JPH07105354A - Medical picture processor - Google Patents

Medical picture processor

Info

Publication number
JPH07105354A
JPH07105354A JP5269892A JP26989293A JPH07105354A JP H07105354 A JPH07105354 A JP H07105354A JP 5269892 A JP5269892 A JP 5269892A JP 26989293 A JP26989293 A JP 26989293A JP H07105354 A JPH07105354 A JP H07105354A
Authority
JP
Japan
Prior art keywords
circuit
image
area
noise
filter characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5269892A
Other languages
Japanese (ja)
Other versions
JP3163875B2 (en
Inventor
Takeshi Ozaki
毅 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP26989293A priority Critical patent/JP3163875B2/en
Publication of JPH07105354A publication Critical patent/JPH07105354A/en
Application granted granted Critical
Publication of JP3163875B2 publication Critical patent/JP3163875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To automatically implement optimum picture filtering processing depending on picture quality changing timewise and on picture quality of each part in one picture. CONSTITUTION:A filter characteristic of a filtering processing circuit 28 is controlled by a filter characteristic calculation circuit 27. A recursive filter 21, a subtractor circuit 22, an absolute value integration circuit 23 and an area setting circuit 24 obtain a signal representing noise in each area, a mean value calculation 25 and an area setting circuit 26 detect a luminance for each area and outputs of the circuits 23, 25 are fed to the filter characteristic calculation circuit 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、X線画像等の医用画
像のデジタル処理を行なう装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for digitally processing medical images such as X-ray images.

【0002】[0002]

【従来の技術】X線画像等の医用画像はデジタル化され
てエッジ強調などの処理を受け、診断のための観察に適
したものとされる。種々の医用画像のうち、とくにX線
TVシステムを用いて得たX線画像はフレームごとに順
次得られるものであるが、画像のS/N比が、X線条件
や被写体条件によりリアルタイムに変化する。そこで、
従来では、操作者が、モニター装置の画面上に表示され
たX線画像を見て、そのS/N比の変化に応じて、一定
の周波数特性を有する数種類のエッジ強調処理用フィル
タをマニュアルで選択するようにしている。
2. Description of the Related Art Medical images such as X-ray images are digitized and subjected to processing such as edge enhancement so as to be suitable for observation for diagnosis. Among various medical images, especially X-ray images obtained by using an X-ray TV system are sequentially obtained for each frame, but the S / N ratio of the image changes in real time depending on the X-ray condition and subject condition. To do. Therefore,
Conventionally, an operator manually sees an X-ray image displayed on the screen of a monitor device and manually operates several types of edge enhancement filters having a constant frequency characteristic according to a change in the S / N ratio. I am trying to choose.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
ようにマニュアルで対応するのでは、刻々と変化する画
質に対してエッジ強調の程度を最適なものに調整するこ
とは到底不可能であり、結果として不十分な調整のまま
で、ノイズの目立つ画像や、逆にあまりシャープでない
画像しか得られない、という問題がある。また、1枚の
画像のなかでも明るい部分と暗い部分とがあり、それら
各部でS/N比が異なるが、従来ではこの1枚の画像の
なかの各部分ごとにエッジ強調処理の調整を行なうこと
もできない。
However, it is impossible to adjust the degree of edge enhancement to the optimum one for the ever-changing image quality by the manual method as in the past, and as a result, As a result, there is a problem in that, with insufficient adjustment, only an image with noticeable noise or an image that is not very sharp can be obtained. In addition, although there is a bright portion and a dark portion in one image, and the S / N ratios are different in those portions, conventionally, the edge enhancement processing is adjusted for each portion in this one image. I can't do it either.

【0004】この発明は、上記に鑑み、刻々と変化する
画質に応じて、及び1枚の画像のなかの各部分の画質に
応じて、自動的に最適なフィルタリング処理を行なうこ
とができる、医用画像処理装置を提供することを目的と
する。
In view of the above, the present invention makes it possible to automatically perform an optimum filtering process according to the image quality that changes every moment and according to the image quality of each part in one image. An object is to provide an image processing device.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明による医用画像処理装置においては、順次
入力されてくるデジタル画像を時間方向に積分する手段
と、この積分されたデジタル画像と順次入力されてくる
デジタル画像との差分を設定された複数の小領域ごとに
求める手段と、順次入力されてくるデジタル画像の上記
と同一もしくは別個に設定された複数の小領域ごとに輝
度を求める手段と、順次入力されてくるデジタル画像に
対してエッジ強調処理を行なうフィルタリング処理手段
と、上記の求められた差分及び輝度に応じて上記フィル
タリング手段の周波数特性を各領域ごとに定める制御手
段とが備えられることが特徴となっている。
In order to achieve the above object, in the medical image processing apparatus according to the present invention, means for integrating sequentially input digital images in the time direction, and the integrated digital image A means for obtaining a difference from a sequentially input digital image for each of a plurality of set small areas, and a luminance for each of a plurality of small areas of the sequentially input digital image set as the same as or different from the above. Means, filtering processing means for performing edge enhancement processing on the sequentially input digital images, and control means for determining the frequency characteristic of the filtering means for each region according to the obtained difference and brightness. It is characterized by being equipped.

【0006】[0006]

【作用】順次入力されてくるデジタル画像を時間方向に
積分するとノイズ成分は相対的に抑圧される。そこで、
この積分されたデジタル画像と順次入力されてくるデジ
タル画像との差分を求めれば、それはノイズの多寡に応
じたものとなる。この差分が各領域ごとに求められるた
め、各領域ごとのノイズ状況が検出されたことになる。
領域ごとの輝度も別個に求められ、これら領域ごとのノ
イズ状況及び輝度に応じてフィルタ特性が定められるた
め、各領域ごとに最適なエッジ強調処理を行なうことが
できる。
When the digital images sequentially input are integrated in the time direction, the noise component is relatively suppressed. Therefore,
If the difference between this integrated digital image and the sequentially input digital image is calculated, it will be in accordance with the amount of noise. Since this difference is obtained for each area, the noise situation for each area is detected.
The brightness for each area is also calculated separately, and the filter characteristics are determined according to the noise condition and the brightness for each area, so that optimum edge enhancement processing can be performed for each area.

【0007】[0007]

【実施例】以下、この発明の好ましい一実施例について
図面を参照しながら詳細に説明する。図1はこの発明を
X線TVシステムに適用した一実施例を示すもので、こ
の図において、X線管11から被写体10に向けてX線
が照射される。被写体10を透過したX線はイメージイ
ンテンシファイア(I.I.)12に入射し、X線によ
る透過像は光学像に変換される。この光学像はTVカメ
ラ13によりビデオ信号に変換され、このビデオ信号は
A/Dコンバータ14によってデジタル化される。この
デジタル画像信号はノイズリダクションフィルタ15を
経てリアルタイムエッジエンハンス回路16に送られ、
エッジ強調処理をリアルタイムにて受ける。その後、階
調変換回路(ウインドウ回路)17により階調の変換を
受け、D/Aコンバータ18によりアナログのビデオ信
号に戻され、モニター装置19に送られて表示される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to an X-ray TV system. In this figure, X-rays are emitted from an X-ray tube 11 toward a subject 10. The X-rays that have passed through the subject 10 enter an image intensifier (II) 12, and the transmitted image by the X-rays is converted into an optical image. This optical image is converted into a video signal by the TV camera 13, and this video signal is digitized by the A / D converter 14. This digital image signal is sent to the real-time edge enhancement circuit 16 through the noise reduction filter 15,
Receive edge enhancement processing in real time. After that, the gradation conversion circuit (window circuit) 17 converts the gradation, the D / A converter 18 restores the analog video signal, and the analog video signal is sent to the monitor device 19 for display.

【0008】リアルタイムエッジエンハンス回路16
は、入力されたデジタル画像信号をリアルタイムでエッ
ジ強調処理するフィルタリング処理回路28を備えてお
り、さらに、このフィルタリング処理回路28をリアル
タイムで制御するために、リカーシブフィルタ21、減
算回路22、絶対値積算回路23、領域設定回路24、
26、平均値算出回路25、及びフィルタ特性算出回路
27を備えている。
Real-time edge enhancement circuit 16
Includes a filtering processing circuit 28 that performs edge enhancement processing on an input digital image signal in real time. Further, in order to control the filtering processing circuit 28 in real time, a recursive filter 21, a subtraction circuit 22, and an absolute value integration. Circuit 23, area setting circuit 24,
26, an average value calculation circuit 25, and a filter characteristic calculation circuit 27.

【0009】入力デジタル画像信号はまずリカーシブフ
ィルタ21により時間方向に積分され、一種の残像が付
加されたような画像となってノイズが抑圧されたものと
なる。このリカーシブフィルタ21の出力画像ともとの
入力画像とが減算回路22に入力され、それらの間の差
分が求められる。リカーシブフィルタ21の出力画像は
上記のようにノイズ除去されたものであるから、入力画
像にノイズが少なければ差分も小さくなり、この差分は
入力画像のノイズの大きさに対応する。
The input digital image signal is first integrated in the time direction by the recursive filter 21, and becomes an image with a kind of afterimage added, and the noise is suppressed. The output image of the recursive filter 21 and the original input image are input to the subtraction circuit 22, and the difference between them is obtained. Since the output image of the recursive filter 21 is the noise-removed image as described above, the difference becomes smaller if the input image has less noise, and this difference corresponds to the magnitude of the noise of the input image.

【0010】そこで、減算回路22の出力を絶対値積算
回路23に入力して、領域設定回路24で設定された複
数の小さな領域ごとに入力画像のノイズの大きさを算出
する。この領域設定回路24は1枚の画像を任意に分割
するもので、ここではたとえば図2で示すようにN×N
個の領域に分割するものとしている。そして、絶対値積
算回路23は、N×N個の各領域ごとに差分の絶対値を
積算する。これにより各領域ごとにノイズの大きさつま
りS/N値が求められることになる。
Therefore, the output of the subtraction circuit 22 is input to the absolute value integration circuit 23, and the size of the noise of the input image is calculated for each of a plurality of small areas set by the area setting circuit 24. The area setting circuit 24 arbitrarily divides one image, and here, for example, N × N as shown in FIG.
It is supposed to be divided into individual areas. Then, the absolute value integration circuit 23 integrates the absolute value of the difference for each of the N × N areas. As a result, the magnitude of noise, that is, the S / N value is obtained for each area.

【0011】他方、入力デジタル画像は、平均値算出回
路25に送られ、領域設定回路26で設定された各領域
ごとの輝度の平均値が求められる。この領域設定回路2
6は上記の領域設定回路24と同様のもので、領域設定
回路24とは別個に領域分割することができるが、同一
に分割するようにしてもよい。
On the other hand, the input digital image is sent to the average value calculating circuit 25, and the average value of the brightness of each area set by the area setting circuit 26 is obtained. This area setting circuit 2
6 is the same as the above-mentioned area setting circuit 24 and can be divided into areas separately from the area setting circuit 24, but may be divided into the same area.

【0012】そして、これら絶対値積算回路23からの
各領域ごとのS/N値と、平均値算出回路25からの各
領域ごとの平均輝度とがフィルタ特性算出回路27に入
力され、これらの入力データに応じて最適なフィルタ特
性が各領域ごとに算出される。ここでは、フィルタリン
グ処理回路28は、図4で示すような周波数foを中心
周波数とするバンドパスフィルタにより画像のエッジ強
調処理を行なうものとしており、そのfoでの利得を変
化させることによりノイズ低減とエッジ強調の程度が調
整できるものとしている。上記のフィルタ特性算出回路
27により求められたフィルタ特性に応じてこのフィル
タ特性が制御される。
Then, the S / N value for each area from the absolute value integrating circuit 23 and the average brightness for each area from the average value calculating circuit 25 are input to the filter characteristic calculating circuit 27, and these inputs are made. Optimal filter characteristics are calculated for each area according to the data. Here, the filtering processing circuit 28 performs the edge enhancement processing of the image by a bandpass filter having a frequency fo as the center frequency as shown in FIG. 4, and noise reduction is achieved by changing the gain at that fo. The degree of edge enhancement can be adjusted. The filter characteristic is controlled according to the filter characteristic obtained by the filter characteristic calculation circuit 27.

【0013】たとえば、図4に示すフィルタ特性のfo
での利得をKとすると、このKがフィルタ特性算出回路
27により図3に示すようにして定められる。すなわ
ち、図3のKをパラメータとしたカーブに基づいて、S
/N値が大きい(ノイズが多い)場合にはKを小さく、
S/N値が小さい(ノイズが少ない)場合にはKを大き
くし、平均輝度が小さく暗い部分ほどKの値を小さくす
る。なお、foは画像信号の周波数帯域Fsとノイズの
周波数帯域Fnとから定められる。
For example, fo of the filter characteristic shown in FIG.
Assuming that the gain at K is K, this K is determined by the filter characteristic calculation circuit 27 as shown in FIG. That is, based on the curve using K in FIG. 3 as a parameter, S
/ K is small when the N value is large (there is a lot of noise),
When the S / N value is small (there is little noise), K is increased, and the value of K is decreased as the average brightness is smaller and in the darker part. Note that fo is determined from the frequency band Fs of the image signal and the frequency band Fn of noise.

【0014】これによりTVカメラ13から順次出力さ
れるX線画像信号に対して、その1枚ずつの画像の各領
域の画質にリアルタイムに対応して最適なフィルタ特性
とされたフィルタリング処理回路28による、各領域ご
との最適なエッジ強調処理がリアルタイムでなされるこ
とになる。
Thus, the X-ray image signals sequentially output from the TV camera 13 are filtered by the filtering processing circuit 28 having optimum filter characteristics corresponding to the image quality of each area of each image in real time. The optimum edge enhancement processing for each area is performed in real time.

【0015】なお、上記ではノイズについて述べたが、
減算回路22からの差分出力は、ノイズに対応するだけ
でなく、画像の動きにも対応したものとなるので、絶対
値積算回路23の出力は各領域ごとの画像の動きを表わ
すものでもある。そこで、フィルタ特性算出回路27
は、各領域ごとに動きの大小に応じた最適フィルタ特性
を算出していることにもなる。
Although noise has been described above,
Since the difference output from the subtraction circuit 22 corresponds not only to noise but also to image movement, the output of the absolute value integration circuit 23 also represents image movement for each area. Therefore, the filter characteristic calculation circuit 27
Also means that the optimum filter characteristic according to the magnitude of motion is calculated for each area.

【0016】また、被写体の撮影部位とか撮影モードと
かによって上記のKの値は大体決まっているので、図3
のグラフのような複雑な計算によりKの値を求めるので
なく、撮影部位や撮影モードが定まったときにあらかじ
めKの値をいくつか選び出しておいて、フィルタ特性算
出回路27がそれらのなかから最適なものを選別するよ
うにしてもよい。このような簡略な制御とは反対に、フ
ィルタ特性の中心周波数foをも変化させるよう、より
複雑な制御を行なうこともできる。さらに各領域ごとの
輝度は上記のようにその領域の平均輝度を求めるのでは
なく、その各領域の輝度を代表するようなものを求める
ことでもよい。
Further, since the value of K is roughly determined depending on the photographed part of the subject and the photographing mode, FIG.
The value of K is not calculated by a complicated calculation such as the graph in FIG. 1, but some K values are selected in advance when the region to be imaged and the imaging mode are determined, and the filter characteristic calculation circuit 27 selects the optimum value from them. You may make it possible to sort out such items. Contrary to such simple control, more complicated control can be performed so that the center frequency fo of the filter characteristic is also changed. Further, the brightness of each area may be calculated so as to represent the brightness of each area, rather than the average brightness of that area as described above.

【0017】[0017]

【発明の効果】以上実施例について説明したように、こ
の発明の医用画像処理装置によれば、S/N比の悪い部
分ではノイズを抑え、S/N比の良い部分ではエッジを
よりシャープに強調することができるとともに、視覚的
に暗い部分ではノイズが目立つため、明るい部分に比較
して暗い部分ほどノイズ除去効果を大きくすることがで
き、これによって暗い部部での目障りなノイズを抑える
ことができる。このように画像の各部のノイズ状況に合
わせてフィルタ処理をダイナミックに制御することがで
き、画像全体にノイズの目立たないシャープな画質の画
像を得ることが可能となる。
As described in the above embodiments, according to the medical image processing apparatus of the present invention, noise is suppressed in a portion having a poor S / N ratio, and edges are made sharper in a portion having a good S / N ratio. In addition to being able to emphasize, noise is noticeable in visually dark areas, so the noise removal effect can be increased in dark areas compared to bright areas, thereby suppressing annoying noise in dark areas. You can In this way, the filtering process can be dynamically controlled according to the noise condition of each part of the image, and it becomes possible to obtain a sharp image with no noticeable noise in the entire image.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例にかかる医用画像処理装置
のブロック図。
FIG. 1 is a block diagram of a medical image processing apparatus according to an embodiment of the present invention.

【図2】同実施例における画面の分割例を示す図。FIG. 2 is a diagram showing an example of screen division according to the embodiment.

【図3】同実施例におけるS/N値と平均輝度とに対す
るKの値を表わすグラフ。
FIG. 3 is a graph showing the value of K with respect to the S / N value and the average luminance in the example.

【図4】同実施例におけるフィルタ特性を表わすグラ
フ。
FIG. 4 is a graph showing a filter characteristic in the example.

【符号の説明】[Explanation of symbols]

10 被写体 11 X線管 12 イメージインテンシファイア 13 TVカメラ 14 A/Dコンバータ 15 ノイズリダクションフィルタ 16 リアルタイムエッジエンハンス回路 17 階調変換回路 18 D/Aコンバータ 19 モニター装置 21 リカーシブフィルタ 22 減算回路 23 絶対値積算回路 24、26 領域設定回路 25 平均値算出回路 27 フィルタ特性算出回路 28 フィルタリング処理回路 10 subject 11 X-ray tube 12 image intensifier 13 TV camera 14 A / D converter 15 noise reduction filter 16 real-time edge enhancement circuit 17 gradation conversion circuit 18 D / A converter 19 monitoring device 21 recursive filter 22 subtraction circuit 23 absolute value Integration circuit 24, 26 Region setting circuit 25 Average value calculation circuit 27 Filter characteristic calculation circuit 28 Filtering processing circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 9191−5L G06F 15/68 400 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location 9191-5L G06F 15/68 400 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 順次入力されてくるデジタル画像を時間
方向に積分する手段と、この積分されたデジタル画像と
順次入力されてくるデジタル画像との差分を設定された
複数の小領域ごとに求める手段と、順次入力されてくる
デジタル画像の上記と同一もしくは別個に設定された複
数の小領域ごとに輝度を求める手段と、順次入力されて
くるデジタル画像に対してエッジ強調処理を行なうフィ
ルタリング処理手段と、上記の求められた差分及び輝度
に応じて上記フィルタリング手段の周波数特性を各領域
ごとに定める制御手段とを備えることを特徴とする医用
画像処理装置。
1. A means for integrating sequentially input digital images in a time direction, and a means for obtaining a difference between the integrated digital image and the sequentially input digital images for each of a plurality of set small areas. A means for obtaining brightness for each of a plurality of small areas of the sequentially input digital images which are set to be the same as or different from the above, and a filtering processing means for performing edge enhancement processing on the sequentially input digital images. A medical image processing apparatus comprising: a control unit that determines the frequency characteristic of the filtering unit for each area according to the obtained difference and brightness.
JP26989293A 1993-09-30 1993-09-30 Medical image processing equipment Expired - Lifetime JP3163875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26989293A JP3163875B2 (en) 1993-09-30 1993-09-30 Medical image processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26989293A JP3163875B2 (en) 1993-09-30 1993-09-30 Medical image processing equipment

Publications (2)

Publication Number Publication Date
JPH07105354A true JPH07105354A (en) 1995-04-21
JP3163875B2 JP3163875B2 (en) 2001-05-08

Family

ID=17478676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26989293A Expired - Lifetime JP3163875B2 (en) 1993-09-30 1993-09-30 Medical image processing equipment

Country Status (1)

Country Link
JP (1) JP3163875B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326304B1 (en) 1999-02-26 2001-12-04 Kaneka Corporation Method of manufacturing amorphous silicon based thin film photoelectric conversion device
US6737123B2 (en) 2001-06-14 2004-05-18 Canon Kabushiki Kaisha Silicon-based film formation process, silicon-based film, semiconductor device, and silicon-based film formation system
US6800539B2 (en) 2000-07-11 2004-10-05 Canon Kabushiki Kaisha Thin film formation method
US7074641B2 (en) 2001-03-22 2006-07-11 Canon Kabushiki Kaisha Method of forming silicon-based thin film, silicon-based thin film, and photovoltaic element
JP2007036844A (en) * 2005-07-28 2007-02-08 Hitachi Ltd Image signal processing apparatus and display apparatus provided with the same
JP2007050110A (en) * 2005-08-18 2007-03-01 Pentax Corp Image processor and electronic endoscope system
JP2008035547A (en) * 2007-09-21 2008-02-14 Olympus Corp Signal processing system
JP2017039007A (en) * 2008-10-27 2017-02-23 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326304B1 (en) 1999-02-26 2001-12-04 Kaneka Corporation Method of manufacturing amorphous silicon based thin film photoelectric conversion device
US6800539B2 (en) 2000-07-11 2004-10-05 Canon Kabushiki Kaisha Thin film formation method
US7074641B2 (en) 2001-03-22 2006-07-11 Canon Kabushiki Kaisha Method of forming silicon-based thin film, silicon-based thin film, and photovoltaic element
US6737123B2 (en) 2001-06-14 2004-05-18 Canon Kabushiki Kaisha Silicon-based film formation process, silicon-based film, semiconductor device, and silicon-based film formation system
JP2007036844A (en) * 2005-07-28 2007-02-08 Hitachi Ltd Image signal processing apparatus and display apparatus provided with the same
JP4605654B2 (en) * 2005-07-28 2011-01-05 株式会社日立製作所 Video signal processing device and display device equipped with the same
JP2007050110A (en) * 2005-08-18 2007-03-01 Pentax Corp Image processor and electronic endoscope system
JP2008035547A (en) * 2007-09-21 2008-02-14 Olympus Corp Signal processing system
JP2017039007A (en) * 2008-10-27 2017-02-23 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus

Also Published As

Publication number Publication date
JP3163875B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US5343254A (en) Image signal processing device capable of suppressing nonuniformity of illumination
EP1032196A2 (en) Method and apparatus for reducing motion artifacts and noise in video image processing
EP0289152A2 (en) Apparatus for processing an X-ray image
EP0442369B1 (en) Gradation correcting apparatus
US5018179A (en) Recursive filter and image display apparatus including the same
JP3163875B2 (en) Medical image processing equipment
JP2921973B2 (en) Image extraction method and image extraction device for specific object
JP2792133B2 (en) Image processing device
JP2885066B2 (en) Image processing device
JP3326819B2 (en) Image processing device
JP3109105B2 (en) Digital angiography device
JP2000152268A (en) Video signal processing unit
JP3298445B2 (en) X-ray image digital processing device
JP3629875B2 (en) X-ray image digital processing device
JP2841675B2 (en) X-ray image processing device
JPH06169906A (en) X-ray image diagnostic system
JPS63178673A (en) Movement adaptive type noise reducer
KR100349593B1 (en) Converted auto regressive filter and filtering method thereof
JPH0410794A (en) Picture quality correcting circuit
JP2002344773A (en) Device for reducing noise in video signal
JP2001078088A (en) Digital ccd camera
JP2531893B2 (en) TV image subject movement detection method
JPH07240886A (en) X-ray television receiver
JP3201531B2 (en) Image processing device
JPH0362179A (en) Picture processor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12