シ−
ルド層の中空部に超電導単結晶粉体を圧密充填するとと
もに、その超電導単結晶粉体を冷却層で臨界温度以下に
冷却するため、その超電導単結晶粉体が有するマイスナ
−効果により上記装置の外部からの磁気が遮蔽される。
According to the magnetic shield method using the above-mentioned superconducting single crystal powder, the magnetic shield is applied to the outer peripheral portion of the device requiring the magnetic shield.
The magnetic shield part is formed and the magnetic shield part of the magnetic shield part is formed.
When the superconducting single crystal powder is compactly packed in the hollow part of the shield layer,
In fact, the superconducting single crystal powder is cooled to below the critical temperature in the cooling layer.
Meisuna possessed by the superconducting single crystal powder for cooling
-The effect shields magnetism from outside the device.

【0007】[0007]

【実施例】次に、本発明の実施例を図面を参照しながら
説明する。図1は、生体診断装置1の縦断面図である。
生体診断装置1の中でベッド2に横臥している人3を精
密に診断する場合、心磁波、脳磁波、肺磁波、筋磁界、
眼球磁界、あるいは網膜磁界などの微弱な生体磁気信号
を磁気センサ4で検出し、その生体磁気信号を測定装置
5に入力して解析することにより、人3を診断するもの
である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of the biopsy device 1.
When a person 3 lying on the bed 2 is to be precisely diagnosed in the biopsy device 1, a cardiac magnetic wave, a brain magnetic wave, a pulmonary magnetic wave, a myomagnetic field,
The person 3 is diagnosed by detecting a weak biomagnetic signal such as an eyeball magnetic field or a retinal magnetic field with the magnetic sensor 4 and inputting the biomagnetic signal to the measuring device 5 for analysis.

【0008】そのため、生体診断装置1の外部から、上
記の生体磁気信号に影響を与えるような微弱な磁気が外
部から侵入しても正確な生体診断ができないため、生体
診断装置1の外周部には、生体診断装置1を覆うように
分厚い圧密充填層の磁気シ−ルド部6が設けられてい
る。磁気シ−ルド部6は、生体診断装置1の本体側に設
けられた本体磁気シ−ルド部6Aと、生体診断装置1の
扉側に設けられた扉磁気シ−ルド部6Bから成り、生体
診断装置1を完全に覆うようになっている。
Therefore, even if a weak magnetism that affects the biomagnetic signal from the outside of the biodiagnosis apparatus 1 intrudes from the outside, accurate biodiagnosis cannot be performed. Is provided with a magnetic shield portion 6 of a thick compacted and packed layer so as to cover the biopsy device 1. The magnetic shield part 6 is composed of a main body magnetic shield part 6A provided on the main body side of the biometric diagnosis device 1 and a door magnetic shield part 6B provided on the door side of the biopsy device 1. The diagnostic device 1 is completely covered.

【0009】図1に示すように、本体磁気シ−ルド部6
Aと、扉磁気シ−ルド部6Bは、共に最外部に断熱手段
としての真空空間部7A,7Bを有し、その内側には液
体窒素Nを充填した冷却部8A,8Bが設けられてい
る。更に、その内側にはビスマス(Bi)系高温超電導
単結晶粉体SPを圧密充填した、要求される磁気シ−ル
ド効果を満足する厚さのシ−ルド層9A,9Bが形成さ
れている。
As shown in FIG. 1, the main body magnetic shield portion 6 is provided.
A and the door magnetic shield part 6B both have vacuum spaces 7A and 7B as heat insulating means at the outermost parts, and cooling parts 8A and 8B filled with liquid nitrogen N are provided inside thereof. . Further, shield layers 9A and 9B having a thickness satisfying a required magnetic shield effect, which is compactly filled with bismuth (Bi) -based high temperature superconducting single crystal powder SP, are formed inside thereof.

【0010】ビスマス系高温超電導単結晶粉体SPは、
ビスマス系混合物を例えば1150℃で所要時間加熱
し、溶融状態にしたあと、その溶融体を急冷して固体状
態にし、その固体状態になったビスマス系混合物を例え
ば850℃で所要時間熱処理することによって短繊維状
の結晶を析出させ、その短繊維状の結晶を細粉機で粉体
にすることによって得られたものである。そのようにし
て得られたビスマス系高温超電導単結晶粉体SPは、か
なり複雑な、あるいは大型の形状のシ−ルド層空間に対
しても圧密充填が可能である。
The bismuth high temperature superconducting single crystal powder SP is
By heating the bismuth-based mixture at, for example, 1150 ° C. for a required time to make it in a molten state, quenching the melt to a solid state, and then heat-treating the solid-state bismuth-based mixture at, for example, 850 ° C. for a required time. It is obtained by precipitating short fibrous crystals and powdering the short fibrous crystals with a fine powder mill. The bismuth-based high-temperature superconducting single crystal powder SP thus obtained can be compacted and packed into a shield layer space having a considerably complicated or large shape.

【0011】上記ビスマス系高温超電導単結晶粉体SP
がシ−ルド層空間に充填された状態のシ−ルド層9A,
9Bは、液体窒素Nを充填した冷却部8A,8Bの冷却
作用によりビスマス系高温超電導単結晶粉体SPが臨界
温度以下で冷却されるため、ビスマス系高温超電導単結
晶粉体SPのマイスナ−効果により上記生体診断装置1
の外部からの磁気をシ−ルドする。また、ビスマス系高
温超電導単結晶粉体SPは熱伝導率が小さいので、断熱
効果があり、生体診断装置1の冷却部8A,8Bを冷却
するための冷却装置の動力を低減することができる。
Bismuth-based high temperature superconducting single crystal powder SP
Of the shield layer 9A with the shield layer space filled with
In 9B, the bismuth-based high-temperature superconducting single crystal powder SP is cooled below the critical temperature by the cooling action of the cooling parts 8A and 8B filled with liquid nitrogen N, so the Meissner effect of the bismuth-based high-temperature superconducting single crystal powder SP is obtained. According to the above-mentioned biological diagnosis device 1
It shields the magnetism from the outside. Moreover, since the bismuth-based high-temperature superconducting single crystal powder SP has a small thermal conductivity, it has a heat insulating effect, and the power of the cooling device for cooling the cooling units 8A and 8B of the biological diagnostic device 1 can be reduced.

【0012】次に、前記ビスマス系高温超電導単結晶粉
体SPを、図2に示すような磁気浮上式のリニア列車1
1の各車両の車体12の床下部及び左右側面部に形成さ
れた磁気シ−ルド部13に使用し、地上コイル14、1
5、超電導コイル16などから発生する強力な磁気をシ
−ルドすることによって、車室内の乗員、乗客に対して
強力な磁気が悪影響を与えることを防止するようにした
実施例を説明する。
Next, the bismuth type high temperature superconducting single crystal powder SP is applied to a magnetic levitation linear train 1 as shown in FIG.
1 is used for the magnetic shield portion 13 formed on the lower floor and left and right side portions of the vehicle body 12 of each vehicle, and the ground coils 14, 1
5. An embodiment will be described in which the strong magnetism generated from the superconducting coil 16 and the like is shielded to prevent the strong magnetism from adversely affecting the passengers and passengers in the vehicle compartment.

【0013】図2及び図3に示すように、車体12の車
室床下部及び左右側面部に設けられた磁気シ−ルド部1
3は、最外部に断熱手段としての真空空間部13Aが形
成され、その内側には液体窒素Nを充填した冷却部13
Bが設けられ、更に中央部には前記ビスマス系高温超電
導単結晶粉体SPを圧密充填したシ−ルド層13Cが設
けられている。従って、シ−ルド層13Cに充填された
ビスマス系高温超電導単結晶粉体SPは、冷却部13B
の液体窒素Nにより臨界温度以下に冷却されるため、マ
イスナ−効果により地上コイル14、15、超電導コイ
ル16などから発生する強力な磁気が車室内に侵入する
ことを防止することができる。
As shown in FIGS. 2 and 3, the magnetic shield portion 1 provided on the lower portion of the vehicle compartment floor and the left and right side portions of the vehicle body 12.
3, a vacuum space 13A as a heat insulating means is formed at the outermost part, and a cooling part 13 filled with liquid nitrogen N is provided inside thereof.
B is provided, and a shield layer 13C compactively filled with the bismuth-based high-temperature superconducting single crystal powder SP is provided in the central portion. Therefore, the bismuth-based high temperature superconducting single crystal powder SP filled in the shield layer 13C is cooled by the cooling unit 13B.
Since it is cooled to the critical temperature or lower by the liquid nitrogen N, the strong magnetism generated from the ground coils 14, 15, the superconducting coil 16 and the like due to the Meissner effect can be prevented from entering the vehicle interior.

【0014】[0014]

【発明の効果】以上のように本発明によれば、ビスマス
系混合物を溶融状態にしたあと、その溶融体を急冷して
固体状態にし、その固体状態になったビスマス系混合物
を熱処理することによって単結晶を析出させ、その単結
晶を粉体にして得られた超電導単結晶粉体を、断熱層に
隣接して液体窒素が充填された冷却層と隣接する磁気シ
−ルド層の中空部に圧密充填することによって磁気シ−
ルド体が出来るため、複雑な、あるいは大型の形状の磁
気シ−ルド体であってもそれを軽量に、且つ容易に形成
できるようになり、更に十分なシ−ルド効果を安価に実
現できるという効果がある。また、超電導単結晶粉体は
熱伝導率が極めて小さいので、断熱効果が期待できる。
As described above, according to the present invention, bismuth
After melting the system mixture, quench the melt
A solid state bismuth-based mixture in the solid state
Heat treatment to precipitate a single crystal,
The superconducting single crystal powder obtained by making crystals into powder is used as the heat insulation layer.
A magnetic layer adjacent to the cooling layer filled with liquid nitrogen
-By magnetically filling the hollow part of the shield layer,
A magnetic field with a complicated or large shape can be created because
Even a shielded body can be made lightweight and easy
It becomes possible to realize a sufficient shield effect at low cost.
The effect is that it can be revealed. Further, since the superconducting single crystal powder has extremely low thermal conductivity, a heat insulating effect can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導単結晶粉体を用いた磁気シ−ル
ド方法を生体診断装置に適用したことを示した断面図で
ある。
FIG. 1 is a cross-sectional view showing that a magnetic shield method using a superconducting single crystal powder of the present invention is applied to a biological diagnostic apparatus.

【図2】本発明の超電導単結晶粉体を用いた磁気シ−ル
ド方法を磁気浮上式のリニア列車に適用したことを示し
た断面図である。
FIG. 2 is a sectional view showing that the magnetic shield method using the superconducting single crystal powder of the present invention is applied to a magnetic levitation linear train.

【図3】図2の部分詳細図である。3 is a partial detailed view of FIG. 2. FIG.

【符号の説明】[Explanation of symbols]

1 生体診断装置 6 磁気シ−ルド部 6A 本体磁気シ−ルド部 6B 扉磁気シ−ルド部 7A 真空空間部 7B 真空空間部 8A 冷却部 8B 冷却部 9A シ−ルド層 9B シ−ルド層 SP ビスマス系高温超電導単結晶粉体 11 磁気浮上式のリニア列車 12 車体 13 磁気シ−ルド部 13A 真空空間部 13B 冷却部 13C シ−ルド層 14 地上コイル 15 地上コイル 16 超電導コイル DESCRIPTION OF SYMBOLS 1 Biomedical diagnostic apparatus 6 Magnetic shield part 6A Main body magnetic shield part 6B Door magnetic shield part 7A Vacuum space part 7B Vacuum space part 8A Cooling part 8B Cooling part 9A Shield layer 9B Shield layer SP Bismuth System high temperature superconducting single crystal powder 11 Magnetic levitation type linear train 12 Car body 13 Magnetic shield part 13A Vacuum space part 13B Cooling part 13C Shield layer 14 Ground coil 15 Ground coil 16 Superconducting coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空空間から成る断熱層と、その断熱層
に隣接して液体窒素が充填された冷却層と、その冷却層
により冷却される磁気シ−ルド層とを所要の形状に積層
状に一体化した磁気シ−ルド部の前記磁気シ−ルド層の
中空部に対して、ビスマス系混合物を溶融状態にしたあ
と、その溶融体を急冷して固体状態にし、その固体状態
になったビスマス系混合物を熱処理することによって単
結晶を析出させ、その単結晶を粉体にして得られた超電
導単結晶粉体を均一に圧密充填することにより、磁気シ
−ルドの必要な装置の外周部を前記磁気シ−ルド部で磁
気遮蔽することを特徴とする超電導単結晶粉体を用いた
磁気シ−ルド方法。
1. A heat insulating layer comprising a vacuum space and the heat insulating layer
A cooling layer filled with liquid nitrogen adjacent to the
Laminated with magnetic shield layer cooled by the required shape
Of the magnetic shield layer of the magnetic shield part integrated like a circle
The bismuth-based mixture was melted in the hollow part.
And quenching the melt to a solid state,
The bismuth-based mixture that has become
Crystals were deposited and the single crystals were converted into powders to obtain supercurrent.
By uniformly compacting the conductive single crystal powder,
-The outer peripheral part of the device requiring the magnetic field is magnetized by the magnetic shield part.
Using a superconducting single crystal powder characterized by air shielding
Magnetic shield method.
JP3232220A 1991-08-19 1991-08-19 Magnetic shield method using superconducting single crystal powder Expired - Lifetime JPH07105615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3232220A JPH07105615B2 (en) 1991-08-19 1991-08-19 Magnetic shield method using superconducting single crystal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3232220A JPH07105615B2 (en) 1991-08-19 1991-08-19 Magnetic shield method using superconducting single crystal powder

Publications (2)

Publication Number Publication Date
JPH0548290A JPH0548290A (en) 1993-02-26
JPH07105615B2 true JPH07105615B2 (en) 1995-11-13

Family

ID=16935870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3232220A Expired - Lifetime JPH07105615B2 (en) 1991-08-19 1991-08-19 Magnetic shield method using superconducting single crystal powder

Country Status (1)

Country Link
JP (1) JPH07105615B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187897A (en) * 1988-01-22 1989-07-27 Sumitomo Heavy Ind Ltd Superconducting magnetic shielding plate and its manufacture
JPH0651028Y2 (en) * 1988-08-08 1994-12-21 株式会社大林組 Sheet-like material used as magnetic shielding wall material
JPH0313556A (en) * 1989-06-09 1991-01-22 Ngk Insulators Ltd Production of oxide superconductor

Also Published As

Publication number Publication date
JPH0548290A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US6906256B1 (en) Nanomagnetic shielding assembly
US5187327A (en) Superconducting magnetic shield
US7372273B2 (en) High temperature superconducting current leads for superconducting magnets
Watanabe et al. Evidence of Successive Magnetic Transition in La2− xBaxCuO4—NQR Studies of 139La—
JP4243691B2 (en) Brain magnetic field measuring device and method of using the same
JPH0793211B2 (en) Magnet coil device for nuclear magnetic resonance tomography equipment
DE3864385D1 (en) MAGNETIC SETUP OF A SYSTEM FOR NUCLEAR SPIN TOMOGRAPHY WITH SUPRAL-CONDUCTING BASIC COILS AND NORMAL-CONDUCTING GRADIENT COILS.
JPH0614899A (en) Cerebral magnetic field measuring instrument
US6528994B2 (en) Magnetic field measurement apparatus
JPH01243503A (en) Static magnetic field magnet for magnetic resonance imaging device
WO2006067828A1 (en) Measuring structure of superconducting magnetic shield brain field measuring equipment
JPH07105615B2 (en) Magnetic shield method using superconducting single crystal powder
Zeng et al. A high-temperature rf SQUID system for magnetocardiography
Ackermann et al. Multichannel SQUID system with integrated magnetic shielding for magnetocardiography of mice
Nishida et al. Moessbauer spectroscopic study of superconducting Y-Ba-Cu (Fe)-O ceramics and gamma-ray irradiation effect.
JPH01303139A (en) Magnetic resonance imaging device
US10338157B2 (en) Detection of biomagnetic signals using quantum detector arrays
DE10335040A1 (en) Electric machine used as superconducting machine comprises ferromagnetic pole core made from material containing nickel
JPH05114796A (en) Magnetic shielding case
JPS63278385A (en) Magnetic shielding device
Weissbrod et al. Phase-slip centers in superconducting indium microbridges
Gibson et al. Magnetic structure determination of CeAuGe and CeAgGe
Ruffieux High temperature superconducting magnetometers for on scalp MEG
JPH0779172B2 (en) Magnetic shield method using superconducting whiskers
JPH0197444A (en) Building structure for arranging high magnetic field machinery